
Introduction to communication avoiding
linear algebra algorithms
in high performance computing

Laura Grigori
Inria Rocquencourt/UPMC

Contents

1 Introduction . 2
2 The need for avoiding communication 2
2.1 Different previous approaches for reducing communication . . 5
3 Lower bounds on communication for dense linear algebra . . 6

1

1 Introduction 2

1 Introduction

High performance computing has become omnipresent in an increasing num-
ber of industrial and environmental applications. Getting progress in many
of such society-relevant issues depends on the usage of forthcoming gener-
ation of peta-, and later exa-, scale supercomputers. However these super-
computers have extremely complex hardware architectures, and most of the
current algorithms are not able to efficiently exploit them. They suffer a
rapid degradation of performance when increasing the number of processors
to a large number. This is due to the exponentially growing gap between the
time it takes to perform floating-point operations by one of the processors
and the time it takes to communicate its result to another. Due to phys-
ical constraints, no hardware solution is expected without a technological
revolution. Previous investigations have typically looked at this problem as
a scheduling or a tuning problem, however the progress achieved by such
approaches is not sufficient. A different perspective on the communication
problem is required, addressing it directly at the mathematical formulation
and the algorithmic design level, i.e., a level higher in the computing stack
than previously. This requires a shift in a way the numerical algorithms are
devised, which now need to keep the number of communication instances to
a minimum. It thus calls for an entire new generation of original numerical
and algorithmic solutions.

Communication avoiding algorithms provide such a novel perspective on
designing algorithms that provably minimize communication in numerical
linear algebra. In this short document we will describe some of the novel
numerical schemes employed by those communication avoiding algorithms.

2 The need for avoiding communication

With the development of new and improved simulation techniques, numeri-
cal simulations have become an increasingly useful tool to address an entire
host of industrial, environmental and scientific issues, e.g., studies of global
warming, or understanding the origin of our universe (to cite only a few
examples). It is projected that progress in many of such issues will be tied
to the usage of current and forthcoming generation of petascale and exascale
supercomputers.

Two challenging trends are discernible here. First, these numerical simu-
lations require progressively larger computing power. This is directly related
to the complexity of simulated physical situations, that use large number of
time steps, with a 3D simulation volume, which needs to be updated at each

2 The need for avoiding communication 3

step. Though such a problem is encountered very commonly, every specific
application has its own particular difficulties. For example, in astrophysics,
studying properties of primordial photons produced during the early hot
stage of Universe evolution requires the analysis of huge volumes of data.
In the so called CMB data analysis, astrophysicists produce and analyze
multi-frequency 2D images of the universe when it was 5% of its current
age. We describe now a selection of experiments in this area and their ex-
pected data volumes, which nearly doubles every year therefore following
the Moore’s Law. The experiment COBE (1989), collected 10 gigabytes of
data, and required 1 Teraflop per image analysis. A more recent experiment,
Planck, is a keystone satellite mission who has been developed under aus-
pices of the European Space Agency (ESA). Planck has been surveying the
sky since 2010, produces terabytes of data and requires 100 Petaflops per
image of the universe. It is predicted that future experiments will collect
half petabyte of data, and will require 100 Exaflops per analysis as early
as in 2020 1. This shows that data analysis in this area, as many other
applications, will keep pushing the limit of available supercomputing power
for the years to come.

At the same time, the computers are getting faster. Computers that per-
form 1015 floating point operations per second (petascale computers) have
become a commonplace in the largest supercomputing centers. The race for
faster computers continues, and it is envisaged that exascale performance
will be achieved in the following 10-15 years [1]. Unfortunately the archi-
tecture of these machines, formed by thousands of multicore processors and
accelerators, is becoming progressively extremely complex.

