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Introduction

Matrix structures are encountered in various guises in a wide variety of mathe-
matical problems from theory, applications and scientific computing. Structures
are the expression, given in terms of the language of linear algebra, of the specific
properties satisfied by the mathematical model.

As an example, the most simple structure widely encountered is the one of
banded matrices where the entries ai,j of a matrix A are zero for |i−j| larger than
a given small constant value k > 0. This kind of structure reflects the locality
features of some functions involved in the model or the local action of some
operators, like derivatives in differential equations or point-spread functions in
image restoration models.

Another example of structure, of particular interest in the world of Internet is
sparsity. Informally, an n×n matrix is sparse if the number of its nonzero entries
is of the order of n. In complex network analysis like in the social networks, or
in search engines as in the Google PageRank problem, sparsity reflects the fact
that not all the parties involved in the game, say web pages or member of a
social network, are connected to each other but the set of connections starting
from a node is independent of the overall number of nodes.

The analysis of matrix structures concerning both theoretical and compu-
tational properties, is fundamental for designing fast and highly effective algo-
rithms to solve specific problems where the dimension is very large. In fact,
when the size is huge, general purpose algorithms require a CPU time of years
or centuries even by using the fastest super-computers available nowadays. An
example is the PageRank problem where a system of size larger than 1010 must
be solved to sort web pages according to their importance. In this case, Gaussian
elimination would require many billions of years of CPU time, whereas iterative
methods, specifically designed for sparse matrices allow to solve the problem in
real time with a sufficiently good approximation.

Structure analysis is important not only for algorithm design and applica-
tions but also for the variety, richness and beauty of the mathematical tools
that are involved in the research. Significant in this regard is the following sen-
tence from the mathematician Alexander Grothendieck, who received the Fields
medal in 1966: ”If there is one thing in mathematics that fascinates me more
than anything else (and doubtless always has), it is neither number nor size, but
always form. And among the thousand-and-one faces whereby form chooses to
reveal itself to us, the one that fascinates me more than any other and continues
to fascinate me, is the structure hidden in mathematical things.”

A class of important structured matrices is the one of Toeplitz matrices,
characterized by the fact that their entries are invariant under shifts along the
main diagonal direction, are ubiquitous in applications and appear when some
sort of shift invariance property is satisfied by the mathematical objects involved
in the model. They are encountered in many different fields like probability,
statistics, signal processing, image restoration, polynomials and power series
computations, queueing models, stochastic processes, spline interpolation, and
more. We refer the reader to the book [25].
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It is nice to discover that the basic polynomial computations like polynomial
multiplication, quotient and remainder, polynomial gcd, can be rephrased in
terms of Toeplitz matrix computation.

A wide literature exists concerning Toeplitz matrices. It covers problems
like the analysis of asymptotic spectral properties, where tools from functional
analysis and operator theory are used; the study of related matrix algebras and
fast discrete transforms; the analysis of preconditioners for the iterative solution
of Toeplitz systems; the analysis of displacement operators, which enable one
to represent the inverse of a Toeplitz matrix in a nice form; the analysis of fast
and superfast algorithms for solving Toeplitz and Toeplitz-like linear systems
with their interplay with Cauchy-like matrices.

Another interesting class of matrices is the class of quasi-separable matrices.
The interest in this class is mainly originated by the fact that the inverses
of banded matrices have this property. Informally speaking, a quasiseparable
matrix is a matrix where all its submatrices strictly contained in the upper
triangular part or in the lower triangular part have low rank. This structure is
more hidden and can be detected with more difficulty.

A wide literature exists concerning this class starting from the pioneering
work of Gantmacher and Krein [37], and arriving at the most recent algorithms
for processing quasiseparable matrices designed by the several research groups
working in this field. For a detailed commented reference list we refer to the
books [65], [66], [34] and to the paper [64].

It is nice to discover that all the companion matrices like Frobenius, colleague
and comrade matrices share this important property.

In this short course we provide an overview of structural and computational
properties of Toeplitz matrices, quasiseparable matrices and of related matrix
structures. Some example of their applications are given. Concerning Toeplitz
matrices we describe their asymptotic spectral properties, their interplay with
FFT and trigonometric matrix algebras including ε-circulant and triangular
Toeplitz matrices, the concept of displacement rank, the Gohberg-Semencul-
Trench inversion formula, algorithms for solving Toeplitz systems, the interplay
between Toeplitz matrices and Laurent power series.

Applications are shown in the fields of polynomial computations, stochastic
models, image restoration, preconditioning, solving matrix equations. We also
describe a recent application to compute the exponential of a block triangular
block Toeplitz matrix.

Concerning quasiseparable matrices, we will recall the main properties, then
we focus the attention to companion - like matrices and present some recent
results concerning certain linearizations of matrix polynomials.

The spirit of this note is to give the flavor of the available results with
pointers to the literature.

Notations

Throughout, given a field F and positive integers m,n we denote by Fm×n the
linear space of m×n matrices with entries in F. The set Fm×1 of m-dimensional
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column vectors is denoted more simply by Fm. For our purposes F is limited
to the real field R or to the complex field C. The symbol i isb the complex
unit such that i2 = −1. We denote AT the transpose matrix of A and A∗ the
transpose conjugate, where the conjugate of the complex number z = a + ib is
z = a− ib for a, b ∈ R. The identity matrix is denoted by I; if the size n is not
clear from the context we use the symbol In.

Moreover we use ρ(A) for the spectral radius of the matrix A, i.e., the maxi-
mum modulus of the eigenvalues of A, while ‖x‖∞ = max |xi|, ‖x‖2 =

√∑
|xi|2

are the infinity norm and the 2-norm, respectively. The matrix operator norms
induced by the vector norms ‖·‖∞ and ‖·‖2 are given by ‖A‖∞ = maxi

∑
j |ai,j |,

‖A‖2 =
√
ρ(A∗A), respectively.

We also denote by T = {z ∈ C : |z| = 1} the unit circle in the complex
plane.

Given two matrices A = (ai,j) and B = (bi,j) we set C = A⊗B for the block
matrix with blocks ai,jB. The symbol ⊗ is called the Kronecker product.

Finally, given a function f : T → C, we define esssup f(x) the sup of f(x)
up to a set of measure zero. The same we do with essinf f(x).
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Chapter 1

Toeplitz and Toeplitz-like
matrices

1.1 Introduction

Given the (2n + 1)-tuple (a−n, . . . , a0, . . . , an) the matrix T = (ti,j) ∈ Fn×n,
such that ti,j = aj−i for i, j = 1, . . . , n is said a Toeplitz matrix. A Toeplitz
matrix has equal entries along its diagonals. An example of Toeplitz matrix is
shown below 

a0 a1 a2 a3
a−1 a0 a1 a2
a−2 a−1 a0 a1
a−3 a−2 a−1 a0


Given a formal Laurent series a(z) =

∑+∞
i=−∞ aiz

i, we may associate with
a(z) the sequence of n×n Toeplitz matrices {Tn}n such that Tn = (aj−i)i,j=0,n−1.
This sequence is formed by the n×n leading principal submatrices of the semi-
infinite matrix T = (aj−i)i,j∈N

The following classical result has been given by Otto Toeplitz (see Böttcher
and Grudsky [24])

Proposition 1. The semi-infinite matrix T defines a bounded operator in the
space `2(N) of semi-infinite sequences over F = C if and only if the numbers
an are the Fourier coefficients of some function a(z) : T → C such that a(z) ∈
L∞(T). The norm of the operator is

‖T‖∞ = ess supz∈T|a(z)|

The function a(z) is called symbol.

1.1.1 Block matrices

For the sake of notational simplicity sometimes it is convenient to represent

matrices in terms of blocks. Given m × m matrices Ai,j = (a
(i,j)
r,s ), i, j =
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1, . . . , n we denote A = (Ai,j) the mn ×mn matrix whose entries are given by

a(i−1)m+r,(j−1)m+s = a
(i,j)
r,s , where a

(i,j)
r,s denotes the entry of A(i,j) in position

(r, s). For instance,

A =

[
A1,1 A1,2

A2,1 A2,2

]
=


a
(1,1)
1,1 a

(1,1)
1,2 a

(1,2)
1,1 a

(1,2)
1,2

a
(1,1)
2,1 a

(1,1)
2,2 a

(1,2)
2,1 a

(1,2)
2,2

a
(2,1)
1,1 a

(2,1)
1,2 a

(2,2)
1,1 a

(2,2)
1,2

a
(2,1)
2,1 a

(2,1)
2,2 a

(2,2)
2,1 a

(2,2)
2,2


We say that A is an n×n block matrix with m×m blocks. Block matrices are

encountered in the mathematical models related to higher dimensional spaces.
Given the (2n+1)-tuple (A−n, . . . , A0, . . . , An) of m×m matrices the matrix

T ∈ Fn×n, T = (Ti,j) such that Ti,j = Aj−i for i, j = 1, . . . , n is said a Block
Toeplitz matrix.

Similarly to the case of Toeplitz matrices, a matrix valued function A(z) :
T→ Cm×m such that A(z) =

∑+∞
i=−∞Aiz

i is its Fourier series defines an infinite
block Toeplitz matrix and a sequence {Tn} of n×n block Toeplitz matrices with
m×m blocks.

If the blocks Ak, k ∈ Z are Toeplitz matrices themselves, then the matrix
T = (Aj−i) is said a block Toeplitz matrix with Toeplitz blocks. A function

a(z, w) : T×T→ C such that a(z, w) =
∑+∞
r=−∞

∑+∞
s=−∞ ar,sz

rws is its Fourier
series, generates a semi-infinite block Toeplitz matrix with semi-infinite blocks
T = (Tj−i)i,j∈N, Tr = (ar,j−i)i,j∈N.

For any pair of positive integers (m,n) the n×n block Toeplitz matrix with
m×m blocks Tm,n is derived from the symbol a(z, w).

For instance, the celebrated discrete Laplacian matrix
A −I

−I A
. . .

. . .
. . . −I
−I A

 , A =


4 −1

−1 4
. . .

. . .
. . . −1
−1 4


is a block Toeplitz matrix with Toeplitz blocks associated with the symbol
a(z, w) = 4− z − z−1 − w − w−1.

Similarly, we may inductively define multilevel Toeplitz matrices formed by
block Toeplitz matrices whose blocks are in turn multilevel block Toeplitz ma-
trices. This kind of matrices are encountered in the mathematical modeling of
multidimensional problems.

A function a : Td → C having the Fourier expansion

a(x1, x2, . . . , xd) =

+∞∑
i1,...,id=−∞

ai1,i2,...,idx
i1
i1
xi2i2 · · ·x

id
id

defines a d-multilevel Toeplitz matrix: that is a block Toeplitz matrix with
blocks that are themselves (d− 1)-multilevel Toeplitz matrices
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1.1.2 Banded matrices

A matrix A = (ai,j) is banded with bandwidth (h, k) if ai,j = 0 for j − i > k
or i − j > h. A block matrix A = (Ai,j) is banded with bandwidth (h, k) if
Ai,j = 0 for j − i > k and for i− j > h.

Observe that if the symbol a(z, w) is a Laurent polynomial, i.e., a(z, w) =∑k
r=−h

∑q
s=−p ar,sz

rws for h, k, p, q > 0, then the associated block Toeplitz
matrix with Toeplitz blocks is block banded with banded blocks.

1.1.3 Toeplitz-like matrices

Let Li and Ui be lower triangular and upper triangular n×n Toeplitz matrices,
respectively, where i = 1, . . . , k and k is independent of n then

A =

k∑
i=1

LiUi

is defined Toeplitz-like matrix.
In particular, if k = 2, L1 = I, U2 = I the above expression provides a

Toeplitz matrix.

1.2 Applications of Toeplitz matrices

In this section we briefly report on some applications of Toeplitz matrices. We
deal with polynomial arithmetic, queuing models, image restoration and the
numerical treatment of partial differential equations.

1.2.1 Polynomial arithmetic

Polynomial multiplication can be rephrased in terms of the product of a rect-
angular banded Toeplitz matrix and a vector as follows.

Let a(x) =
∑n
i=0 aix

i, b(x) =
∑m
i=0 bix

i, be two polynomials and let c(x) :=

a(x)b(x), c(x) =
∑m+n
i=0 cix

i, be their product.
Relating the coefficients of a(x), b(x) and c(x) one finds that

c0 = a0b0
c1 = a0b1 + a1b0
c2 = a0b2 + a1b1 + a2b0
. . .
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which can be rewritten in matrix form as

c0
c1
...
...
...
...

cm+n


=



a0
a1 a0
...

. . .
. . .

an
. . .

. . . a0
. . .

. . . a1

. . .
...
an




b0
b1
...
bm



Similarly the computation of quotient and remainder of the division of two
polynomials can be rewritten in the form of Toeplitz matrices.

If a(x) =
∑n
i=0 aix

i, b(x) =
∑m
i=0 bix

i, bm 6= 0 are polynomials of degree n
and m, respectively where n ≥ m, denoting q(x) the quotient of the division of
a(x) by b(x) and r(x) the remainder of this division, one has that the degree of
q(x) is n−m while the degree of r(x) is at most m− 1.

Rewriting the relation a(x) = b(x)q(x) + r(x) in matrix form yields

a0
a1
...
am
...
...
an


=



b0
b1 b0
...

. . .
. . .

bm
. . .

. . . b0
. . .

. . . b1

. . .
...
bm




q0
q1
...

qn−m

+



r0
...

rm−1
0
...
0


.

Observe that the last n−m+ 1 equations form an upper triangular Toeplitz
system 

bm bm−1 . . . b2m−n

bm
. . .

...
. . . bm−1

bm




q0
q1
...

qn−m

 =


am
am+1

...
an

 .
Its solution provides the coefficients of the quotient.

The remainder can be computed as a difference: r0
...

rm−1

 =

 a0
...

am−1

−
 b0

...
. . .

bm−1 . . . b0


 q0

...
qn−m

 .
For the sake of simplicity the above matrix has been written in the case where
n−m = m− 1
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Also the polynomial greatest common divisor (gcd) can be easily rewritten in
matrix form involving Toeplitz matrices. Recall that, by the Bézout identity, if
g(x) = gcd(a(x), b(x)), deg(g(x)) = k, deg(a(x)) = n, deg(b(x)) = m then there
exist polynomials r(x), s(x) of degree at most m−k−1, n−k−1, respectively,
such that

g(x) = a(x)r(x) + b(x)s(x).

