Semidefinite approximations of projections and polynomial images of semialgebraic sets

V. Magron, D. Henrion, J.B. Lasserre LAAS-CNRS

7 avenue du colonel Roche, F-31400 Toulouse, France magron@laas.fr, henrion@laas.fr, lasserre@laas.fr

Given a compact semialgebraic set $\mathbf{S} \subseteq \mathbb{R}^n$, a polynomial map $f : \mathbf{S} \to \mathbb{R}^m$, we consider the problem of approximating the image set $\mathbf{F} = f(\mathbf{S})$. This includes in particular the projections of \mathbf{S} on \mathbb{R}^m , for $n \ge m$. Assuming that $\mathbf{F} \subseteq \mathbf{B}$, with $\mathbf{B} \subseteq \mathbb{R}^m$ being a "simple" set (box or ellipsoid), we provide two methods (called Method 1 and Method 2) to compute certified outer approximations of \mathbf{F} :

- The first approach (Method 1) consists in rewriting \mathbf{F} as a set defined with an existential quantifier. Then, one can outer approximate \mathbf{F} as closely as desired with a hierarchy of superlevel sets of the form $\mathbf{F}_r^1 := \{ \mathbf{y} \in \mathbf{B} : q_r(\mathbf{y}) \geq 0 \}$, for some polynomials $q_r \in \mathbb{R}[\mathbf{y}]$ of increasing degrees 2r.
- The second approach (Method 2) consists in building a hierarchy of relaxations for the infinite dimensional moment problem whose optimal value is the volume of \mathbf{F} and whose optimum is the restriction of the Lebesgue measure on \mathbf{F} . Then, one can outer approximate \mathbf{F} as closely as desired with a hierarchy of super level sets of the form $\mathbf{F}_r^2 := \{\mathbf{y} \in \mathbf{B} : w_r(\mathbf{y}) \geq 1\}$, for some polynomials $w_r \in \mathbb{R}[\mathbf{y}]$ of increasing degrees 2r.

These two methods output a sequence of superlevel sets defined with a single polynomial that yield explicit outer approximations of \mathbf{F} . Finding the coefficients of this polynomial boils down to compute an optimal solution of a semidefinite program. We provide guarantees of strong convergence to \mathbf{F} in $L_1(\mathbf{B})$ -norm, when the degree of the polynomial approximation tends to infinity.

We next present some application examples together with numerical results. In particular, we illustrate that our methodology is a unified framework which can tackle important special cases : semialgebraic set projections and Pareto curves approximations. The framework can be extended to approximate images of semialgebraic sets under semialgebraic applications.