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Continued Fractions. Continued fractions have been used since Euler's
time for their remarkable convergence properties [Eul48]. Among the two-
dimensional Padé table formed by the rational approximants P/Q to a given
complex series, they form a diagonal staircase. Restricting the approximation
to the diagonal is usually preferred because it is formally simple to compute.

The analytical and numerical properties of continued fractions have been
studied extensively since the 60's, as can be seen in numerous reference books
on the topic (e.g. [JT80]), and we refer to Brezinski for a historical point of
view [Bre81]. As an example, the following formal expansion of the natural
logarithm as a so-called C-fraction provides an analytic continuation to the
whole complex plane cut along the negative real axis :

ln(1 + z) =
z
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a2z

1 +
a3z

1 + . . .

for all z, (1 + z) ∈ C \ R−.

where a2k = k
2(2k−1)

and a2k+1 = k
2(2k+1)

. Compared to the Taylor series, it
not only has a wider convergence domain, but also converges faster on the
disk |z| < 1.

Automation. In many similar cases of interest, simple formulas can be de-
rived for the coe�cients of a continued fraction of this shape. As can be seen
in a recent compendium on the topic by Cuyt et alii [CPV+08], most expan-
sions are obtained by hand, by specializing a number of formulas. We propose
here to use data structures from computer algebra, and proof techniques from
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experimental mathematics, to obtain such formulas automatically, in a uni-
�ed manner.

Given a power series, our procedure provides a way of :
� detecting instantly if the coe�cients of its C-fraction expansion may
satisfy a small-order recurrence,

� computing a simple proof for the formal correspondence of this (in�nite)
expansion to the input series.

Notably, the proofs are obtained in a generic way, using a single procedure,
which contrasts with the limits taken coe�cient by coe�cient in the lite-
rature. As such, this work can also be seen as a new direct proof of the
expansion for the exponential function for example [Wal48].

The proof is performed using the very general framework of holonomic
series as the underlying function representation.

Under the hood. Holonomic functions ([Sta80]), cover a wide class of the
so�called special functions from mathematical physics, combinatorics, etc.. It
consists of functions which can be implicitely represented using a linear dif-
ferential equation with polynomial coe�cients, along with initial conditions.
Equivalently, a holonomic sequence (of coe�cients) is represented using a
linear recurrence relation with polynomial coe�cients. The e�cient imple-
mentation of these objects and operations in the maple module gfun [SZ94]
served as a basis for experimentation and development, to provide reactive
tools.

Among others properties, the class of holonomic functions enjoys an algo-
rithmic ring structure. Interestingly, the fact that division does not preserve
holonomicity is not an issue here, thanks to a natural approach in the holo-
nomic world : �guess and prove�.

Guess and prove. At �rst, only a �nite order expansion is known, pro-
viding say the 30 �rst terms of the continued fraction. A recurrence on its
�rst coe�cients can be computed using standard linear algebra � this is the
�guessing� step. In a considerable number of examples, the recurrence order
is strikingly small (≤ 3).

The �guessed� recurrence then provides a description of an in�nite conti-
nued fraction, which must be proved equal to the original function. This ve-
ri�cation step �rst involves simple formulas concerning continued fractions,
and the algorithmic closure properties of holonomic sequences. But more
crucially, another �guess and prove� step is needed, in order to check the dif-
ferential equation on the conjectured expansion. This last part is the most
time-consuming part of the proof, and necessitated optimizations here.
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