Program certification with computational effects

J.-G. Dumas*, D. Duval*, B. Ekici*, D. Pous’
*LJK, Université de Grenoble, France
fLIP, ENS Lyon, France
{Jean-Guillaume.Dumas,Dominique.Duval,Burak.Ekici}@imag.fr

Damien.Pous@ens-lyon.fr

8 octobre 2014

Dynamic evaluation is a paradigm in computer algebra which was introduced for
computing with algebraic numbers. In linear algebra, for instance, dynamic evaluation
can be used to apply programs which have been written for matrices with coefficients
modulo some prime number to matrices with coefficients modulo some composite num-
ber. A way to implement dynamic evaluation in modern computing languages is to use
the exceptions mechanism provided by the language. In this paper, we pesent a proof
system for exceptions which involves both raising and handling, by extending Moggi’s
approach based on monads. Moreover, the core part of this proof system is dual to a
proof system for the state effect in imperative languages, which relies on the catego-
rical notion of comonad [Dumas :12 :duality|. Both proof systems are implemented in
the Coq proof assistant, and they are combined in order to deal with both effects at
the same time.

The decorated logic provides a rigorous formalism for proving properties of pro-
grams involving computational effects. To start with, let us describe the main features
of the decorated logic for exceptions. Its syntax is given as follows, where T is any
exception name.

Types : t uw= A|BJ|...|t+¢|0]|Vp

Terms : fou= dd| fofl|[fIf]|inl]inr|][]]| tagy | untagy
Decorations : (d) == (0)](1)](2)

Equations : e u= f=flf~Ff

Here, O is the empty type while Vr represents the set of values which can be used
as arguments for the exceptions with name 7. Terms represent functions; they are
closed under composition and “copairs” (or case distinction), inl and inr represent the
canonical inclusions into a coproduct (or disjoint union). The basic functions for dea-
ling with exceptions are tag,: Vr — 0 and untag,:0 — Vr. A fundamental feature of
the mechanism of exceptions is the distinction between ordinary (or non-exceptional)
values and ezceptions. While tag,. encapsulates its argument (which is an ordinary va-
lue) into an exception, untag,. is applied to an exception for recovering this argument.
The usual throw and try/catch constructions are built from the more basic tag, and
untag, operations [Dumas :14a :cogexc|. We use decorations on terms for expressing
how they interact with the exceptions. If a term is pure, which means that it has no-
thing to do with exceptions, then it has decoration (0); in particular, id®, inl® and

%) are pure. We decorate throwers with (1) and catchers with (2); clearly taggrl)

inr(
is a thrower while untag(T2) is a catcher. A thrower may throw exceptions and must
propagate any given exception, while a catcher may recover from exceptions. Using

decorations provides a new schema where term signatures are constructed without

any occurrence of a “type of exceptions”. Thus, signatures are kept close to the syn-
tax. In addition, decorating terms gives us the flexibility to cope with more than one
interpretation of the set of exceptions. This means that with such an approach, any
proof in this decorated logic is valid for different implementations of the exceptions.
Besides, we have two different kinds of equality between terms : two terms are weakly
equal if they have the same behavior on ordinary values but may show differences
on exceptions, and they are strongly equal if they have the same behavior on both
ordinary values and exceptions. We respectively use ~ and = symbols to denote weak
and strong equalities.

This syntax is enriched with a set of rules that are decorated versions of the
rules for equational logic. The equivalence rules ensure that both weak and strong
equalities are equivalence relations. The hierarchy rules allow to consider any pure
term as a thrower, any thrower as a catcher, and any weak equality as a strong one.
The “copair” construction [f, g] cannot be used when both f and g are catchers, since
this would lead to a conflict when the argument is an exception. But [f, g] can be
used when only g is a catcher, it is the catcher [f, g](2> which is characterized by the
equations [f, g] o inl ~ f and [f, g] o inr = g. This means that exceptional arguments
are treated by [f, g] as they would be by g. The substitution rule for weak equations
f1(2) ~ f2(2> = fiog ~ fz20g is valid only when the substituted term g is pure.
The behaviour of the untag,. functions is given by the rules untag;. o tag; ~ idr and
untag; o tagy ~ [|r o tagy for all exception names T' # R (where [: 0 — R is the
canonical embedding).

Such a formal system enables us to prove properties of programs involving ex-
ceptions. The decorated logic for states and the decorated logic for exceptions, which
are mutually dual, are implemented in Coq [Dumas :14a :cogexc|. For instance, we
have used these logics for proving the primitive properties of the state effect pro-
posed in [Plotkin :02] and the dual properties of exceptions. To cope with programs
including both states and exceptions at the same time, we have composed these Coq
implementations, by merging the syntax and the rules. We have also translated the
basic imperative programming language IMP in our library, as well as the language
IMP EXC made of IMP extended with exceptions. We have used this implementa-
tion to prove some properties of IMP and IMP EXC programs. For instance, we have
checked some simple properties of programs calculating the rank of a (2x2) matrix
modulo a composite number using dynamic evaluation [Dumas :14a :cogexc]|.

We would like to be able to prove more general properties of algorithms for linear
algebra using dynamic evaluation implemented through exceptions. For this purpose,
we plan to implement Hoare logic for IMP EXC in decorated terms. We also plan to
study other effects (partiality, 10, non-determinism, ...) and to compose them in a
systematic way.

Références

[Dumas :14a :cogexc| J.-G. Dumas, D. Duval, B. Ekici, and J.-C. Reynaud. Certified
proofs in programs involving exceptions. CICM’14, Coimbra, Portugal, 2014.
[Dumas :14b :cogsts] J.-G. Dumas, D. Duval, B. Ekici, and D. Pous. Formal verifica-

tion in Coq of program properties involving the global state effect. JFLA, 2014.
[Dumas :12 :duality] J.-G. Dumas, D. Duval, L. Fousse and J.-C. Reynaud. A duality

between exceptions and states. Journal of Mathematical Structures in Computer
Science 22, p. 719-722(2012).

[Plotkin :02] G.-D. Plotkin, J. Power. Notions of Computation Determine Monads.
FoSSaCS 2002. Springer-Verlag Lecture Notes in Computer Science 2303, p.342-
356.