Rewriting this expression by rephrasing polynomial products in terms of
Toeplitz matrix-vector product, one finds the following (m+n−k)×(m+n−2k)
system 

a0
a1 a0
...

. . .
. . .

an
. . .

. . . a0
. . .

. . . a1

. . .
...
an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b0
b1 b0
...

. . .
. . .

bm
. . .

. . . b0
. . .

. . . b1

. . .
...
bm





r0
r1
...

rm−k−1
s0
s1
...

sn−k−1


=



g0
...
gk
0
...
...
0


.

The matrix described in this system is called Sylvester matrix
The last m+ n− 2k equations provide a linear system of the kind

S

[
r
s

]
=


gk
0
...
0


where S is the (m+n−2k)× (m+n−2k) submatrix formed by the m+n−2k
rows of the above Sylvester matrix. This matrix is formed by two Toeplitz
matrices.

1.2.2 The Wiener-Hopf factorization: solving queueing
problems

Another interesting application concerns infinite Toeplitz matrices. Let a(x), b(x)
be polynomials of degree n,m with coefficients ai and bi, respectively. Define
the Laurent polynomial, that is a polynomial in x and in x−1, given by

c(x) =

n∑
i=−m

cix
i = a(x)b(x−1).
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Figure 1.1: The shortest queue problem

Then one can verify that the following infinite UL factorization holds

c0 . . . cn
... c0

. . . cn

c−m
. . .

. . .
. . .

. . .

. . .
. . .

. . .


=


a0 . . . an

a0
. . . an
. . .

. . .
. . .





bm
bm−1 bm

...
. . .

. . .

b0
. . .

. . .
. . .

. . .
. . .

. . .
. . .


,

where the first factor U is an infinite upper triangular Toeplitz matrix and the
second factor L is an infinite lower triangular Toeplitz matrix.

If the zeros of a(x) and of b(x) lie in the unit disk is called Wiener-Hopf
factorization. Wiener-Hopf factorizations are encountered in many applications,
see for instance [44], [16].

The Wiener-Hopf factorization can be defined for matrix-valued functions
C(x) =

∑+∞
i=−∞ Cix

i, Ci ∈ Cm×m, in the Wiener class, i.e, such that
∑+∞
i=−∞ ‖Ci‖ <

∞, provided that detC(x) 6= 0 for |x| = 1 [25].
A canonical Wiener-Hopf factorization takes the form

C(x) = A(x)B(x−1), A(x) =

∞∑
i=0

xiAi, B(x) =

∞∑
i=0

Bix
i

where A(x) and B(x) have zeros in the open unit disk.
Its matrix representation provides a block UL factorization of the infinite

block Toeplitz matrix (Cj−i)
C0 C1 . . .

C−1 C0 C1
. . .

...
. . .

. . .
. . .

 =


A0 A1 . . .

A0 A1
. . .

. . .
. . .

. . .


 B0

B−1 B0

...
. . .

. . .

 .
Computing canonical Wiener-Hopf factorizations is fundamental in the so-

lution of many queuing models [16].
An example of application to queueing model is given by the shortest queue

problem.
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The problem: There are m gates at an exit of a highway. Cars arrive, join
a line, pay the toll and exit the highway according to the following rules

• at each instant α cars arrive with a known distribution probability p(α)

• each car follows the shortest line

• at each instant a car leaves the gate

The question is to determine the probability that there are ` cars in the line
waiting to be served. This model is close to the important model which defines
the wireless IEEE 802.11 protocol used in the wireless connections of a home
network.

Denoting pi,j the probability that after one instant of time the length of the
queue changes from i to j then pi,j = aj−i if i ≥ m, that is if there are at least
m cars in the queue, where ak is the probability that k +m cars arrive so that
0 ≤ ak ≤ 1,

∑∞
k=−m ak = 1, ak = 0 for k < −m.

The problem turns into an infinite eigenvalue problem of the kind

πTP = πT ,

π ∈ RN is a probability vector, i.e.,
∑
πi = 1, πi ≥ 0, and P = (pi,j) is almost

Toeplitz in generalized upper Hessenberg form

P =



b1,1 b1,2 . . . . . .
...

...
...

...
bm,1 bm,2 . . . . . .
a0 a1 a2 . . .

a0 a1
. . .

. . .
. . .


where bi,j are suitable boundary probabilities. This matrix can be partitioned
into m×m blocks as follows

P =


B0 B1 B2 . . .

A−1 A0 A1
. . .

. . .

0 A−1 A0
. . .

. . .
...

. . .
. . .

. . .
. . .


Removing the first block row and the first block column of the above matrix
yields the block Hessenberg block Toeplitz matrix

P̂ =


A0 A1 A2 . . .

A−1 A0 A1
. . .

. . .

0 A−1
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .


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The Wiener-Hopf factorization of P̂ − I allows to solve easily the problem
π(P −I) = 0 where π in turn is partitioned in subvectors π(0), π(1), . . ., of length
m. In fact, assuming that π(0) is known, then the computation of π(i) for i > 0
is reduced to solving two block triangular Toeplitz systems. The computation
of π(0) can be performed by using suitable formulas [16].

The Wiener-Hopf factorization of P̂ − I takes the following form

P̂ − I =


U0 U1 . . .

U0 U1
. . .

. . .
. . .



I
−G I

−G I
. . .

. . .


where G is the solution of the following matrix equation

X =

+∞∑
i=−1

AiX
i

having nonnegative entries and spectral radius ρ(X) = 1.
A way for solving this equation is to reduce it to the following infinite linear

block Toeplitz system
A0 A1 A2 . . .
A−1 A0 A1 . . .

A−1 A0 . . .
. . .

. . .



G
G2

G3

...

 =


−A−1

0
0
...

 .

1.2.3 Image restoration

Another interesting application concerns blurring and deblurring models in dig-
ital image restoration. Here one assumes that the blur of a single point of an
image is independent of the location of the point, that is, it is shift invariant,
and is defined by the Point-Spread Function (PSF). This function has compact
support, in fact, a point is blurred into a small spot of light with dark (null
value of the function) everywhere except that in a small neighborhood of the
point.

The relation between the blurred and noisy image, stored as a vector b and
the real image, represented by a vector x has the form

Tx = b− noise

Due to the shift invariance of the PSF, T is block Toeplitz with Toeplitz
blocks. Due to the local effect of the blur, the PSF has compact support so that
T is block banded with banded blocks.

Typically, T is ill-conditioned so that solving the system Tx = b obtained
by ignoring the noise provides a highly perturbed solution

11



For instance the PSF which transforms a unit point of light into the 3 × 3

square 1
15

1 2 1
2 3 2
1 2 1

 leads to the following block Toeplitz matrix

T =
1

15


B A
A B A

. . .
. . .

. . .

A B A
A B


where

A =


2 1
1 2 1

. . .
. . .

. . .

1 2 1
1 2

 , B =


3 2
2 3 2

. . .
. . .

. . .

2 3 2
2 3


This way, restoring a blurred image is reduced to solving a block banded

block Toeplitz systems with banded Toeplitz blocks. According to the boundary
conditions assumed in the blurring model, the matrix can take additional specific
structures.

1.2.4 Differential equations

The numerical treatment of linear partial differential equations with constant
coefficients by means of the finite difference technique leads to linear systems
where the matrix is block Toeplitz with Toeplitz blocks

For instance the discretization of the Laplace operator ∆u(x, y) applied to
a function u(x, y) defined over [0, 1]× [0, 1]

−∆u(x, y) = −(
∂2u

∂x2
+
∂2u

∂y2
) =

1

h2
(4ui,j − ui+1,j − ui−1,j − ui,j+1,−ui,j−1) +O(h2)

for xi = ih, yj = jh, i, j = 1, n, h = 1/(n+ 1), leads to the matrix

L = − 1

h2


A −I

−I A
. . .

. . .
. . . −I
−I A

 , A =


4 −1

−1 4
. . .

. . .
. . . −1
−1 4

 ,
that is a block Toeplitz matrix with Toeplitz blocks associated with the symbol
a(x, y) = − 1

h2 (4− x− x−1 − y − y−1).

Similarly, the discretization of the three dimensional Laplacian ∂u
∂x + ∂u

∂y + ∂u
∂z

leads to a block tridiagonal block Toeplitz matrix whose diagonal blocks are
block tridiagonal block Toeplitz matrices with tridiagonal blocks.

12



1.3 Asymptotic spectral properties

Here we consider spectral properties of real symmetric (or complex Hermitian)
matrices defined by a symbol a(z) : T → F. For the sake of simplicity denote
z = z(θ) = cos θ+ i sin θ ∈ T so that we can view the symbol a(z) as a periodic
function of θ defined over [0, 2π] by θ → a(z(θ)). With abuse of notation, we
write a(θ) for a(z(θ)).

Let f(x) : [0, 2π] → R be a Lebesgue integrable function. We say that a

sequence of sequences {λ(n)i }i=1,n;n∈N ∈ RN is distributed as f(x) if

lim
n→∞

1

n

n∑
i=1

F (λ
(n)
i ) =

1

2π

∫ 2π

0

F (f(x))dx

for any continuous F (x) with bounded support.
As an example, consider the sequence formed by the values of f(x) sampled

at equally spaced points in [0, 2π] given by λ
(n)
i = f(2iπ/n), i = 1, . . . , n, and

let n ∈ N. Then it is easy to see that {λ(n)i } is distributed as f(x).
The following result was given by Szegő [45] for functions in L∞ and ex-

tended by Tyrtyshnikov and Zamarashkin in [61] to functions in L1([0, 2π]).
Throughout, ess inf f(θ) and ess sup f(θ) denote the essential inf and the essen-
tial sup of a function f(θ), that is, the inf and the sup up to a zero measure
set.

Proposition 2. Let the symbol a(θ) : [0 : 2π] → R be a real valued function
belonging to L1([0, 2π]) and let Tn be the sequence of Toeplitz matrices associated

with a(θ). Denote mf = ess inff(x), Mf = ess supf(x) and denote λ
(n)
i the

eigenvalues of Tn sorted in nondecreasing order. Then

1. Tn is real symmetric;

2. if nf < Mf then λ
(n)
i ∈ (mf ,Mf ) for any n and i = 1, . . . , n; if mf = Mf

then f(x) is constant and Tn(f) = mfIn;

3. limn→∞ λ
(n)
1 = mf , limn→∞ λ

(n)
n = Mf ;

4. the eigenvalues sequence {λ(n)1 , . . . , λ
(n)
n } are distributed as a(θ)

A suggestive interpretation of the above result is as follows: a suitable order-

ing of the eigenvalues λ
(n)
j , j = 1, . . . , n, can be seen as an approximation of the

function f(x) sampled on an equispaced grid on the domain [0, 2π). Therefore,
it is evident that the symbol f(x) provides information on the definiteness of
the matrices of the matrix sequence, on their inertia (number of positive and
negative eigenvalues), on their conditioning.

In fact, as a consequence of the above results we find that

• ess inf a(x) ≥ 0 iff Tn is positive definite for all n ∈ N

13



Figure 1.2: In this figure, the eigenvalues of the Toeplitz matrix Tn associated with
the symbol f(θ) = 2−2 cos θ− 1

2
cos(2θ) have been plotted (in red) for n = 10, n = 20,

together with the graph of the symbol (in blue). One can see that as n grows, the

values λ
(n)
i for i = 1, . . . , n tend to be shaped as the graph of the symbol.

• if a(x) ≥ 0 the condition number µ(n) = ‖T (n)‖2‖(T (n))−1‖2 of T (n) is
such that limn→∞ µ(n) = ess supθ∈[0,2π]a(θ)/ess infθ∈[0,2π]a(θ)

• a(θ) > 0 implies that T (n) is uniformly well conditioned

• a(θ) = 0 for some θ implies that limn→∞ µn =∞

A similar property (Avram-Parter theorem [6], [55]) holds for singular values.
The requirement that f(x) is in L∞ given in the original result of [55] has been
relaxed by Tyrtyshnikov.

Proposition 3. If the symbol f(θ) is L∞ then the singular values of the complex
matrices Tn are distributed as |f(θ)|.

The same asymptotic property holds true for
– block Toeplitz matrices generated by a matrix valued symbol A(θ),
– block Toeplitz matrices with Toeplitz blocks generated by a bivariate symbol
a(θ1, θ2),
– multilevel block Toeplitz matrices generated by a multivariate symbol a(θ1, θ2, . . . , θd)
– singular values of any of the above matrix classes

In particular the following result holds

Proposition 4. Let the symbol f(θ) : [0 : 2π]d → R, θ = (θ1, . . . , θd) be a real
valued function belonging to L1([0, 2π]d) and let Tn be the sequence of multilevel
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Toeplitz matrices of size n := (n1, n2, . . . , nd) associated with f(θ). Denote

mf = ess inff(x), Mf = ess supf(x) and denote λ
(n)
i , i = 1, . . . , N(n) =

∏d
i=1 ni

the eigenvalues of Tn sorted in nondecreasing order. Then

1. Tn is real symmetric;

2. if nf < Mf then λ
(n)
i ∈ (mf ,Mf ) for any (n1, . . . , nd) and i = 1, . . . , N(n);

if mf = Mf then f(θ) is constant and Tn = mfIN(n);

3. limn→∞ λ
(n)
1 = mf , limn→∞ λ

(n)
n = Mf , where n → ∞ means that ni →

∞ for i = 1, . . . , d;

4. the eigenvalues λ
(n)
1 , . . . , λ

(n)
N(n) are distributed as f(θ) in the sense that

lim
n→∞

1

N(n)

N(n)∑
j=1

F (λ
(n)
j ) =

1

(2π)d

∫ 2π

0

· · ·
∫ 2π

0

F (f(θ1, . . . , θd))dθ1 · · · dθd.

for any continuous real function F (x) with bounded support.

The same results hold true for the product An = P−1n Tn where Tn and Pn
are multilevel Toeplitz matrices of size n = (n1, . . . , nd) associated with symbols
a(θ), p(θ), respectively.