This document discusses one of the main challenges in high performance
computing which is the increased communication cost. Several works have
shown that there is a gap between the time it takes to perform floating point
operations and the time it takes to communicate. This gap is already seen
and felt in the current, highly optimised applications, as illustrated by the
left panel of Figure 1a, which displays the performance of a linear solver
based on iterative methods used in the CMB data analysis application from
astrophysics. This performance result is extracted from [2] where a more
detailed description of the algorithms can be found. It shows the cost of
a single iteration (solid red line), together with its breakdown into time
spent on computation (green line) and communication (blue line). These
runs were performed on a Cray XE6 system, each node of the system is
composed of two twelve-cores AMD MagnyCours and are based on the Mi-

1 Personal communication with J. Borrill, LBNL, and R. Stompor, Paris 7 University

2 The need for avoiding communication 4

dapack library, a recent, state-of-the-art, map-making code 2. It can be seen
that the communication becomes quickly very costly, potentially dominat-
ing the runtime of the solver when more than 6000 cores are used (each
MPI process uses 6 cores). Moreover, it is predicted that the gap will be
increasing exponentially in the foreseeable future! Figure 1b displays the
performance estimated on a model of an exascale machine of a dense solver
based on Gaussian elimination with partial pivoting (GEPP) factorization 3

(see also [3]). The plot displays the computation to communication ratio as
a function of the problem size, vertical axis, and the number of used nodes,
horizontal. The plot shows two regimes, at the top left corner this is the
computation which dominates the run time, while at the bottom right this is
the communication. The white region marks the regime where the problem
is too large to fit in memory. We note that the communication-dominated
regime is reached very fast, even for such a computationally intensive op-
eration requiring n3 floating point operations (flops) as shown here (where
the matrix to be factored is of size n× n.

(a) CMB (b) Dense LU factorization

Fig. 1: Communication bottleneck of two algorithms, a dense linear solver
based on the LU factorization (right) and a sparse iterative solver
applied to the map-making problem in astrophysics (left).

Communication refers to both data transferred between processors in a
parallel computer and data transferred between different levels of memory
hierarchy in a sequential computer. In [4] it is observed that the time per
flop is increasing per year at a rate of 59%, while the network bandwidth

2 Available at http://www.apc.univ-paris7.fr/APC_CS/Recherche/Adamis/MIDAS09/
software/midapack/team.html

3 Courtesy of M. Jacquelin

http://www.apc.univ-paris7.fr/APC_CS/Recherche/Adamis/MIDAS09/software/midapack/team.html
http://www.apc.univ-paris7.fr/APC_CS/Recherche/Adamis/MIDAS09/software/midapack/team.html

2 The need for avoiding communication 5

of a parallel machine at a rate of 26% per year, and the latency at a rate
of only 15% per year. The increase in the flops rate is obtained now by
increasing the number of cores per processor. In a sequential computer,
the bandwidth is increasing at a rate of 23% per year, while the latency at
only 5% per year. This is the memory wall, a problem predicted already
in 95 by Wulf and McKee [5]. However, we are also facing now the inter-
processor communication wall, in particular given the novel architectures
as accelerators and multicore processors. Because of this, most of the algo-
rithms are not able to efficiently exploit these massively parallel machines.
They suffer a rapid degradation of performance when increasing the num-
ber of processors to a large number. The slow rate of improvement in the
latency is mainly due to physical limitations, and we cannot expect that
the hardware research will find a solution to this problem soon. Hence the
communication problem needs to be addressed and treated at the software
level. Energy consumption is another major concern for exascale. As a by-
product, communication avoiding algorithms that minimize communication
and hence data movement, will also drastically reduce the energy cost of
classic algorithms.

2.1 Different previous approaches for reducing communication

Most of the approaches investigated in the past to address this problem
rely on scheduling or tuning techniques that aim at overlapping as much as
possible communication with computation. However such an approach can
lead to an improvement of at most a factor of two. Ghosting is a differ-
ent technique for reducing communication, in which a processor stores and
computes redundantly data from neighbouring processors for future compu-
tations. However the dependency between computations in linear algebra
operations prevents a straightforward application of ghosting, that is there
are cases in which ghosting would require storing and performing on one
processor an important fraction of the entire computation. Cache-oblivious
algorithms represent a different approach introduced in 1999 for Fast Fourier
Transforms [6], and then extended to graph algorithms, dynamic program-
ming , etc. They were also applied to several operations in linear algebra
(see e.g. [7, 8, 9]) as dense LU and QR factorizations. This approach re-
lies on a change in the schedule of the algorithm, which is expressed as a
recursive operation. In sequential, the data locality is well exploited in an
oblivious way at every level of the memory hierarchy. These algorithms are
able to reduce the volume of data transferred between different levels of the
memory hierarchy, thus addressing the bandwidth problem on one proces-

