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Introduction. We are interested in the geometry of real algebraic varieties defined
by rank constraints on square matrices whose entries are linear forms with rational
coefficients:

D =
{
x = (x1, . . . , xn) ∈ Rn : A(x) = A0 + x1A1 + . . . + xnAn has rank ≤ r

}
given integers m,n, r and Ai ∈ Qm×m for i = 0, . . . , n. Sets of this type are defined
by collections of minors of A and are called real determinantal varieties. They are
ubiquitous in the mathematical sciences and in applications. If A0, . . . , An lie in
some linear subspace of Qm×m, so does A(x). In particular, if they are symmetric,
then the set

S =
{
x ∈ Rn : A(x) is positive semi-definite

}
,

provided it is full-dimensional, is called the spectrahedron associated to A. Spec-
trahedra are affine sections of the cone of positive semi-definite matrices, and also
convex basic semi-algebraic sets (for example, polyhedra are particular examples of
spectrahedra, when all the matrices Ai commute, and in particular if they are all
diagonal). These are the feasible sets of semidefinite programming, whose goal is to
minimize linear functions over S. Now, solutions to semidefinite programs are alge-
braic points lying in the boundary of the set S, which is a subset of the hypersurface
defined by detA(x) = 0. In general, the matrix A has rank defects at all points of
the boundary of S: this provides a geometric relation between the stratifications of
the rank of A and the set S. Hence, it is a problem of primary importance to design
exact algorithms solving efficiently what follows:

• decide whether S is empty or not;

• compute the smallest rank atteined by A(x) on S;

• compute a point on the boundary of S where the smallest rank is attained.



Also, in some applications, the matrix A(x) belongs to some fixed subspace of Qm×m,
for example the space of Hankel or Hurwitz matrices. We also consider these struc-
tured situations which often occur and are interesting in different areas.

Contributions. Our main contribution is the construction of an exact algorithm
for finding at least one point in every connected component of the set D. This is a
particular instance of the general problem of solving systems of polynomial equations
over the real numbers and represents a possible strategy to decide the emptiness of
such sets: in fact, if the rank of A(x) is at most r at some real point x, then D
is non-empty and the algorithm is expected to give as output a representation of
a finite set of points containing at least one point per connected component of the
real set; otherwise it returns the empty set.

Under genericity assumptions on the entries of A0, . . . , An, the aforementioned algo-
rithm produces a rational parametrization of a finite set intersecting each connected
components of D; in case of success its runtime is essentially quadratic on a multi-
homogeneous Bézout bound on the number of complex solutions, which is strictly

upper bounded by
(
m(m−r)+n

n

)3
. In particular, when the size of the matrix is fixed,

the complexity is at most polynomial in the number of variables. Moreover, it has
a good asymptotic behavior (when both m and n go to infinity). This improves
the state of the art since algorithms solving this problem typically require (at most)
dO(N) arithmetic operations when dealing with a polynomial equation of degree d
in N variables. This improvement arises from the particular nature of the polyno-
mial system under study, and we will also discuss numerical results supporting this
theoretical complexity gain.
The interesting fact is that if the linear matrix has a structure in the sense men-
tioned above, the bounds on the number of solutions computed by the algorithm
are significantly smaller, and the same holds for the computational complexity. For
example, the previous Bézout bounds for affine sections of symmetric matrices and

Hankel matrices are respectively
(
(m−r)(m+r+1)/2+n

n

)3
and

(
2m−r−1+n

n

)3
.

Finally, this algorithm can be used to compute points lying on the boundary of a
given spectrahedron. This is possible since, in the symmetric case, the boundary of
the spectrahedron S of A(x) contains a connected component of the determinantal
variety D where r is the minimum possible rank appearing on S. This result proves
that our algorithm computes a small-rank point lying on the boundary of S (if S 6= ∅)
and that it can answer the three questions mentioned above. The complexity of
this problem is also a polynomial function of the aforementioned multihomogeneous
Bézout bound on the number of complex solutions for symmetric linear matrices.
This fact is remarkable because we can derive a complexity estimate for the problem
of deciding the emptyness of spectrahedra.