In particular the following result holds

Proposition 5. Let f(x) and p(x) be integrable functions in [0, 2π]d, assume
that p(x) is nonnegative and not identically zero. let n = (n1, . . . , nd), N(n) =∏d
i=1 ni. Consider the sequence of multilevel Toeplitz matrices Tn and Pn as-

sociated with f(x) and p(x), respectively, and denote λ
(n)
j the eigenvalues of

Gn = P−1n Tn sorted in non decreasing order. Let r and R be the essential
infimum and supremum of f(x)/p(x), respectively. Then

1. for r < R, λ
(n)
j ∈ (r,R) for any n and j = 1, . . . , N(n); for r = R

Gn = IN(n);

2. limn→∞ λ
(n)
1 = r, limn→∞ λ

(n)
N = R;

3. the eigenvalues λ
(n)
1 , . . . , λ

(n)
N are distributed as f(θ)/g(θ) in the sense that

lim
n→∞

1

N(n)

N(n)∑
j=1

F (λ
(n)
j ) =

1

(2π)d

∫ 2π

0

· · ·
∫ 2π

0

F (f(θ1, . . . , θd))dθ1 · · · dθd.

This property is crucial for preconditioning in order to reduce the condition
number of Toeplitz matrices. More precisely, given a(x) ≥ 0 such that a(θ0) = 0
for some θ0, then according to the previous proposition the condition number
grows to infinity as n→∞. However, if there exists a trigonometric polynomial
p(θ) =

∑k
i=−k pk cos(kθ) such that p(θ) ≥ 0, p(θ0) = 0, and limθ→θ0 a(θ)/p(θ) 6=
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0 then the function f(θ) = a(θ)/p(θ) is such that ess inf f(x) > 0 so that P−1n Tn
has condition number uniformly bounded by a constant. This way the system
Ax = b which is ill conditioned, can be replaced by the equivalent preconditioned
system P−1n Ax = b which is better conditioned.

Further properties concerning the behavior of the extreme eigenvalues can
be proved.

The above results hold true for multilevel Toeplitz matrices associated with
a symbol f(x1, . . . , xd) : Td → R.

1.4 Some matrix algebras

From the computational point of view, Toeplitz and block Toeplitz matrices are
easily manipulated by relying on certain matrix algebras and on their associated
trigonometric transforms.

We recall the main trigonometric transform related to Toeplitz computa-
tions.

1.4.1 Trigonometric transform

In the framework of trigonometric transforms the lion role is played by the Dis-
crete Fourier Transform (DFT) and by the fast algorithms for its computation
known as Fast Fourier Transform (FFT) algorithms.

Discrete Fourier Transform

Let ωn = cos 2π
n + i sin 2π

n be a primitive nth root of 1, that is, such that
ωnn = 1 and {1, ωn, . . . , ωn−1n } has cardinality n. Define the n× n matrix Ωn =
(ωijn )i,j=0,n−1, Fn = 1√

n
Ω. From the properties of the nth roots, one can easily

deduce that F ∗nFn = I that is, Fn is a unitary matrix.
We say that y is the DFT of a vector x ∈ Cn and write y = DFT(x) if

y = 1
nΩ∗nx. Since Ω−1n = 1

nΩ∗n, we also write x = IDFT(y) = Ωy for the Inverse
Discrete Fourier Transform.

Since the matrix Fn is unitary then ‖Fn‖2 = ‖F ∗n‖2 = 1, that is, the condi-
tion number cond2(Fn) = ‖Fn‖2‖F−1n ‖2 of Fn is 1. This shows that the DFT
and IDFT are numerically well conditioned when the perturbation errors are
measured in the 2-norm.

If n is an integer power of 2 then the IDFT of a vector can be computed with
the cost of 3

2n log2 n arithmetic operations (ops) by using, say, the Coley-Tukey
or the Sandey-Tukey FFT algorithm. A similar complexity bound holds for the
DFT.

The Cooley-Tukey algorithm is backward numerically stable in the 2-norm.
That is, for x = IDFT(y), if x̃ is the vector obtained by performing the Cooley-
Tukey algorithm in floating point arithmetic with precision µ, then ‖x− x̃‖2 ≤
µγ‖x‖2 log2 n for a moderate constant γ [46].
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The norm-wise well conditioning of DFT and the norm-wise stability of FFT
algorithms make this tool very effective for most numerical computations.

Unfortunately, the norm-wise stability of FFT does not imply the component-
wise stability. That is, the inequality |xi − x̃i| ≤ µγ|xi| log2 n is not generally
true for all the components xi.

This is a drawback of DFT and of FFT when numerically used for symbolic
computations since, in order to guarantee a sufficiently accurate relative preci-
sion in the result, one has to choose a suitable value of the machine precision
of the floating point arithmetic whose value depends on the ratio between the
maximum and the minimum absolute value of the output. This fact implies
that the complexity bounds are depending on this ratio. When using FFT in
this framework one should be aware of this fact.

There are algorithms for computing the DFT in O(n log n) ops whatever is
the value of n.

The DFT and FFT can be defined over finite fields where there exists a
primitive root of 1. For instance, Z17 is a finite field and 3 is a primitive 16th
root of 1. DFT and FFT can be defined over certain rings.

Working with block matrices, it is useful to define the DFT and the IDFT of
block vectors. If Y1, . . . , Yn are m×m matrices, denoting y = (Yi) the nm×m
matrix (block column vector) formed by the blocks Yi, we write x = IDFT(y)

for x = (Xi), Xi =
∑n−1
j=0 ω

ij
n Yj .

By using the Kronecker product notation, one has IDFT(y) = (Ωn ⊗ Im)x.
Similarly, one defines the DFT.

The sine transform

The n×n matrix S = (
√

2
n+1 sin πij

n+1 ) is orthogonal, that is STS = I. The sine

transform x→ y = Sx can be computed in O(n log n) ops if n+ 1 is an integer
power of 2.

There are 8 different types of sine transforms, see [32].

The cosine transforms

The n × n matrix C = (
√

2
n cos (2i+1)(2j+1)π

4n ) is orthogonal, that is CTC = I

and defines the cosine transform x → y = Cx. There are 8 versions of cosine
transforms which can be computed with fast algorithms in O(n log n) ops. For
more details see [32].

The Hartley transform

The matrix H = 1√
n

(cos 2πij
n + sin 2πij

n )i,j=0,n−1 is orthogonal, the application

x → y = Hx is called Hartley transform. The Hartley transform can be com-
puted with O(n log n) ops. For more details see [13].
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1.4.2 Circulant matrices and FFT

Given the row vector [a0, a1, . . . , an−1], the n× n matrix

A = (aj−i mod n)i,j=1,n =


a0 a1 . . . an−1

an−1 a0
. . .

...
...

. . .
. . . a1

a1 . . . an−1 a0


is called the circulant matrix associated with [a0, a1, . . . , an−1] and is denoted
by Circ(a0, a1, . . . , an−1).

A circulant matrix is fully defined by its first row rT = [a0, a1, . . . , an−1] or
its first column c = [a0, an−1, . . . , a1]T. Any other row or column is obtained
from the preceding one by applying a cyclic permutation to its elements: the last
element is moved to the first position and the remaining ones are shifted by one
position. With S denoting the circulant matrix associated with [0, 1, 0, . . . , 0],
i.e.,

S =



0 1 0 . . . 0

0 0 1
. . .

...
...

. . .
. . .

. . . 0

0
. . .

. . . 0 1
1 0 . . . 0 0


, (1.1)

it can easily be verified that

A =

n−1∑
i=0

aiS
i. (1.2)

That is, any circulant matrix can be viewed as a polynomial in S.
Given polynomials a(x) =

∑n−1
i=0 aix

i, b(x) =
∑n−1
i=0 bix

i, define the circulant
matrices A = a(S), B = b(S) and set C = AB. Since the minimal polynomial
of S is xn − 1, one finds that C = c(S) where c(x) = a(x)b(x) mod xn − 1.
That is, circulant matrices form a commutative matrix algebra isomorphic to
the set of polynomials of degree less than n with the product modulo xn − 1.

By direct inspection one finds that

SΩn = Ωn Diag(1, ωn, ω
2
n, . . . , ω

n−1
n );

multiplying the latter expression on the left by 1
nΩn yields

1

n
ΩnSΩn = Diag(1, ωn, ω

2
n, . . . , ω

n−1
n );

moreover, taking the conjugate transpose of both sides, we find

1

n
ΩnS

TΩn = Diag(1, ωn, ω
2
n, . . . , ω

n−1
n ),

since Ωn is symmetric. From the above two equations and (1.2) we deduce the
following property
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Proposition 6. If A is a circulant matrix with first row rT and first column c,
then

A =
1

n
Ωn Diag(w)Ωn,

where w = Ωnc = Ωnr.

An immediate corollary of the theorem above is that we can compute the
product Ax of an n × n circulant matrix A and a vector x by means of two
IDFTs of length n and a DFT. In fact, the above result can be rephrased in the
form

Ax = DFTn(IDFTn(c) ∗ IDFTn(x)) (1.3)

where “∗” denotes the Hadamard, or component-wise product of vectors.
From Proposition 6 we also find that the product of two circulant matrices

is still circulant and the inverse of a nonsingular circulant matrix is circulant.
The definition of circulant matrix is naturally extended to block matrices.

Definition 1. Given the block row vector [A0, A1, . . . , An−1] where Ai, i =
0, . . . , n− 1, are m×m matrices, the n× n block matrix

A = (Aj−i mod n)i,j=1,n =


A0 A1 . . . An−1

An−1 A0
. . .

...
...

. . .
. . . A1

A1 . . . An−1 A0


is called the block circulant matrix associated with [A0, A1, . . . , An−1] and is
denoted by Circ(A0, A1, , . . . , An−1).

Similarly to the scalar case we have

A =

n−1∑
i=0

Si ⊗Ai, (1.4)

and Proposition 6 is generalized to the following property

Proposition 7. If A is a block circulant matrix with first block row rT and with
first block column c we have

A =
1

n
(Ωn ⊗ Im) Diag(W1, . . . ,Wn)(Ωn ⊗ Im)

where

[W1, . . . ,Wn] = rT(Ωn ⊗ Im), W1

...
Wn

 = (Ωn ⊗ Im)c.
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Like circulant matrices, the class of block-circulant matrices is closed under
matrix multiplication and inversion.

Equation (1.3) becomes

Ax = DFTn(IDFTn(c) ∗ IDFTn(x)) (1.5)

where c is the first block column of A, which shows that one can compute the
product Ax of an n×n block circulant matrix A and a block vector x with block
components of size m× p by means of two block IDFTs and one block DFT of
length n, and n products of m×m times m× p matrices.

We synthesize (1.3) and (1.5) with Algorithm 1 for multiplying a block cir-
culant matrix and a block vector. For m = p = 1, the algorithm reduces to the
scalar case.

Algorithm 1 Block circulant matrix-vector product

Input: Positive integers m,n, p, where n = 2k, k a positive integer, the n-
dimensional block vector c = (Ci)i=0,n−1 with m×m block components which
is the first block column of the block circulant matrix A, and the n-dimensional
block vector x = (Xi)i=0,n−1 with m× p block components.

Output: The block vector y = Ax = (Yi)i=0,n−1.

Computation:

1. Compute w = (Wi)i=0,n−1 = IDFTn(c).

2. Compute v = (Vi)i=0,n−1 = IDFTn(x).

3. Compute the matrix products Ui = WiVi, i = 0, 2, . . . , n− 1.

4. Compute y = DFTn(u) for u = (Ui)i=0,n−1.

The cost of computing y, given x and c is clearly O((m+p)mn log n+nm2p)
ops. If the elements of c are real, then it follows that W1 and Wn/2+1 are real

and that Wi = Wn−i+2, i = 2, . . . , n/2. The same property holds for the block
components Vi of v if x is real. Thus, if both c and x are real, then u also has this
property and the computation of Ui, i = 1, 2, . . . , n, is reduced to computing
two products of real matrices and n/2− 1 products of complex matrices. Since
a product of complex matrices can be performed with three multiplications and
five additions of real matrices, the overall cost of stage 3 is 3(n/2− 1) + 2 real
matrix multiplications between m ×m and m × p matrices, n/2 − 1 additions
of m ×m matrices, and 4(n/2 − 1) additions of m × p matrices. Therefore for
a real input the cost of Algorithm 1 is

n(3m2p+m(m+ 3p)/2)) +
5

2
(m2 + 2mp)n log n (1.6)

ops up to lower order terms. If m and p are large enough, the dominant part of
the complexity is 3m2np. By using the customary algorithm for a matrix-vector
product the cost would be 2m2n2p ops.
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The inverse of a block circulant matrix A can be easily computed by means
of

A−1 =
1

n
(Ωn ⊗ Im) Diag(W−10 , . . . ,W−1n−1)(Ωn ⊗ Im).

In fact, it is enough to compute the first block column of A−1 given by

Y =
1

n
(Ωn ⊗ Im)

W
−1
0
...

W−1n−1


Algorithm 2 synthesizes this computation

Algorithm 2 Inversion of a block circulant matrix

Input: Positive integers m,n, where n = 2k, k a positive integer, the n-
dimensional block vector r = (Ai)i=0,n−1 with m×m block components defining
the first block row of the block circulant matrix A.

Output: The block column vector Y = (Yi) defining the first block column of
A−1.

Computation:

1. Compute w = (Wi)i=0,n−1 = IDFTn(c), c = (Ci), Ci = An−i−1.

2. Compute Vi = W−1i , i = 0, . . . , n− 1.

3. Compute y = (Yi)i=0,n−1 = DFTn(v), v = (Vi).

The cost of Algorithm is O(m2n log n+ nm3).

1.4.3 z-circulant matrices

A generalization of circulant matrices is provided by the class of z-circulant
matrices.

Definition 2. Given a scalar z 6= 0 and the row vector [a0, a1, . . . , an−1], the
n× n matrix

A =


a0 a1 . . . an−1

zan−1 a0
. . .

...
...

. . .
. . . a1

za1 . . . zan−1 a0


is called the z-circulant matrix associated with [a0, a1, . . . , an−1].

Observe that a z-circulant matrix is fully defined by z and by the elements in
its first row rT = [a0, a1, . . . , an−1] or in its first column c = [a0, zan−1, . . . , za1]T.
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We denote by Sz the z-circulant matrix whose first row is [0, 1, 0, . . . , 0], i.e.,

Sz =



0 1 0 . . . 0

0 0 1
. . .