3 Lower bounds on communication for dense linear algebra 6

sor. But for linear algebra, they do not reduce the number of messages
(with few exceptions), they perform asymptotically more floating-point op-
erations, and they are difficult to parallelize. The design of architecture
specific algorithms is another approach that can be used for reducing the
communication in parallel algorithms, and there are many examples in the
literature of algorithms that are adapted to a given communication topol-
ogy. However such an algorithm might become very inefficient on a different
architecture, and given the lack of portability, this approach is rarely used
nowadays.

3 Lower bounds on communication for dense linear algebra

In this section we review recent results obtained on the communication com-
plexity of dense linear algebra operations. These results assume one level of
parallelism and take into account the computation, the volume of commu-
nication, and the number of messages exchanged on the critical path of a
parallel program.

Direct methods find a solution to a given problem in a determined num-
ber of steps. In the case of dense factorizations, the number of flops per-
formed is on the order of n3 for matrices having n columns and n rows.
Direct methods (as LU factorization for solving linear systems and QR fac-
torization for solving least squares problems) are known to be very robust
and they are used on problems that are difficult to solve by iterative meth-
ods.

One notable previous theoretical result on communication complexity
is a result derived by Hong and Kung [10] providing lower bounds on the
volume of communication of dense matrix multiplication for sequential ma-
chines. These bounds are extended to dense parallel matrix multiplication
in [11] (with a different approach used for the proofs). Recently we have
shown in [12] that these bounds hold for LU and QR factorizations (un-
der certain assumptions) and that they can be used to also identify lower
bounds on the number of messages. General proofs that hold for almost
all direct dense linear algebra are given in [13]. Consider a matrix of size
m × n and a direct dense linear algebra algorithm as LU, QR, or rank re-
vealing QR factorization. On a sequential machine with fast memory of size
M , a lower bound on the number of words and on the number of messages
communicated between fast and slow memory during the considered direct

3 Lower bounds on communication for dense linear algebra 7

linear algebra method is:

words ≥ Ω

(
mn2

√
M

)
, # messages ≥ Ω

(
mn2

M3/2

)
. (1)

where #words moved represents the volume of communication and
#messages send represents the number of messages sent by at least one
processor. The bounds can be obtained by using the Loomis-Whitney in-
equality, as proven in [11, 13], which allows to bound the number of flops
performed given an amount of data available in a memory of size M . Equa-
tion 1 can be used to derive bounds for a parallel program performing n3

operations and running on P processors. Given a dense matrix of size m-
by-n, and assuming that at least one processor does mn2/P floating point
operations, and that the size of the memory of each processor is on the order
of mn/P , the lower bounds become:

words ≥ Ω

(√
mn3

P

)
, # messages ≥ Ω

(√
nP

m

)
. (2)

These lower bounds allow us to identify that most of the existing algo-
rithms as implemented in well-known numerical libraries as ScaLAPACK
and LAPACK do not minimize communication.

New communication avoiding algorithms have been introduced in the re-
cent years that attain the lower bounds on communication (sometimes only
up to polylogarithmic factors) and are as stable as classic algorithms. The
communication avoiding LU factorization is presented in [14, 15] while the
communication avoiding QR factorization is introduced in [12, 16] and fur-
ther improved in [17]. A communication avoiding rank revealing QR factor-
ization is presented in [18] while an LU factorization more stable than Gaus-
sian elimination with partial pivoting is presented in [19]. These algorithms
have significantly lower latency cost in the parallel case, and significantly
lower latency and bandwidth costs in the sequential case, than conventional
algorithms as for example implemented in LAPACK and ScaLAPACK. We
note that although these new algorithms perform slightly more floating point
operations than LAPACK and ScaLAPACK, they have the same highest or-
der terms in their floating point operation counts (except for rank revealing
QR). In practice, when used with advanced scheduling techniques, the new
algorithms lead to important speedups over existing algorithms [20, 21].

