
Computations on symbolic floating
point numbers

C.-P. Jeannerod, N. Louvet, J.-M. Muller, A. Plet
Département, Laboratoire de l’Informatique du Parallélisme

46 Allée d’Italie, Lyon 69364
antoine.plet@ens-lyon.fr

November 3-7, 2014

In a computer, real numbers are often approximated by a finite discrete
set called floating point numbers. Therefore, any computation leads to an
error we have to care about. When it comes to compute successive basic
operations, a naive algorithm can lead to a huge relative error on the result.
For example, for an expression as simple as a 2x2 determinant, you can get a
relative error bigger than 1 which is not acceptable. Any algorithm computing
over floating point numbers should be given with a bound on the possible
output error. Such a proof of accuracy can sometimes be independent from
the precision or from the rounding scheme, then covering various standard
formats defined in IEEE754-2008 [1].

The next step to achieve a complete analysis of an algorithm is to provide
an optimal error bound. Testing the optimality for all the possible inputs does
not scale with the increasing precision we are able to compute and the opti-
mality of the error bound in [3] comes from a generic example, parametrized
with the precision. Let’s call it a symbolic floating point number. However,
the computations on such generic examples are done by hand which is time
demending and error prone. We propose two methods to compute additions
and multiplications followed by a rounding operation on symbolic floating
point numbers. Those methods are valid for a subset of floating point num-
bers which could be called sparse symbolic floating point numbers and for
the default rounding scheme "round to nearest ties to even".

The first method relies on the evaluation-interpolation scheme available
for polynomial computations. Sparse symbolic floating point numbers can be

1



represented as a polynomial. The dependency on the precision goes all to
the evaluation point and none to the polynomial. That is, for every possible
precision, the floating point number can be seen as the evaluation of the
same polynomial at a different point. Of course, when we add or multiply
such numbers with one another, without any rounding operation, we keep
the same property. The interesting and non trivial fact is that for the default
rounding scheme, the polynomial point of view is still valid after the rounding
operation : the result is a new polynomial, evaluated in the same symbolic
value. Thus, one can compute the result of a symbolic floating point operation
from numerical evaluations of the operation for various precisions and then
get the results back to the symbolic word.

The second method is inspired from the natural way to compute on floa-
ting point numbers. We first locate the most significant digit and deduce the
position of the least significant digit. Then we can decide how to truncate
and compensate the initial number to get the right result according to the
rounding scheme.

We implemented those two methods which allowed us to instantly check
the available examples in [2], [3], [4].

References

[1] IEEE Computer Society, IEEE Standard for
Floating-Point Arithmetic, Available at http ://ieeex-
plore.ieee.org/servlet/opac ?punumber=4610933

[2] R. Brent, C. Percival, P. Zimmermann, Error Bounds on Complex
Floating-Point Multiplication, Mathematics of Computation 76 (2007),
pp. 1469–1481

[3] C.-P. Jeannerod, N. Louvet, J.-M. Muller, On the componentwise
accuracy of complex floating-point division with an FMA, Proceedings of
the 21st IEEE Symposium on Computer Arithmetic (2013), pp. 83–93

[4] C.-P. Jeannerod, N. Louvet, J.-M. Muller, Further analysis of
Kahan’s algorithm for the accurate computation of 2 × 2 determinants,
Mathematics of Computation 82 (2013), pp. 2245–2264

2