...
...

. . .
. . .

. . . 0

0
. . .

. . . 0 1
z 0 . . . 0 0


,

and we easily verify that

A =

n−1∑
i=0

aiS
i
z. (1.7)

That is, any z-circulant matrix can be viewed as a polynomial in Sz.
It is simple to verify that

Szn = zDzSD
−1
z , Dz = Diag(1, z, z2, . . . , zn−1),

where S is the circulant matrix in (1.1). Therefore, if A is zn-circulant, from
(1.7) we deduce that

A = Dz

(
n−1∑
i=0

aiz
iSi

)
D−1z

where
∑n−1
i=0 aiz

iSi is circulant. Whence, from Proposition 6 we obtain the
following

Proposition 8. If A is the zn-circulant matrix with first row rT and first
column c then

A =
1

n
DzΩn Diag(w)ΩnD

−1
z ,

with w = ΩnDzr = ΩnD
−1
z c.

The above theorem states that, like circulant matrices, all the matrices in
the z-circulant class can be simultaneously diagonalized by means of a combi-
nation of DFT and diagonal scaling with the integer powers of z. Therefore,
for any given z, z-circulant matrices are closed under matrix multiplication and
inversion.

The extension to block matrices trivially applies to z-circulant matrices.

Definition 3. Given a scalar z 6= 0 and the block row vector [A0, A1, . . . , An−1],
the n× n matrix

A =


A0 A1 . . . An−1

zAn−1 A0
. . .

...
...

. . .
. . . A1

zA1 . . . zAn−1 A0


is called the block z-circulant matrix associated with [A0, A1, . . . , An−1].
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The analog of Proposition 8 for block z-circulant matrices is stated below.

Proposition 9. If A is the block zn-circulant matrix with first block column c
and with first block row [A0, A1, . . . , An−1], then

A =
1

n
(Dz ⊗ Im)(Ωn ⊗ Im) Diag(w)(Ωn ⊗ Im)(D−1z ⊗ Im),

where

w = (Ωn ⊗ Im)(Dz ⊗ Im)

 A0

...
An−1

 = (Ωn ⊗ Im)(D−1z ⊗ Im)c.

Likewise the case of circulant matrices, the product of a z-circulant matrix
and a vector can be performed by means of FFT in O(n log n) ops. Similarly,
the product of a block z-circulant matrix with m×m blocks and a block vectors
can be performed with O(m2n log n+ nm3) ops.

The inverse of a block z-circulant matrix A is given by

A−1 =
1

n
(Dz ⊗ Im)(Ωn ⊗ Im) Diag(ŵ)(Ωn ⊗ Im)(D−1z ⊗ Im),

ŵ = (W−1i ), w = (Wi)

where w is defined in Proposition 9.
The first block column of A−1 is given by

1

n
(Dz ⊗ Im)(Ωn ⊗ Im)ŵ, ŵ = (Ŵi), Ŵi = W−1i

This expression provides an algorithm for inverting a z-circulant matrix which
is reported in Algorithm 3

Algorithm 3 Inversion of a block z-circulant matrix

Input: Positive integers m,n, where n = 2k, k a positive integer, the n-
dimensional block vector r = (Ai)i=0,n−1 with m×m block components defining
the first block row of the block z-circulant matrix A,

Output: The block column vector Y = (Yi) defining the first block column of
A−1.

Computation:

1. Compute w = (Wi)i=0,n−1 = IDFTn(c), c = (Ci), Ci = An−i−1.

2. Compute Vi = W−1i , i = 0, . . . , n− 1.

3. Compute y = (Yi)i=0,n−1 = DFTn(v), v = (Vi).
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1.4.4 Embedding Toeplitz matrices into circulants

An n×n Toeplitz matrix A = (ti,j), ti,j = aj−i, can be embedded into the 2n×2n
circulant matrix B whose first row is [a0, a1, . . . , an−1, ∗, a−n+1, . . . , a−1], where
∗ denotes any number. We observe that the leading n × n submatrix of B
coincides with A. An example with n = 3 is shown below

B =


a0 a1 a2 ∗ a−2 a−1
a−1 a0 a1 a2 ∗ a−2
a−2 a−1 a0 a1 a2 ∗
∗ a−2 a−1 a0 a1 a2
a2 ∗ a−2 a−1 a0 a1
a1 a2 ∗ a−2 a−1 a0

 .

More generally, an n × n Toeplitz matrix can be embedded into a q × q
circulant matrix for any q ≥ 2n− 1: it is sufficient to replace ∗ with q − 2n+ 1
arbitrary elements. If q = 2n− 1 there is no extra element. Similarly, an n× n
block Toeplitz matrix A with m×m blocks can be embedded into a q× q block
circulant matrix B with m×m blocks for any q ≥ 2n− 1.

This embedding property allows one to compute the product y = Ax of a
(block) Toeplitz matrix A and a (block) vector x by means of Algorithm 1 in the
following manner. First we embed A into a circulant matrix B. Second we define
the q-dimensional block vector z = (Zi) obtained by filling up x with zeros, i.e.,
Zi = Xi, i = 1, 2, . . . , n, Zi = 0 elsewhere. The first n block components of
the block vector w = Bz coincide with y. If q is chosen as an integer power of
2, then the product Bz can be efficiently computed by means of Algorithm 1
which is based on the FFT.

We synthesize this computation in Algorithm 4 which includes the scalar
case when m = p = 1.

The complexity analysis of Algorithm 4 can be carried out similarly to the
case of Algorithm 1 and leads to the computational cost of

O((m+ p)mn log n+ nm2p)

ops.
If p = m = 1, that is, A is a Toeplitz matrix and x is a vector, then

the asymptotic cost reduces to O(n log n) ops, versus the O(n2) cost of the
customary algorithm for matrix-vector multiplication. If m = p, the asymptotic
cost is O(m2n log n+m3n) = O(m2n(log n+m)); thus, if m is large with respect
to log n, the cost of computing FFTs is negligible with respect to the cost of
computing the matrix products.

From the complexity bound (1.6) of the product of a circulant matrix and a
vector we deduce that for real input the complexity bound of the product of a
Toeplitz matrix and a vector is

q(3m2p+m(m+ 3p)/2)) +
5

2
(m2 + 2mp)q log q (1.8)

up to terms of lower order, where q is the minimum integer power of 2 greater
than 2n− 1.
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Algorithm 4 Block Toeplitz matrix-vector product

Input: Positive integers m,n, p, the m ×m matrices Ai, i = −n + 1, . . . , n −
1, which define the n × n block Toeplitz matrix A = (Aj−i)i,j=1,n; the n-
dimensional block vector x = (Xi)i=1,n with m× p block components.

Output: The block vector y = Ax = (Yi)i=1,n.

Computation:

1. Compute the least integer k such that 2k ≥ 2n; set q = 2k.

2. Define the q-dimensional block column vector v = (Vi)i=1,q such that
Vi = A−i+1 if i = 1, . . . , n, Vq−i+1 = Ai if i = 1, 2, . . . , n − 1, and Vi = 0
elsewhere, and define the q × q block circulant matrix B having the first
block column v. The block Toeplitz matrix A is embedded in B.

3. Define the q-dimensional block column vector z = (Zi)i=1,q such that
Zi = Xi if i = 1, . . . , n, Xi = 0 elsewhere.

4. Compute w = Bz = (Wi)i=1,q by means of Algorithm 1.

5. Set Yi = Wi, i = 1, . . . , n.

1.4.5 Triangular Toeplitz matrices

Let Z = (zi,j)i,j=1,n be the n× n matrix

Z =


0 0

1
. . .

. . .
. . .

0 1 0

 , (1.9)

with zi+1,1 = 1 for i = 1, . . . , n− 1, zi,j = 0 elsewhere.

Clearly Zn = 0, moreover, given the polynomial a(x) =
∑n−1
i=0 aix

i, the

matrix a(Z) =
∑n−1
i=0 aiZ

i is a lower triangular Toeplitz matrix defined by its
first column (a0, a1, . . . , an−1)T

a(Z) =


a0 0
a1 a0
...

. . .
. . .

an−1 . . . a1 a0

 .
The set of lower triangular Toeplitz matrices is closed under matrix mul-

tiplication. More precisely, if A = a(Z), B = b(Z) for two polynomials a(x),
b(x), then the matrix C = c(Z), where c(x) = a(x)b(x) mod xn, is such that
C = AB = BA.
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In other words, the set of lower triangular Toeplitz matrices is a matrix
algebra isomorphic to the set of polynomials with the product modulo xn.

Similarly, we can define the algebra of upper triangular Toeplitz matrices.
The definition of lower (upper) triangular Toeplitz matrix can be extended

to the case of block matrices.
Observe that by the Cayley–Hamilton theorem the inverse of any nonsingular

matrix A can be written as a polynomial in A, therefore T−1n is still a lower tri-
angular Toeplitz matrix and the computation of T−1n is equivalent to computing
the elements in the first column of T−1n . Similarly, the class of block triangular
Toeplitz matrices is closed under matrix product and matrix inversion.

Now, assume n = 2h, h a positive integer, and partition Tn into (n/2)×(n/2)
blocks, writing

Tn =

[
Th 0
Wh Th

]
, (1.10)

where Th, Wh are h × h Toeplitz matrices and Th is lower triangular. If Tn is
nonsingular then Th also is nonsingular and

T−1n =

[
T−1h 0

−T−1h WhT
−1
h T−1h

]
.

Thus, the first column vn of T−1n is given by

vn = T−1n e1 =

[
vh

−T−1h Whvh

]
=

[
vh

−L(vh)Whvh

]
, (1.11)

where L(vh) = T−1h is the lower triangular Toeplitz matrix whose first column
is vh.

The same relation holds if Tn is block triangular Toeplitz. In this case, the
elements a0, . . . , an−1 are replaced with the m×m blocks A0, . . . , An−1 and vn
denotes the first block column of T−1n .

The representation (1.11) of vn leads to a recursive algorithm for its compu-
tation (Algorithm 5), which we describe for block triangular Toeplitz matrices
of block size n = 2k, for a positive integer k.

The computation of the block vector u at the ith step of Algorithm 5 requires
the computation of two products of a block Toeplitz matrix and a block vector.
Since this can be performed in O(2im3 + i2im2) ops by means of Algorithm 4,
the overall cost of Algorithm 5 is O(nm3 + nm2 log n). More precisely, if the
input is real, from the complexity estimate (1.8) with p = m, we deduce that the
complexity bounds of the ith stage reduce to 2(3m3q+ 15

2 m
2q log q+ 2m2q) for

q = 2i+1. Moreover, in this complexity estimate, we counted twice the cost of
the computation of the DFT of the vector vh (filled with zeros) which appears in
both the Toeplitz matrix-vector products Whvh and L(vh)w (see Steps 2 and 3 of
Algorithm 4). Taking this into consideration, the complexity bound is reduced

to 25
2 m

2h log(h) + 6m3h + 4m2h. Therefore, since
∑k−1
i=0 2i+1 = 2(2k − 1), the

overall cost is less than

25m2n log(2n) + (12m3 + 8m2)n (1.12)
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Algorithm 5 Block lower triangular Toeplitz matrix inversion

Input: The positive integer k and the m × m block elements A0, . . . , An−1,
n = 2k, of the first block column of the block lower triangular Toeplitz matrix
Tn, where detA0 6= 0.

Output: The first block column vn of T−1n .

Computation:

1. Set v1 = A−10

2. For i = 0, . . . , k − 1, given vh, h = 2i:

(a) Compute the block Toeplitz matrix-vector products w = Whvh and
u = −L(vh)w.

(b) Set

v2h =

[
vh
u

]
.

where we have bounded log 2i with log n.
The block triangular Toeplitz system Tnx = b can be solved in O(m2n log n+

m3n) ops, by first computing the inverse matrix T−1n by means of Algorithm 5
and then computing the product T−1n b by means of Algorithm 4.

Alternatively, the computation of the first block column of the inverse of
Tn might be performed by using the customary approach, i.e, by inverting the
diagonal block A0 and by applying forward substitution. This amounts to com-
puting n(n + 1)/2 matrix products and n(n − 1)/2 matrix sums. The cost in
the case of real input is n2m3 ops, up to terms of lower order.

Algorithm 5 can be easily adjusted to invert a block upper triangular Toeplitz
matrix at the same cost. This is described as Algorithm 6.

Algorithm 6 Block upper triangular Toeplitz matrix inversion

Input: The positive integer k and the m × m block elements A0, . . . , An−1,
n = 2k, of the first block row of the upper block triangular Toeplitz matrix Tn,
where detA0 6= 0.

Output: The first block row vTn of T−1n .

Computation:

1. Set Bi = AT
i , i = 0, . . . , n− 1, and b = (Bi−1)i=1,n.

2. Apply Algorithm 5 to the block lower triangular matrix L(b) = TT
n and

compute the first block column vn of (TT
n )−1.

3. Output the block row vector vTn .
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If Tn is block upper triangular Toeplitz, then the system Tnx = b can be
solved in O(m2n log n + m3n) ops, by first computing the inverse matrix T−1n

by means of Algorithm 7 and then computing the product T−1n x by means of
Algorithm 4.

1.4.6 Triangular Toeplitz and z-circulant matrices

Observe that a z-circulant matrix Cz coincides with an upper triangular Toeplitz
matrix if z = 0. Moreover, if z 6= 0 and |z| is small enough, then Cz provides a
“good” approximation of C0. By continuity, C−1z provides a good approximation
to the inverse of an upper triangular Toeplitz matrix. Based on this observation,
we may construct an algorithm to approximate the inverse of an upper triangular
Toeplitz matrix up to any desired precision. The algorithm, which relies on
computing two IDFTs and one DFT plus some scalings, is reported in Algorithm
7.

Algorithm 7 Block upper triangular Toeplitz matrix inversion by means of
z-circulants
Input: The positive integer k and the m × m block elements A0, . . . , An−1,
n = 2k, of the first block row of the upper block triangular Toeplitz matrix Tn,
where detA0 6= 0; a real ε > 0 and a number z ∈ C such that |z| = ε.

Output: An approximation to the first block row vTn of T−1n .