Let’s now give an example of classic algorithms that do not attain the
lower bounds on communication. Several direct methods of factorization re-
quire some form of pivoting to avoid division by small numbers, or preserve

3 Lower bounds on communication for dense linear algebra 8

stability. The classic pivoting schemes, as partial pivoting in LU factoriza-
tion or column pivoting in rank revealing QR, imply that the subsequent
algorithm communicates asymptotically more than the lower bounds re-
quire. For a machine with one level of parallelism, the number of messages
exchanged is on the order of n, where n is the number of columns of the
matrix, while the lower bound on number of messages in equation 2 is on the
order of

√
P (for square matrices), where P is the number of processors used

in the algorithm. Hence in this case minimizing communication requires to
invent novel pivoting schemes. There are examples in the literature of piv-
oting schemes, as for example proposed by Barron and Swinnerton-Dyer
in their notable work [22] that minimize communication on sequential ma-
chines. At that time the matrices were of dimension 100-by-100 and the
pivoting scheme was stable. But as shown in [15], this method can become
unstable for sizes of the matrices we encounter nowadays.

The solution that we have developed for the LU factorization is the
following. A typical factorization algorithm progressively decomposes the
input matrix A into a lower triangular matrix L and an upper triangular
matrix U , by traversing blocks of columns (referred to as panels) of the
input matrix. At each step of the factorization, a panel is factored, and
then the trailing matrix is updated. The classic LU factorization based on
partial pivoting (GEPP) factors the panel column by column, and for each
column the element of maximum magnitude is permuted to the diagonal
position to ensure stability of this method, and this leads to a number of
messages exchanged at least equal to n, the number of columns of the input
matrix. CALU is based on a novel pivoting strategy, tournament pivoting,
which performs the panel factorization as following. A preprocessing step
plays a tournament to find at low communication cost b pivots that can
be used to factor the entire panel, where b is the panel width. Then the
b rows are permuted into the first positions and the LU factorization with
no pivoting of the entire panel is performed. The preprocessing step is
performed as a reduction operation where the reduction operator is the
selection of b pivot rows using GEPP at each node of the reduction tree. This
strategy has the property that the communication for computing the panel
factorization does not depend on the number of columns, but depends only
on the number of processors. The overall number of messages of CALU is√
Plog(P), hence this algorithm attains the lower bounds on communication

modulo a logarithmic factor. In practice, the size of the matrix n is larger
by order of magnitudes than the number of processors P .

3 Lower bounds on communication for dense linear algebra 9

References

[1] M. Snir, W. Gropp, and P. Kogge, “Exascale research: Preparing
for the post–moore era,” tech. rep., University of Illinois at Urbana-
Champaign, https://www.ideals.illinois.edu/handle/2142/25468, 2011.

[2] L. Grigori, R. Stompor, and M. Szydlarski, “A parallel two-level precon-
ditioner for cosmic microwave background map-making,” Proceedings
of the ACM/IEEE Supercomputing SC12 Conference, 2012.

[3] L. Grigori, M. Jacquelin, and A. Khabou, “Performance predictions of
multilevel communication optimal lu and qr factorizations on hierar-
chical platforms,” in In Proceedings of International Supercomputing
Conference, LNCS, 2014.

[4] S. L. Graham, M. Snir, and C. A. Patterson, eds., Getting Up To Speed:
The Future Of Supercomputing. Washington, D.C., USA: National
Academies Press, 2005.

[5] W. Wulf and S. McKee, “Hitting the wall: Implications of the obvious,”
ACM SIGArch Computer Architecture News, vol. 23, no. 1, pp. 20–24,
1995.

[6] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran, “Cache-
oblivious algorithms,” In FOCS ’99: Proceedings of the 40th Annual
Symposium on Foundations of Computer Science, 1999. IEEE Com-
puter Society.

[7] S. Toledo, “Locality of reference in LU Decomposition with partial piv-
oting,” SIAM J. Matrix Anal. Appl., vol. 18, no. 4, 1997.

[8] F. Gustavson, “Recursion Leads to Automatic Variable Blocking for
Dense Linear-Algebra Algorithms,” IBM Journal of Research and
Development, vol. 41, no. 6, pp. 737–755, 1997.

[9] E. Elmroth, F. Gustavson, I. Jonsson, and B. Kagstrom, “Recursive
blocked algorithms and hybrid data structures for dense matrix library
software,” SIAM Review, vol. 46, no. 1, pp. 3–45, 2004.

[10] J.-W. Hong and H. T. Kung, “I/O complexity: The Red-Blue Pebble
Game,” in STOC ’81: Proceedings of the Thirteenth Annual ACM
Symposium on Theory of Computing, (New York, NY, USA), pp. 326–
333, ACM, 1981.

3 Lower bounds on communication for dense linear algebra 10

[11] D. Irony, S. Toledo, and A. Tiskin, “Communication lower bounds
for distributed-memory matrix multiplication,” J. Parallel Distrib.
Comput., vol. 64, no. 9, pp. 1017–1026, 2004.

[12] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou, “Communication-
optimal parallel and sequential QR and LU factorizations,” Tech. Rep.
UCB/EECS-2008-89, UC Berkeley, 2008. LAPACK Working Note 204.

[13] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz, “Minimizing com-
munication in linear algebra,” SIAM J. Matrix Anal. Appl., 2011.

[14] L. Grigori, J. W. Demmel, and H. Xiang, “Communication avoid-
ing Gaussian elimination,” Proceedings of the ACM/IEEE SC08
Conference, 2008.

[15] L. Grigori, J. Demmel, and H. Xiang, “CALU: a communication op-
timal LU factorization algorithm,” SIAM Journal on Matrix Analysis
and Applications, vol. 32, pp. 1317–1350, 2011.

[16] J. W. Demmel, L. Grigori, M. Hoemmen, and J. Langou,
“Communication-optimal parallel and sequential QR and LU factor-
izations,” SIAM Journal on Scientific Computing, no. 1, pp. 206–239,
2012. short version of technical report UCB/EECS-2008-89 from 2008.

[17] G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H. D. Nguyen, and
E. Solomonik, “Reconstructing householder vectors from tall-skinny
qr,” in In Proceedings of IEEE International Parallel and Distributed
Processing Symposium IPDPS, 2014.

[18] J. Demmel, L. Grigori, M. Gu, and H. Xiang, “Communication-avoiding
rank-revealing qr decomposition,” SIAM Journal on Matrix Analysis
and its Applications, 2014. In press.

[19] A. Khabou, J. Demmel, L. Grigori, and M. Gu, “Communication avoid-
ing lu factorization with panel rank revealing pivoting,” SIAM Journal
on Matrix Analysis and Applications, vol. 34, no. 3, pp. 1401–1429,
2013. preliminary version published as INRIA TR 7867.

[20] S. Donfack, L. Grigori, and A. K. Gupta, “Adapting communication-
avoiding LU and QR factorizations to multicore architectures,”
Proceedings of IPDPS, 2010.

3 Lower bounds on communication for dense linear algebra 11

[21] S. Donfack, L. Grigori, W. D. Gropp, and V. Kale, “Hybrid
static/dynamic scheduling for already optimized dense matrix fac-
torization,” IEEE International Parallel and Distributed Processing
Symposium IPDPS, 2012.

[22] D. W. Barron and H. P. F. Swinnerton-Dyer, “Solution of Simultaneous
Linear Equations using a Magnetic-Tape Store,” Computer Journal,
vol. 3, no. 1, pp. 28–33, 1960.

	1 Introduction
	2 The need for avoiding communication
	2.1 Different previous approaches for reducing communication

	3 Lower bounds on communication for dense linear algebra