Computation:

1. Set Bi = AT
i , i = 0, . . . , n− 1, and b = (Bi−1)i=1,n.

2. Apply Algorithm 5 to the block lower triangular matrix L(b) = TT
n and

compute the first block column vn of (TT
n )−1.

3. Output the block row vector vTn .

The execution of the above algorithm in floating point arithmetic provides an
approximation of the inverse where the error has two components: the analytic
error given by a function of ε, and the roundoff error generated by the floating
point arithmetic. A suitable error analysis shows that the roundoff error is
proportional to µ/ε, where µ is the machine precision, while the analytic error in
its linear part is proportional to ε. The smaller ε, the smaller the analytical error.
However, small values of ε generate large numerical errors. Asymptotically
speaking when µ → 0, the best choice of ε is a value such that µ/ε and ε have
the same order of magnitude, that is ε = O(

√
µ) so that the total error is O(

√
µ).

In this way, asymptotically, using this algorithm halves the number of correct
digits that one can get in the output. However, there are some tricks to improve
the precision.

A first possibility, introduced in [10] relies on the fact that the error is
a polynomial in z. The trick consists in making different computations with
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different values of z, say z1, . . . , zk such that |zi| = ε and then take a weighted
average of the different results in such a way that all the positive power of z
with exponent from 1 to k − 1, cancel out. For instance, choose zi = εωik and
then take the arithmetic mean of the computed values. In this case the analytic
error is O(εk) since all the terms zi for i = 1, . . . , k cancel out (if k > n then
the analytic error of the computation is zero).

Thus, by equating the numerical error to the analytic error we get a larger
value of the optimal ε which leads to a total error of O(µk/(k+1)). That is, the
loss of digits is O(1/(k+1)) and becomes negligible for large values of k. Indeed
the complexity of the computation grows by a factor of k. However, in a parallel
model of computation this growth is negligible since all the computations are
independent and can be performed in parallel.

Another technique to reduce the error, due to Nick Higham [1], works for
a real input and consists in choosing a pure imaginary value for z, that is,
z = εi. In this way the analytic error affecting the real part is just O(ε2). This
way we have a total error O(µ2/3) with a loss of only 1/3 digits. The number of
operations are the same as before. The difference is that we have to use complex
arithmetic which is more expensive than real arithmetic.

It is possible to combine the two tricks in the following way. Choose z1 =
ε(1 + i)/

√
2 and z2 = −z1; apply the algorithm with z = z1 and z = z2; take

the arithmetic mean of the results. The approximation error on the real part
turns out to be O(ε4). The total error is O(µ4/5). Only 1/5 of digits are lost.

In general choosing as zj the kth roots of i and applying k times the algo-
rithms with these values we find that the real part of the output has an analytic
error O(µ2k/(2k+1)), i.e., only 1/(2k + 1) of digits are lost

One other different technique, introduced by [50], consists in interpreting
triangular matrix inversion like a trigonometric interpolation problem.

1.4.7 The class τ

Recall that circulant matrices can be diagonalized by a similarity transformation
given by the unitary matrix F which defines the DFT. We can define other
matrix classes relying on different discrete transform.

For instance, it is not complicated to show that the matrix

H =



0 1
1 0 1

. . .
. . .

. . .

. . . 0 1
1 0


is such that STHS = D is a diagonal matrix where S = (

√
2

n+1 sin πij
n+1 ) is the

orthogonal matrix associated with the discrete sine transform (DST).
It turns out that the all the polynomials in H form a matrix algebra diag-

onalizable by the DST. This algebra, called class τ in [11] has very interesting
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structural and computational properties, moreover it is effectively used as pre-
conditioner for the iterative solution of positive Toeplitz systems.

1.4.8 Other algebras

Other algebras can be constructed with the 8 cosine transforms and with the
other 7 sine transforms. In particular the algebra based on the discrete co-
sine transform has particular relevance in solving Toeplitz systems coming from
image processing.

A different algebra is related to the discrete Hartley transform. The dis-

crete Hartley transform is defined as x → y = Gx where G =
√

1
n (cos(ij πn ) +

i sin(ij πn )). The algebra associated with this transform has been studied in [13]
where in particular it is shown that the Hartley algebra contains symmetric
circulant matrices.

1.5 Displacement operators

In general, the inverse of a Toeplitz matrix is not Toeplitz as the following simple
example shows:

Example 1. Let n = 4 and

A =


4 3 2 1
0 4 3 2
1 0 4 3
0 1 0 4

 .
We have

A−1 =
1

265


65 −50 5 5
12 56 −48 5
−14 23 56 −50
−3 −14 12 65

 .
However, it is possible to introduce a more general structure which is pre-

served under inversion. This structure relies on the concept of displacement
rank.

The concept of displacement operator and displacement rank is a powerful
tool for dealing with Toeplitz matrices.

Here, we recall the main results concerning displacement rank. Throughout
this section we refer to section 2.11 of [19].

Define the displacement operator

∆(A) = AZ − ZA, (1.13)

applied to an n×n matrix A, where Z is the lower shift matrix of (1.9). Multi-
plying the matrix A on the left by Z shifts down each row of A by one position.
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Similarly, multiplying the matrix A on the right by Z shifts each column of A
by one position to the left. In particular, if A = (aj−i)i,j=1,n is Toeplitz then

∆(A) =


a1 a2 . . . an−1 0

−an−1

0
...
−a2
−a1

 = e1e
T
1AZ − ZAeneTn , (1.14)

where e1 and en denote the first and the last column of the n × n identity
matrix. Therefore, ∆(A) has at most rank 2. We say that a matrix A has
displacement rank (at most) k with respect to the operator ∆ if rank ∆(A) = k
(rank ∆(A) ≤ k). As a particular case, Toeplitz matrices have displacement
rank at most 2, so that the class of matrices with “low” displacement rank are
a generalization of Toeplitz matrices.

It is important to recall that an n × n matrix X has rank k if and only if
there exist n× k matrices V,W of full rank such that X = VWT. Therefore, if
∆(A) has rank k then there exist two n× k matrices V and W of full rank such
that ∆(A) = VWT and vice versa. Any pair (V,W ) of such matrices is called
displacement generator of A with respect to the operator ∆. For instance, in
the case of (1.14) one has ∆(A) = VWT where

V =


1 0
0 an−1
...

...
0 a1

 , WT =

[
a1 . . . an−1 0
0 . . . 0 −1

]
.

Observe that we might have a pair of n×h matrices (V,W ) such that h > k,
VWT = ∆(A) and rank(V ) = rank(W ) = rank ∆(A) = k. We call such a pair
a displacement generator of nonminimal rank of A. A generator of nonminimal
rank stores the information about ∆(A) in a redundant way. Using numerical
linear algebra tools like the singular value decomposition any generator can be
reduced to minimal rank.

The displacement generator of a matrix A, together with the first column of
A, contains all the information which allows one to represent all the elements
of A, as shown in the next theorem.

Proposition 10. Let A be an n×n matrix having first column a and displace-
ment rank k. If (V,W ) is a displacement generator of A, then

A = L(a) +

k∑
i=1

L(vi)U(wT
i Z

T)

where vi and wi are the ith column of V and W , respectively.

Equivalent representations can be given in terms of different operators. Be-
sides the Sylvester type operator ∆ we may consider operators of the Stein
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type like ∆(A) = A − ZAZT. More generally, we may consider operators like
AZ1 − Z2A or A − Z1AZ

T
2 where Z1 and Z2 can be different, say z-circulant,

or (−z)-circulant. We refer the reader to [47], [48] and to [19, Section 2.11] for
more details on this regard.

A simple but important consequence of Proposition 10 is that any matrix
with displacement rank k can be decomposed as the sum of at most k + 1
matrices, each of them the product of a lower and an upper triangular Toeplitz
matrix. Therefore, the product y = Ax can be split into at most 2k+1 products
of triangular Toeplitz matrices and vectors. Each one of these products can be
efficiently performed by using Algorithm 4 in O(n log n) ops. The overall cost
of the algorithm for computing y in this way is O(kn log n).

Another nice consequence of Proposition 10 concerns the inverse matrix of
A. Observe that if A is nonsingular then pre- and post-multiplying (1.13) by
A−1 yields the simple relation

∆(A−1) = −A−1∆(A)A−1, (1.15)

from which we conclude that the displacement ranks of A and of A−1 coincide.
Moreover, given a displacement generator (V,W ) of the nonsingular matrix A,
the pair (−A−1V, (A−1)TW ) is a displacement generator for A−1. This allows
one to represent A−1 in a compact way by means of Proposition 10 as

A−1 = L(A−1e1)−
k∑
i=1

L(A−1vi)U(wT
i A
−1ZT). (1.16)

Observe that even though the inverse of a Toeplitz matrix A is not generally
Toeplitz, its displacement rank is at most 2.

Example 2. For the Toeplitz matrix A of Example 1 we have ∆(A−1) = VWT

where

V =
1

265


−65 25
−12 25
14 15
3 −205

 , WT =
1

265

[
205 −15 −25 −25
3 14 −12 −65

]
.

Computing the displacement representation of A−1 is reduced to solving at
most 2k+1 linear systems. This is particularly convenient when k is small with
respect to n. Moreover, once A−1 is represented by means of its displacement
generator, solving any additional system of the kind Ax = b is reduced to
computing the product x = A−1b, with the cost of O(kn log n) ops.

Displacement representations are also useful for computing products of ma-
trices with low displacement rank. It is a simple matter to prove that

∆(AB) = A∆(B) + ∆(A)B (1.17)

so that a displacement generator (possibly of nonminimal rank) of C = AB is
given by (VC ,WC) where

VC =
[
AVB VA

]
, WC =

[
WB BTWA

]
,
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and (VA,WA) and (VB ,WB) are displacement generators of A and B, respec-
tively. Therefore, to compute the displacement generator (possibly of nonmini-
mal rank) of the product AB given the displacement generators of A and B, one
only needs to compute the products AVB and BTWA, at the cost O(kn log n),
where k is the maximum displacement rank of A and B, if we use the displace-
ment representation of A and B and Algorithm 4.

The concept of displacement rank is easily extended to block matrices. Let
Z = Z ⊗ I, where I is the m ×m identity matrix, and consider the operator
A→ AZ−ZA applied to an n×n block matrix with m×m blocks. Observe that
this operator coincides with ∆ if m = 1. Therefore, for notational simplicity,
we will denote it with the same symbol and write that ∆(A) = AZ − ZA.

It is easy to see that, if A = (Aj−i)i,j=1,n is block Toeplitz, then

∆(A) =


A1 A2 . . . An−1 0

−An−1

0
...
−A2

−A1


=(e1 ⊗ I)(e1 ⊗ I)TAZ − ZA(en ⊗ I)(en ⊗ I)T.

We say that the block matrixA has block displacement rank k if k is the minimum
integer such that there exist n× k block matrices V and W with m×m blocks
satisfying ∆(A) = VWT. Any such pair (V,W ) is called a block displacement
generator of A. The representation theorem 10 still holds as well as equations
(1.15), (1.16) and (1.17) suitably adjusted to the block notation. We synthesize
these properties in the following

Proposition 11. Let ∆(A) = AZ − ZA. If A is nonsingular then

∆(A−1) = −A−1∆(A)A−1.

Given matrices A,B,C such that A = BC then

∆(A) = B∆(C) + ∆(B)C.

Moreover, if ∆(A) = VWT, where V and W are n×k block matrices with m×m
blocks, then

A = L(a) +

k∑
i=1

L(vi)U(wT
i ZT)

where a is the first block column of A, vi and wi denote the ith block column of
V and W , respectively, for i = 1, . . . , k. In particular, if A is nonsingular, then

A−1 = L(a′)−
k∑
i=1

L(A−1vi)U(wT
i A
−1ZT)

where a′ is the first block column of A−1.
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It is interesting to point out that, ∆(A) = 0 if and only if A is block lower
triangular Toeplitz. Observe also that the “dual” operator ∆2(A) = AZT −
ZTA, which satisfies the same formal properties of ∆, is such that ∆2(A) = 0
if and only if A is block upper triangular Toeplitz.

We summarize the properties of ∆2(A) in the following theorem.

Proposition 12. Let ∆2(A) = AZT −ZTA. If A is nonsingular then

∆2(A−1) = −A−1∆2(A)A−1.

Given matrices A,B,C such that A = BC then

∆2(A) = B∆2(C) + ∆2(B)C.

Moreover, if ∆2(A) = VWT, where V and W are n × k block matrices with
m×m blocks, then

A = U(aT)−
k∑
i=1

L(Zvi)U(wT
i )

where vi and wi denote the ith block column of V and W , respectively, for
i = 1, . . . , k, and aT is the first block row of A. In particular, if A is nonsingular,
then

A−1 = U(a′′
T

) +

k∑
i=1

L(ZA−1vi)U(wT
i A
−1).

where a′′
T

is the first block row of A−1.

Another interesting property which relates the operators ∆1 = ∆ and ∆2 is
expressed by the following

Proposition 13. If ∆1(A) = AZ − ZA and ∆2(A) = AZT −ZTA then

∆1(A) = −Z∆2(A)Z − ZA(em ⊗ I)(em ⊗ I)T + (e1 ⊗ I)(e1 ⊗ I)TAZ.

The Toeplitz structure, and more generally, the displacement structure, can
be effectively used for computing matrix inverses. For solving general block
Toeplitz systems there are algorithms based on Schur complementation and
displacement rank.

An alternative to direct algorithms are iterative algorithms which provide
a sequence of successive approximations to the solution of the linear system
Ax = b. For positive definite systems, particular attention is paid to conjugate
gradient iteration which provides the exact solution after mn steps, but which
may provide reasonable approximations after just a few iterations. Furthermore,
convergence can be accelerated by means of preconditioning techniques.

Each step of the conjugate gradient requires the multiplication of a Toeplitz
matrix and a vector. This computation is inexpensive if performed by means of
Algorithm 4. For nonsymmetric matrices, iterative algorithms like GMRES and
Arnoldi methods should be used. All these algorithms for Toeplitz inversion can
be extended to the case of matrices having a low displacement rank.
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1.5.1 The Gohberg-Semencul-Trench formula

Proposition 12 provides a representation of the inverse of a Toeplitz matrix as
the sum of two terms, each term is the product of a lower triangular Toeplitz
matrix and an upper triangular Toeplitz matrix. After some manipulations, this
expression can be written as

T−1 =
1

x0

(
L(x)LT (Jy)− L(Zy)LT (ZJx)

)
,

x = T−1e1, y = T−1en, J =
[

1
..
.

1

]
which is known as the Gohberg-Semencul-Trench formula.

Observe that, once the vectors defining the four matrices have been com-
puted, the product between the inverse of a Toeplitz matrix and a vector costs
only O(n log n) operations. On the other hand, these vectors can be obtained
by solving Toeplitz systems with suitable known term vector.

1.5.2 Other operators

Different operators can be defined by following the same line of displacement
operators. For instance, if D1 and D2 are diagonal matrices with pairwise

different entries d
(1)
i , d

(2)
j respectively, and such that the diagonal entries of D1

are different from those of D2, then the operator X → ∆(X) = D1X − XD2

is invertible. Moreover if ∆(X) = uvT for two vectors u = (ui) and v = (vi),

then xi,j = uivj/(d
(1)
i − d

(2)
j ). Similarly, if ∆(X) =

∑k
r=1 u

(r)v(r)T then xi,j =∑k
r=1 u

(r)
i v

(r)
j /(d

(1)
i − d

(2)
j ). Matrices with this structure are said Cauchy-like

matrices.
A nice feature of Cauchy-like matrices is that their Schur complement is still

a Cauchy-like matrix [39]. For instance, in the case where k = 1 the Cauchy-like
matrix C can be partitioned as

C =


u1v1

d
(1)
1 −d

(2)
1

u1v2
d
(1)
1 −d

(2)
2

. . . u1vn
d
(1)
1 −d

(2)
n

u2v1
d
(1)
2 −d

(2)
1

...
unv1

d
(1)
n −d(2)1

Ĉ


where Ĉ is still Cauchy-like matrix. Its Schur complement is given by

Ĉ −


u2v1

d
(1)
2 −d

(2)
1

...
unv1

d
(1)
n −d(2)1

 d(1)1 − d
(2)
1

u1v1

[
u1v2

d
(1)
1 −d

(2)
2

. . . u1vn
d
(1)
1 −d

(2)
n

]

and has entries that can be written in the form

ûiv̂i

d
(1)
i − d

(2)
j

, ûi = ui
d
(1)
1 − d

(1)
i

d
(1)
i − d

(2)
1

, v̂j = vj
d
(2)
j − d

(2)
1

d
(1)
1 − d

(2)
j

.
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This property can be exploited for designing an algorithm which computes
the LU factorization of a Cauchy-like matrix with a number of operations which
grows as O(n2k). The algorithm is due to Gohberg, Kailath and Olshevsky and
is known as GKO algorithm [39]. Modified and more efficient versions of this
algorithm have been devised [57]. Once the LU factorization is available, the
solution of a linear system with a Cauchy-like matrix can be computed in O(n2)
ops.

1.5.3 Algorithm for Toeplitz inversion

Algorithms for solving Toeplitz systems are usually classified in fast algorithms
if their complexity is O(n2) and superfast algorithms if their complexity is
O(n log2

n).
Among the fast classical algorithms we recall Levinson, and Trench-Zohar

algorithms[60],[70]. A more recent fast algorithm is based on reducing a Toeplitz-
like matrix to a Cauchy-like matrix. The idea of the algorithm is simple.

Consider the operator ∆(A) = S1A − AS−1 where S1 is the unit circulant
matrix and S−1 is the unit −1-circulant matrix. Recall that S1 = F ∗D1F where
F = 1√

n
(ωijn ) and D1 = diag(1, ω̄n, . . . , ω̄

n−1
n ), while S−1 = DF ∗D−1FD

−1,

where D = diag(1, δ, . . . , δn−1), δ = ω
1/2
n = ω2n, and D−1 = δD1.

We have already pointed out that if A is a Toeplitz matrix then ∆(A) has
rank at most 2. More generally, if A is Toeplitz-like the rank of ∆(A) is inde-
pendent of n, say k. On the other hand,

∆(A) = S1A−AS−1 = F ∗D1FA−ADF ∗D−1FD−1,

so that, multiplying the above expression to the left by F and to the right by
DF ∗ it turns out the the matrix B = FADF ∗ is such that

D1B −BD−1

has rank at most 2. Thus, B is a Cauchy-like matrix of rank at most 2. This
way, the linear system Ax = b can be transformed into

By = Fb

x = DF ∗y

and reduced to computing two DFTs and solving a Cauchy-like system for the
overall cost of O(n2k) ops by means of the GKO algorithm.

1.5.4 Divide and conquer techniques: superfast algorithms

Here we give an idea of super fast Toeplitz solvers. In particular, we provide
a general description of the classical approach that is the Bitmead-Anderson
algorithm.
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Other different approaches exist. Recently in [67] a superfast and stable
Toeplitz solver has been designed relying on the reduction to Cauchy matri-
ces described in the previous section and on the properties of rank structured
matrices.

Consider the operator F+(A) = A − ZAZT and partition the matrix A as

A =

[
A1,1 A1,2

A2,1 A2,2

]
so that

A =

[
I 0

A2,1A
−1
1,1 I

] [
A1,1 A1,2

0 B

]
, B = A2,2 −A2,1A

−1
1,1A1,2

A fundamental property is that the Schur complement B keeps the same
displacement rank as A, that is, rankF+(A) = rankF+(B); the other blocks of
the LU factorization have almost the same displacement rank of A.

Therefore, solving two systems with the matrix A, for computing the dis-
placement representation of A−1, is reduced to

– solving two systems with the matrix A1,1 for computing the displacement
representation of A−11,1

– solving two systems with the matrix B which has displacement rank 2, plus
performing some Toeplitz-vector products.

This way, the overall cost C(n) of this recursive step is given by C(n) =
2C(n/2) +O(n log n) and this implies that C(n) = O(n log2 n).

1.5.5 Trigonometric matrix algebras and preconditioning

The solution of large positive definite n × n Toeplitz system Anx = b can be
efficiently approximated with the Preconditioned Conjugate Gradient (PCG)
method [58].

It is known from the classical theory that the conjugate gradient method
applied to an n× n positive definite system Ax = b provides a sequence of ap-
proximations {xi}i to the solution x which converge to x after n steps. However,
the residual error ‖Axi−b‖2 is bounded from above by γθi, where γ is a positive
constant and θ = (

√
µ− 1)/(

√
µ+ 1) where µ = µ(A) is the spectral condition

number of the matrix A. That is, µ(A) = maxi λi(A)/mini λi(A) where λi(A)
for i = 1, . . . , n are the eigenvalues of A.

This way, if A has condition number close to 1 then after a few number
i of iterations the vector xi provides a good approximation to the solution x.
The cost of each iteration is dominated by the computation of a matrix vector
product. If A is Toeplitz this cost amounts just to O(n log2 n) ops. Therefore
this iteration is very convenient for well conditioned Toeplitz systems.

On the other hand, if A is ill-conditioned then the conjugate gradient needs a
large number of iterations. In this case, the PCG method comes into help since
one has to find a good preconditioner P having the following three features
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1. the cost of computing the matrix-vector product Pv is comparable with
that of computing Av;

2. the matrix P is easily invertible;

3. the matrix P mimics the spectral properties of A in such a way that P−1A
is “close” to the identity matrix.

The latter condition aims to realize the clustering of the spectrum of P−1A
around 1, in the sense that the condition number of P−1A is close to 1, so that
the CG iteration applied to P−1A converges quickly. This condition can be
relaxed thanks to the Axelsson-Lindskög theorem [7] that we report informally
below.

Informally speaking, the Axelsson-Lindskög theorem says that ifA has all the
eigenvalues in the interval [α, β] where 0 < α < 1 < β except for q eigenvalues
(outliers) which stay outside this interval and are greater than β, then the resid-
ual error after i > q steps is bounded by γ1θ

i−q
1 for γ1 = (

√
µ1 − 1)/(

√
µ1 + 1),

for µ1 = β/α.

This way, no matter if the condition number of the matrix is large if this
largeness is due to a few outliers. In fact, it is enough to find a preconditioner
P for which the spectrum of P−1A is “mostly” clustered around 1.

Well, it is possible to show that choosing P in a suitable way inside any
trigonometric algebra described in Section 1.4, one can satisfy the three proper-
ties reported above, no matter if the symbol associated with the Toeplitz matrix
has some isolated zero. In fact, in this case, even though limn→∞ µ(An) = ∞
since zero is an accumulation point for the set of eigenvalues of An, for the
preconditioned matrix P−1n An the number of eigenvalues that do not lie in the
interval [1− ε, 1 + ε] is negligible with respect to n.

This makes PCG a very effective method for the approximated solution of
large Toeplitz systems whose cost is O(n log2 n). In the case of n × n block
Toeplitz matrices with m×m blocks PCG can be used as well; the cost per step
is O(mn logmn) ops, but unfortunately, if the bivariate symbol is zero in some
points of its domain, then the number of outliers for the preconditioned matrix
is O(m + n). This make this technique less effective for the multidimensional
case.

More information in this regard together with pointers to the literature can
be found in [32].

1.5.6 Wiener-Hopf factorization and matrix equation

Here we report the flavor of an algorithm for solving matrix equations through
the solution of an infinite Toeplitz system. For more details, we refer the reader
to the papers [17] and to the books [15], [16].

Consider the equations

BX2 +AX + C = 0, CY 2 +AY +B = 0, (1.18)
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where we assume that A,B,C are n×n matrices and that there exist solutions
X,Y with spectral radius ρ(X) = η < 1, ρ(Y ) = ν < 1. In this case, the
matrix Laurent polynomial ϕ(z) = z−1C + A+ zB is invertible in the annulus
A = {z ∈ C : η < |z| < ν−1}, that is detϕ(z) 6= 0 for z ∈ A, so that
ψ(z) = ϕ(z)−1 is analytic over A.

The two equations can be rewritten in terms of infinite block Toeplitz sys-
tems. For instance, the first equation takes the form

A B
C A B

C A B
. . .

. . .
. . .



X
X2

X3

...

 =


−C
0
0
...

 .
Similarly we can do for the second equation.

This infinite system can be solved by means of the Cyclic Reduction (CR)
method introduced by Gene Golub (see [17] for bibliographic references and
for general properties of CR) for the numerical solution of the discrete Poisson
equation over a rectangle and here adjusted to the infinite block Toeplitz case.
The CR technique works this way:

• permute block rows and block columns in the above equation by writing
the even numbered ones first, followed by the odd numbered ones and get
the system 

A C B

A C
. . .

. . .
. . .

B A
C B A

. . .
. . .

. . .





X2

X4

...
X
X3

...


=



0
0
...
−C
0
...


• eliminate the unknowns X2, X4, . . . by taking a Schur complement and

arrive at the system
Â1 B1

C1 A1 B1

C1 A1 B1

. . .
. . .

. . .



X
X3

X5

...

 =


−C
0
0
...


where

A1 = A0 −B0A
−1
0 C0 − C0A

−1
0 B0

B1 = −B0A
−1
0 B0

C1 = −C0A
−1
0 C0

Â1 = Â0 −B0A
−1
0 C0
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with A0 = A,B0 = B,C0 = C, Â0 = A.

where we assume that A is nonsingular.
This latter system has almost the block Toeplitz structure of the original

one except that the (1, 1) block is different from the remaining diagonal blocks.
Therefore we can repeat the same procedure by generating the sequence of block
triangular systems with blocks Ci, Ai, Bi and Âi such that


Âi Bi
Ci Ai Bi

Ci Ai Bi
. . .

. . .
. . .




X

X2i+1

X2∗2i+1

X3∗2i+1

...

 =


−C
0
0
...


where

Ai+1 = Ai −BiA−1i Ci − CiA−1i Bi

Bi+1 = −BiA−1i Bi

Ci+1 = −CiA−1i Ci

Âi+1 = Âi −BiA−1i Ci

Here, we assume that all the blocks Ai generated this way are nonsingular.
The first equation of this system takes the form

ÂiX +BiX
2i+1 = −C

and it is a nice surprise to find that ‖Bi‖ = O(ν2
i

) so that Xi = −Â−1i C

provides an approximation to the solution X with error O((νη)2
i

). This makes
CR one of the fastest algorithms to solve this kind of matrix equations.

Besides this formulation given in terms of Toeplitz matrices, there is a more
elegant formulation given in functional form which provides a generalization of
the Graeffe iteration. More precisely, define ϕ(z) = z−1Ci + Ai + zBi and find
that ϕi+1(z2) = ϕi(z)A

−1
i ϕi(−z), that is a generalization to the case of matrix

polynomials of the celebrated Graeffe-Lobachewsky-Dandelin iteration [53], [54].
Another nice interpretation of CR can be given in terms of the matrix func-

tions ψi(z) = ϕi(z)
−1 defined for all the z ∈ C where ϕi(z) is nonsingular. In

fact, one can easily verify that

ψi+1(z2) =
ψi(z) + ψi(−z)

2

ψ0(z) = (z−1C +A+ zB)−1

This formulation enables one to provide the proof of convergence properties
just by using the analytic properties of the involved functions. Moreover, the
same formulation allows to define the functions ψi(z) in the cases where there
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is a break-down in the construction of the sequence ϕi(z) due to the singularity
of some Ai.

The solutions G and R of the matrix equations in (1.18) provide the Wiener-
Hopf factorization of ϕ(z)

ϕ(z) = (I − zR)W (I − z−1G), W = A0 +A1G

which in matrix form takes the following expression

A B
C A B

. . .
. . .

. . .

 =

I −R
I −R

. . .
. . .


W W

. . .



I
−G I

−G I

. . .
. . .


A detailed treatment of this topic can be found in [17].
The same technique can be extended to matrix equations of the kind

∞∑
i=−1

AiX = 0

and to the computation of the Wiener-Hopf factorization of the function A(z) =∑∞
i=−1 z

iAi, that is, the block UL factorization of the infinite block Toeplitz matrix
in block Hessenberg form associated with A(z).

1.6 An application to computing the exponen-
tial of a block triangular Toeplitz matrix

In the Erlangian approximation of Markovian fluid queues, one has to compute

Y = eX =

∞∑
i=0

1

i!
Xi

where X is an (` + 1) × (` + 1) block triangular Block Toeplitz matrix with m ×m
blocks having negative diagonal entries such that the sum of the entries in each row
is nonpositive.

Clearly, since block triangular Toeplitz form a matrix algebra then Y is still block
triangular Toeplitz. The question is: what is the most convenient way to compute Y
given X in terms of CPU time and error?

Let X0, X1, . . . X` be the blocks defining X. Embed X into an infinite block
triangular block Toeplitz matrix X∞ obtained by completing the sequence Xi with
zeros, and denote Y0, Y1, . . . the blocks defining Y∞ = eX∞ . Then Y is the (` + 1) ×
(`+ 1) principal submatrix of Y∞ we can prove the following decay property

‖Yi‖∞ ≤ eα(σ
`−1−1)σ−i, ∀σ > 1

where α = maxj(−(X0)j,j), β = ‖[X1, . . . , X`]‖∞.
This property is fundamental to prove error bounds of the following different al-

gorithms

41



10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
−15

10
−10

10
−5

10
0

θ

E
rr

o
r

 

 

cw−abs

cw−rel

nw−rel

Figure 1.3: Norm-wise error, component-wise relative and absolute errors for
the solution obtained with the algorithm based on ε-circulant matrices with
ε = iθ.

Using ε-circulant matrices

Embed X into an ε-circulant matrix X(ε) and approximate Y with Y (ε) = eX
(ε)

. We
can prove that

‖Y − Y (ε)‖∞ ≤ e|ε|β − 1 = |ε|β +O(|ε|2)

and, if ε is purely imaginary then

‖Y − Y (ε)‖∞ ≤ e|ε|
2β − 1 = |ε|2β +O(|ε|4)

Using circulant matrices
Embed X into a K×K block circulant matrix X(K) for K > ` large, and approximate

Y with the K ×K submatrix Y (K) of eX
(K)

.
We can prove the following bound

‖[Y0 − Y (K)
0 , . . . , Y` − Y (K)

` ]‖∞ ≤ (eβ − 1)eα(σ
`−1−1) σ

−K+`

1− σ−1
, σ > 1

Method based on Taylor expansion
The matrix Y is approximated by truncating the series expansion to r terms

Y (r) =

r∑
i=0

1

i!
Xi

Denoting µ the machine precision of the floating point computation, the roundoff
errors grow as ε−1µ for the algorithm based on ε-circulant and as ξKµ for a suitable
ξ depending on m, α and β for the algorithm based on circulant embedding.

An experimental analysis shows that the method based on ε-circulant is the fastest
one and the precision of the approximation is acceptable.

In Figure 1.6 we report the norm-wise error and the maximum component-wise
relative and absolute errors of the result obtained with the ε-circulant technique applied
to a real problem where the size is ` = 512 and the block size is 2. In Figure 1.6 we
report the same errors for the embedding technique, while in Figure 1.6 we report the
CPU time.

There are some open issues. In particular, two questions are yet unanswered.
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Figure 1.4: Norm-wise error, component-wise relative and absolute errors for the
solution obtained with the algorithm based on circulant embedding for different
values of the embedding size K.
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Figure 1.5: CPU time of the Matlab function expm, and of the algorithms based
on ε-circulant, circulant embedding, power series expansion.
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• Can we prove that the exponential of a general block Toeplitz matrix does not
differ much from a block Toeplitz matrix? Numerical experiments confirm this
fact but a proof is missing.

• Can we design effective ad hoc algorithms for the case of general block Toeplitz
matrices?
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Chapter 2

Rank structures

2.1 Introduction

Informally speaking, a rank-structured matrix is a matrix where its submatrices lo-
cated in some part of its support have low rank. An important example of rank
structured matrices is the class of quasiseparable matrices characterized by the prop-
erty that all the submatrices strictly contained in the lower triangular part as well as
all the submatrices strictly contained in the upper triangular part have rank at most
1. A simple and elementary example of matrices satisfying this property is the set of
tridiagonal matrices.

It is also interesting to observe that the inverse of an irreducible tridiagonal matrix
A is still quasiseparable. Indeed, this fact is less elementary to prove. Moreover, the up-
per triangular part of A−1 coincides with the upper triangular part of a matrix of rank
1. The same property holds true for the lower triangular part of A−1. That is, there
exist vectors u, v, w, z such that tril(A−1) = tril(uvT ), triu(A−1) = triu(wzT ),
where tril and triu denote the lower and the upper triangular part, respectively of a
matrix. In this case we say that the quasiseparable matrix A−1 has a generator given
by the vectors u, v, w, z. Observe that a tridiagonal matrix is quasiseparable but has
no generator.

In general, given a pair of integers (h, k) we say that the n × n matrix A is
(h, k)-quasiseparable, or quasiseparable of separability rank (h, k) if all its subma-
trices strictly contained in the lower triangular part have rank at most h, where at
least one submatrix reaches this rank, while all the submatrices strictly contained in
the upper triangular part have rank at most k and there exists at least a submatrix
with this rank.

Band matrices are an example of (h, k) quasiseparable matrices and it can be
proved that their inverses still share this property.

Rank structured matrices are investigated in different fields like integral equations,
statistics, vibrational analysis.

There is a very wide literature on this subject. We refer to the paper [64] for a
commented bibliography starting from the pioneering papers by Gantmaker and Krein
in 1937, and to the recent books [65], [66], [34] with the state of the art in this field.
The research activity on rank structured matrices is very intense, there are several
international groups which are very active and have produced interesting theoretical
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and algorithmic advances.
In this chapter, we limit ourselves to describe the problems related to linearizations

of polynomials and of matrix polynomials which lead to quasiseparable matrices where
recently there has been a growing interest.

2.2 Basic properties

First we recall, in terms of list, some of the main properties of quasiseparable matrices.
For more details we refer to the books [65], [66], [34] and to the current literature. For
the sake of simplicity we assume h = k, in this case we call the (h, k) quasiseparable
matrix A more simply k quasiseparable, or quasiseparable of rank k.

Let A be k quasiseparable. then

1. If A is invertible then A−1 is k quasiseparable.

2. If A = LU is the LU factorization of A then L and U are quasiseparable of rank
(k, 0) and (0, k), respectively

3. If A = QR is a QR factorization of A then Q is quasiseparable of rank k and
and U is quasiseparable of rank (0, 2k).

4. The matrices Li, Ui, Ai defined by the LR iteration Ai =: LiUi, Ai+1 = UiLi
are quasiseparable of rank (k, 0), (0, k), k, respectively.

Moreover, there are algorithms for

1. computing A−1 in O(nk2) ops;

2. solving the system Ax = b in O(nk2) ops;

3. computing the LU and the QR factorization of A in O(nk2) ops;

2.3 Companion matrices

Let a(x) =
∑n
i=0 aix

i be a monic polynomial, i.e., such that an = 1, with real or
complex coefficients. A companion matrix associated with a(x) is a matrix A such
that det(xI −A) = a(x).

Among the most popular companion matrices we recall the first and second Frobe-
nius forms F1 and F2 given by ([29])

F1 =


−an−1 −an−2 . . . −a0

1 0

. . .
. . .

1 0

 , F2 = FT1 ,

respectively. Both matrices are quasiseparable, F1 has a generator concerning the
upper triangular part given by the vectors (1, 0, . . . , 0)T and (−an−1,−an−2, . . . ,−a0),
while F2 has a generator concerning the lower triangular part. Both matrices can
be written as an orthogonal (permutation) matrix, that is the unit circulant, plus a
correction of rank 1, that is,

F1 =


0 . . . 0 1

1
. . . 0

. . .
. . .

...
1 0

−

an−1 . . . a1 1 + a0

0 . . . 0 0
... . . .

...
...

0 . . . 0 0

 =: C − uvT
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The application of the QR iteration to F1 generates a sequence of matrices Ai,
i = 0, 1, 2, . . ., where A0 = F1, Ai+1 = Q∗iAiQi, with Q∗iQi = I, so that Ai can be still
written as orthogonal plus rank 1. In fact, denoting u1 = u, v1 = v, U1 = C, so that
F1 = U1 − u1v

T
1 , one has Ai = Ui − uivTi where Ui+1 = Q∗iUiQi is still orthogonal

and ui+1 = Qiui, vi+1 = Qivi. The same property holds true for F2. This and other
similar techniques have been used in [12], [26], [22], [63], [23], [69], [5], [36], [62], [4],
for designing effective algorithms for computing the roots of a given polynomial. In
fact with this strategy, it is possible to implement the QR step in O(n) ops so that
the overall execution of the QR iteration takes O(n2) ops and is competitive with the
classical LAPACK implementation already for small values of the size n.

Another companion matrix is the comrade matrix introduced by Barnett in 1975
[8]. Define the sequence of orthogonal polynomials satisfying the following three-term
recurrence

p0(x) = 1, p1(x) = x− b1,
pi+1(x) = (x− bi+1)pi(x)− cipi−1(x), i = 1, 2, . . . , n− 1,

(2.1)

where ci > 0. Consider a monic polynomial p(x) represented in this orthogonal basis
as p(x) =

∑n
i=0 dipi(x), where dn = 1. Then one can prove (see [28]) that p(x) =

det(xI −A), where

A =


b1 c1

1 b2
. . .

. . .
. . . cn−1

1 bn

− [0, . . . , 0, 1]


d0
...

dn−3

d̂n−2

d̂n−1


and d̂n−2 = −dn−2 + cn−1, d̂n−1 = −dn−1 + bn.

Also this matrix A has a quasiseparable structure with rank (1, 2). This fact can
be exploited to implement a polynomial rootfinder for polynomials represented in an
orthogonal basis which relies on the QR iteration.

Another companion matrix is the colleague matrix (Good 1961 [43], Werner 1983
[68])

C =



x1 −a0
1 x2 −a1

1
. . .

...

. . . xn−1 −an−2

1 xn − an−1


This matrix provides the representation of a polynomial p(x) in the Newton basis.
More precisely, one can prove that

det(xI − C) =a0 + a1(x− x1) + a2(x− x1)(x− x2) + · · ·

+an−1

n−1∏
i=1

(x− xi) +
n∏
i=1

(x− xi).

Similarly, given a monic polynomial p(x) of degree n, choose n pairwise different
values x0, x1, . . . , xn−1 and consider the arrowhead companion pencil of size n + 1
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defined by xC1 − C0 where

C0 =


x0 p0

x1 p1
. . .

...
xn−1 pn−1

−`0 −`1 . . . −`n−1 0

 , C1 = diag(1, 1, . . . , 1, 0),

and `i = 1/
∏n−1
j=1, j 6=i(xi − xj) and pi = p(xi).

Computing det(xC1 − C0) by means of the Laplace rule along the last column
provides the following expression

det(xC1 − C0) =

n∑
i=0

piLi(x), Li(x) =

n−1∏
j=1, j 6=i

(x− xj),

that is, the Lagrange representation of the polynomial p(x). Also the pencil xC1−C0

is quasiseparable of rank 1.
The Smith companion form given by Smith in 1970 [59] with the goal of locating

polynomial roots, and considered by Golub in 1973 [42], has the following form

S = diag(b1, . . . , bn)− ewT , e = (1, . . . , 1)T , w = (wi), wi =
p(bi)∏n

j=1, j 6=i(bi − bj)

where p(x) is a monic polynomial of degree n, and b1, . . . , bn are pairwise different
numbers.

It is easy to show that det(xI − S) = p(x), that is, S is a companion matrix for
p(x). Also in this case, S is a quasiseparable matrix given in terms of a generator. In
fact S is expressed as a diagonal plus a rank 1 matrix.

In [59] the Gerschgorin theorem has been applied to A in order to locate the roots of
the polynomial p(x). This property was used in the package MPSolve of [14] to provide
guaranteed approximations to the zeros of a polynomial. In [20] this companion form
is used for providing a more efficient implementation of MPSolve and to prove that
the condition number of the eigenvalues of the Smith companion form converge to zero
as the knots bi converge to the roots of the polynomial, under suitable condition on
the type of convergence in case of multiple roots. In fact, from the Smith companion
form one can rewrite the condition p(x) = 0 in terms of the secular equation

n∑
i=1

wi
x− bi

− 1 = 0.

The closer the knots b1, . . . , bn to the roots of the polynomial, the better conditioned
the roots of p(x) as functions of w1, . . . , wn.

The above companion matrices enable one to reduce the polynomial root-finding
problem to a (generalized) eigenvalue problem for which matrix based technique can
be applied. We recall that the QR iteration is a reliable numerical technique for
computing the eigenvalue of a matrix A once A has been reduced to upper Hessenberg
form H = (hi,j) by means of an orthogonal transformation. We recall that an upper
Hessenberg matrix H is such that hi,j = 0 if i > j + 1. Now, some of the companion
matrices that we have described (Frobenius and comrade), are already in Hessenberg
form so that one can apply directly the QR iteration to the matrix itself. However,
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the cost of the iteration step is O(n2) so that the overall cost of the QR iteration is
O(n3). This makes the matrix approach for computing the roots of a polynomial not
convenient for moderately large values of the degree n.

However, by exploiting the rank structure of the companion matrices, one can
provide implementation of the QR, or the QZ step in O(n) ops. This would provide
an algorithm for polynomial root-finding with the cost of O(n2) which in principle
could be competitive with the fixed point iteration techniques, like the Ehrlich-Aberth
iteration, which have the same asymptotic cost O(n2). It must be said that fastest
polynomial root-finding software currently available is MPSolve which relies on the
Ehrlich-Aberth iteration as the main engine for refining approximation to the roots.
As an example, this package enables one to compute roots of polynomials with degree
of the order of millions with a desktop computer in a reasonable time.

In principle, the Ehrlich-Aberth iteration could be replaced by a shifted QR itera-
tion based on the quasiseparable technology. At the moment, the available algorithms
for the QR computation do not seem to be still sufficiently effective to make structured
QR competitive with Ehrlich-Aberth iteration.

2.4 Extension to matrix polynomial

In the last decade, much interest has been focused on the properties of matrix polyno-
mials and on their linearizations. The motivations are given by the nice and interesting
theoretical properties and by the fact that linearizations of matrix polynomials are the
main tool for the numerical solution of the polynomial eigenvalue problems encoun-
tered in many applications.

Given m×m matrices Ai, i = 0, . . . , An, with An 6= 0, we call A(x) =
∑n
i=0 x

iAi
a matrix polynomial of degree n. The polynomial eigenvalue problem consists in
computing the solutions of the polynomial equation detA(x) = 0, given the matrix
coefficients of A(x). Throughout, we assume that A(x) is regular, that is detA(x) is
not constant.

In the previous section we have given examples of companion matrices which reduce
the polynomial root-finding problem to a matrix eigenvalue problem. Similarly, here
we show that we may associate with an m ×m matrix polynomial A(x) of degree n
a linear matrix pencil A(x) = xA1 − A0 of size mn ×mn whose eigenvalues are the
solutions of the polynomial eigenvalue problem, that is detA(x) = detA(x).

In fact, it is easy to show [40] that the generalization of the Frobenius matrix is
given by the pencil

A(x) = x


I

. . .

I
An

−

−An−1 −An−2 . . . −A0

I 0

. . .
. . .

I 0

 .
Observe that if An is singular then detA(x) has degree less than mn and there

are less than mn eigenvalues counted with their multiplicity. For this reason we prefer
to say that even in the case where detAn = 0, the matrix polynomial, as well as the
matrix pencil, still has mn eigenvalues by adding some eigenvalues to the infinity.

This block companion pencil has the quasiseparable structure of rank m and some
methods for executing the QR iteration applied to the linear pencil in O(n2m3) ops
have been designed by relying on the quasiseparable structure.
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Similarly, we can extend to matrix polynomials the colleague and the comrade
companion [28]. In fact the pencil

A(x) =



(x− x1)I A0

−I (x− x2)I A1

−I
. . .

...

. . . (x− xn−1)I An−2

−I (x− xn)An +An−1


is such that detA(x) = detA(x), thus provides an extension of the colleague pencil to
matrix polynomials.

Similarly, representing A(x) in the basis formed by the orthogonal monic polyno-
mials pi(x), i = 0, . . . , n defined in (2.1), such that A(x) =

∑n
i=0Dipi(x), then the

extension of the comrade pencil is

A(x) = xdiag(I, . . . , I,Dn)−


b1I c1I

I b2I
. . .

. . .
. . . cn−1I
I bnI

 + [0, . . . , 0, I]


D0

...
Dn−3

D̂n−2

D̂n−1


where D̂n−1 = −Dn−1 + bnDn and D̂n−2 = −Dn−2 + cn−2Dn [28]. That is, one can
prove that detA(x) = detA(x).

Concerning the Smith companion, we report a recent result obtained in [21].
A first generalization of the Smith companion form, valid for polynomials with

scalar coefficients, relies on replacing the linear terms x− bi with higher degree poly-
nomials. More precisely, let bi(x) be polynomials of degree di for i = 1, . . . , k such
that

∑k
i=1 di = n and gcd(bi(x), bj(x)) = 1 for i 6= j. Define

b(x) =

k∏
i=1

bi(x), ci(x) =
∏

j=1, j 6=i

bj(x)

so that, in view of the Chinese remainder theorem, there exists unique the decompo-
sition

p(x) = b(x) +

k∑
i=1

wi(x)ci(x)

wi(x) = p(x)/ci(x) mod bi(x)

Consequently,

p(x) = detP (x), P (x) =

b1(x)

. . .

bk(x)

 +

1
...
1

 [w1(x), . . . , wk(x)].

This way, the original problem of finding the roots of a polynomial has been reduced
to solving a polynomial eigenvalue problem for a k× k matrix polynomial. Moreover,
the coefficients of this polynomial are quasiseparable matrices.
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Observe that if k = n, then di = 1, bi(x) = x − bi and we get the Smith com-
panion form. It is possible to provide an explicit expression of the left and the right
eigenvectors of this matrix polynomial.

A further extension concern the case where A(x) =
∑n
i=0 x

iAi is a nondegenerate
matrix polynomial of degree n. In this case, let us consider once again the pairwise
prime scalar polynomials bi(x), for i = 1, . . . , k, which we assume monic, such that
their degrees di sum up to n. Define Bi(x) = bi(x)I, for i = 1, . . . , k − 1, and set
Bk(x) = bk(x)I + sI where s ∈ C is such that detBk(x) 6= 0 when x is zero of any
bi(x).

Then there exists, unique, the decomposition

A(x) = B(x) +

k∑
i=1

Wi(x)Ci(x)

where B(x) =
∏k
i=1Bi(x), Ci(x) =

∏k
j=1, j 6=iBj(x) and

Wi(x) =
A(x)∏k−1

j=1, j 6=i bj(x)
Bk(x)−1 mod bi(x), i = 1, . . . , k − 1

Wk(x) =
A(x)∏k−1
j=1 bj(x)

− sI − s
k−1∑
j=1

Wj(x)

bj(x)
mod bk(x)

Moreover

detA(x) = detA(x), A(x) = D(x) +

I...
I

 [W1(x), . . . ,Wk(x)]

where

D(x) =


b1(x)I

. . .

bk−1(x)I
bk(x)An + sI


This expression extends to the case of matrix polynomials the Smith companion

given in the generalized form in terms of the pairwise prime polynomials bi(x).
Let us comment on some features of this reduction. Assume for simplicity An = I

and k = n, and choose bi(x) = x− ωin, where ωn = cos 2π
n

+ i sin 2π
n

is a primitive nth
root of 1. Then, using the Fourier matrix Fn = 1√

n
(ωi,jn )i,j=1,n, one can verify that

the pencil
(F ∗n ⊗ I)A(x)(Fn ⊗ I) = xI − C

where C is the block Frobenius matrix associated with A(x). On the other hand,
by choosing bi(x) = x − αωin, then we get a pencil which is unitarily similar to the
block companion matrix scaled with the diagonal matrix diag(1, α, . . . , αn−1)⊗I. This
means that the condition number of the eigenvalues of the extended Smith companion
matrix is not worse than that of the Frobenius, or that of the scaled Frobenius matrix.

The choice of suitable values of bi provides linearizations of the matrix polynomial
where the eigenvalues are much better conditioned. We will give numerical evidence
of this property in the next section where we report on the results of some numerical
experiments.
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This kind of reduction of an m×m polynomial eigenvalue problem of degree n to a
lower degree matrix polynomial, belongs to the so called class of `-ifications introduced
in [30]. That is, one can prove that there exist unimodular mk×mk matrix polynomial
E(x), F (x) such that

E(x)A(x)F (x) = Imk−k ⊕A(x).

Moreover, if d1 = · · · = dk then there exist unimodular mk ×mk matrix polynomial
Ê(x), F̂ (x) such that

Ê(x)A#(x)F̂ (x) = Imk−k ⊕A#(x)

where A#(x) =
∑n
i=0An−ix

i denotes the “reversed polynomial”.
That is, if the bi(x) have the same degree then A(x) is a strong `-ification of A(x)

in the sense of [30].
The eigenvectors of the matrix polynomial A(x) can be explicitly given. In fact,

if A(λ)v = 0, v 6= 0, then 
∏
j 6=1Bj(λ)v

...∏
j 6=k Bj(λ)v


is a right eigenvector of A(x) corresponding to λ. Moreover, If uTA(λ) = 0 thenuTW1

∏
j 6=1

Bj(λ), . . . , uTWk

∏
j 6=k

Bj(λ)


is a left eigenvector of A(x) corresponding to λ.

It is interesting to observe that if L =


I

−I
. . .
. . .

. . .
−I I

 then the matrix LA(x) takes

the block Hessenberg form

LA(x) =



B1(x) +W1(x) W2(x) . . . Wk−1(x) Wk(x)
−B1(x) B2(x)

−B2(x)
. . .

. . . Bk−1(x)
−Bk−1(x) Bk(x)



2.5 Numerical properties

Here, we present some numerical experiments to show that in many interesting cases
a careful choice of the Bi(x) can lead to linearizations where the eigenvalues are much
better conditioned than in the original problem.

2.5.1 Scalar polynomials

As a first example, consider a monic scalar polynomial p(x) =
∑n
i=0 pix

i where the
coefficients pi have unbalanced moduli. In this case, we generate pi using the MATLAB
command p = exp(12 * randn(1,n+1)); p(n+1)=1;
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Figure 2.1: Conditioning of different linearizations of a scalar polynomial of degree
50 having random unbalanced coefficients.

Then from p(x) we build the companion forms and compute the condition number
of the eigenvalues by means of the Matlab function condeig().

We have considered three different linearizations:

• The Frobenius linearization obtained by compan(p);

• the Smith companion matrix obtained by taking as bi some perturbed values of
the roots;

• the Smith companion with nodes given by the tropical roots of the polynomial
multiplied by unit complex numbers.

The results are displayed in Figure 2.5.1. On can see that in the first case the
condition numbers of the eigenvalues are much different from each other and can be
as large as 1013 for the worst conditioned eigenvalue. In the second case the condition
number of all the eigenvalues is close to 1, while in the third linearization the condition
numbers are much smaller than those of the Frobenius linearization and have an almost
uniform distribution.

These experimental results are a direct verification of a conditioning result of [20,

Sect. 5.2] that is at the basis of the MPSolve algorithm presented in that paper.

2.5.2 The matrix case

Consider now a matrix polynomial P (x) =
∑n
i=0 Pix

i where for simplicity we
assume Pn = I. As a first example, consider the case where the coefficients Pi
have unbalanced norms.

We can give reasonable estimates to the modulus of the eigenvalues using
the Pellet theorem or the tropical roots (see [18, 38, 56], for some insight on
these tools).

We have considered three linearizations: the standard Frobenius companion
matrix, and two versions of the extended Smith companion form. In the first
version the nodes bi are the mean of the moduli of set of eigenvalues with close
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Figure 2.2: Conditioning of different linearizations for some matrix polynomials with
random coefficients having unbalanced norms.

moduli multiplied by unitary complex numbers. In the second, the values of bi
are obtained by the Pellet estimates delivered by the tropical roots.

In Figure 2.2 we report the conditioning of the eigenvalues, measured with
Matlab’s condeig for all these linearizations.

It is interesting to note that the conditioning of the eigenvalues of the Smith
companion is, in every case, not exceeding 102. Moreover it can be observed
that no improvement is obtained on the conditioning of the eigenvalues that
are already well-conditioned. In contrast, there is a clear improvement on the
ill-conditioned ones. In this particular case, this class of linearizations seems to
give an almost uniform bound to the condition number of all the eigenvalues.

Further examples come from the NLEVP collection of [9] where we have
selected some problems that exhibit bad conditioning.

As a first example we consider the problem orr sommerfeld. Using the
tropical roots we can find some values inside the unique annulus that is identified
by the Pellet theorem. In this example the values obtained only give a partial
picture of the eigenvalues distribution. The Pellet theorem gives about 1.65e-4
and 5.34 as lower and upper bound to the moduli of the eigenvalues, but the
tropical roots are rather small and near to the lower bound. More precisely, the
tropical roots are 1.4e-3 and 1.7e-4 with multiplicities 3 and 1, respectively.

This leads to a linearization A(x) that is well-conditioned for the smaller
eigenvalues but with a higher conditioning on the eigenvalues of bigger modulus
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Figure 2.3: On the left we report the conditioning of the Frobenius and of the Smith
companion matrices with the choices of bi as block mean of eigenvalues and as the
estimates given by the tropical roots. On the right the tropical roots are coupled with
estimates given by the Pellet theorem.

as can be seen in Figure 2.3 on the left (the eigenvalues are ordered in non-
increasing order with respect to their modulus). It can be seen, though, that
coupling the tropical roots with the standard Pellet theorem and altering the
bi by adding a value slightly smaller than the upper bound (in this example we
have chosen 5 but the result is not very sensitive to this choice) leads to a much
better result that is reported in Figure 2.3 on the right. In the right figure we
have used b = [ 1.7e-4, 1.4e-3, -1.4e-3, 5 ]. This seems to justify that
there exists a link between the quality of the approximations obtained through
the tropical roots and the conditioning properties of the Smith companion.

We analyzed another example problem from the NLEVP collection that is
called planar waveguide. The results are shown in Figure 2.5.2. This problem
is a PEP of degree 4 with two tropical roots approximately equal to 127.9 and
1.24. Again, it can be seen that for the eigenvalues of smaller modulus (that
will be near the tropical root 1.24) the Frobenius and the Smith companion
behave in the same way, whilst for the bigger ones the Smith companion has
some advantage in the conditioning. This may be justified by the fact that the
Frobenius linearization is similar to the Smith companion on the roots of the
unity.

Note that in this case the information obtained by the tropical roots seems
more accurate than in the orr sommerfeld case, so the Smith companion built
using the tropical roots and the one built using the block-mean of the eigenvalues
behave approximately in the same way.

As a last example, we have tried to find the eigenvalues of a matrix poly-
nomial defined by integer coefficients. We have used polyeig and the Smith
companion matrix (using the tropical roots as bi) and the QZ method. We have
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Figure 2.4: Conditioning of the eigenvalue problem for three different linearizations
on the planar waveguide problem.

chosen the polynomial P (x) = P11x
11 + P9x

9 + P2x
2 + P0 where

P11 =

1 1 1 1
1 1 1

1 1
1

 , P9 = 108

3 1
1 3 1

1 3 1
1 3

 , P2 = 108PT11, P0 =

1
2

3
4


In this case the tropical roots are good estimates of the blocks of eigenvalues
of the matrix polynomial. We obtain the tropical roots 1.2664 · 104, 0.9347 and
1.1786 · 10−4 with multiplicities 2, 7 and 2, respectively. We have computed the
eigenvalues with a higher precision and we have compared them with the results
of polyeig and of eig applied to the Smith companion matrix. Here, the Smith
companion has been computed with the standard floating point arithmetic. As
shown in Figure 2.5 we have achieved much better accuracy with the latter
choice. The generalized Smith companion matrix has achieved a relative error
of the order of the machine precision on all the eigenvalues except the smaller
block (with modulus about 10−4). In that case the relative error is about 10−12

but the absolute error is, again, of the order of the machine precision.
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Figure 2.5: The accuracy of the computed eigenvalues using polyeig and the extended
Smith companion matrix with the bi obtained through the computation of the tropical
roots.
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