Algorithme d'optimisation polynomiale en utilisant de bases de bord

Marta Abril Bucero, Bernard Mourrain Inria Sophia Antipolis

JNCF 2014 - Luminy

3-7 Novembre, 2014

$$f^* = inf_{x \in S}f(x)$$

where $S = \{ \mathbf{x} \in \mathbb{R}^n \mid g_1^0(\mathbf{x}) = \dots = g_{n_1}^0(\mathbf{x}) = 0, g_1^+(\mathbf{x}) \ge 0, \dots, g_{n_2}^+(\mathbf{x}) \ge 0 \}$

and $V_{min} = \{\mathbf{x}^* \in \mathcal{S} \ s.t \ f(x^*) = f^*\}$

3

(日) (四) (日) (日) (日)

$$f^* = inf_{\mathbf{x} \in \mathcal{S}} f(\mathbf{x})$$
 where $f(\mathbf{x}) = \sum f_{lpha} \mathbf{x}^{lpha}$

$$f^* = inf_{\mu} \int_{\mathcal{S}} f(\mathbf{x})\mu(dx) = inf_{\mu} \sum f_{\alpha} \int_{\mathcal{S}} \mathbf{x}^{\alpha}\mu(dx)$$
 where $\int_{\mathcal{S}} \mathbf{x}^{\alpha}\mu(dx) = \mathbf{y}_{\alpha}$

 $f^* = inf f^T y$ s.t $y_0 = 1$, y has a representating measure on S

æ

イロト イポト イヨト イヨト

Lasserre Full moment relaxation

$$f_{G}^{\mu} = inf \ \Lambda(f) \text{ s.t } \Lambda(1) = 1, \ \Lambda(p) \ge 0 \ \forall p \in \overbrace{\sum_{g \in G^{0}} g \ h + \sum_{g' \in \prod G^{+}} g' \ h' \ with \ h \in \mathbb{R}[\mathbf{x}], \ h' \ is \ sos}^{\mathcal{P}_{G}}.$$

Image: Image:

æ

3 K K 3 K

Lasserre Full moment relaxation

$$f_{G}^{\mu} = inf \ \Lambda(f) \text{ s.t } \Lambda(1) = 1, \ \Lambda(p) \ge 0 \ \forall p \in \overbrace{\substack{g \in G^{0} \\ g \in G^{0}}}^{\mathcal{P}_{G}} g \ h + \sum_{\substack{g' \in \prod G^{+} \\ g' \in \prod G^{+}}} g' \ h' \ with \ h \in \mathbb{R}[\mathbf{x}], \ h' \ is \ sos}.$$

IDEA-Truncated convex problems relaxation

$$f_{t,\boldsymbol{G}}^{\mu} = \textit{inf} \ \{\Lambda(f) \ \textit{s.t.} \ \Lambda \in \mathbb{R}[\boldsymbol{x}]_{2t}^{*}, \ \Lambda(1) = 1, \ \Lambda(p) \ge 0, \ \forall p \in \mathcal{P}_{t,\boldsymbol{G}}\}$$

where

$$\mathcal{P}_{t,G} = \left\{ \sum_{i=1}^{n_1} hg_i^0 + \sum_{\nu \in \{0,1\}^m} h'g_1^+(\mathbf{x})^{\nu_1} \cdots g_{n_2}^+(\mathbf{x})^{\nu_{n_2}} | h' \text{ sos degree } t - \left\lceil \frac{\prod g_i^+}{2} \right\rceil, h \in \mathbb{R}[\mathbf{x}]_{2t-deg(g_i^0)} \right\}$$

M. Abril-Bucero, B. Mourrain (Inria)

3

ヨト イヨト

Lasserre Full moment relaxation

$$f_{G}^{\mu} = inf \ \Lambda(f) \text{ s.t } \Lambda(1) = 1, \ \Lambda(p) \ge 0 \ \forall p \in \overbrace{\substack{g \in G^{0} \\ g \in G^{0}}}^{\mathcal{P}_{G}} g \ h + \sum_{\substack{g' \in \prod G^{+} \\ g' \in \prod G^{+}}} g' \ h' \ with \ h \in \mathbb{R}[\mathbf{x}], \ h' \ is \ sos}.$$

IDEA-Truncated convex problems relaxation

$$f_{t,\boldsymbol{G}}^{\mu} = inf \ \{\Lambda(f) \ s.t. \ \Lambda \in \mathbb{R}[\boldsymbol{x}]_{2t}^{*}, \ \Lambda(1) = 1, \ \Lambda(p) \ge 0, \ \forall p \in \mathcal{P}_{t,\boldsymbol{G}}\}$$

where

$$\mathcal{P}_{t,G} = \left\{ \sum_{i=1}^{n_1} hg_i^0 + \sum_{\nu \in \{0,1\}^m} h'g_1^+(\mathbf{x})^{\nu_1} \cdots g_{n_2}^+(\mathbf{x})^{\nu_{n_2}} | h' \text{ sos degree } t - \left\lceil \frac{\prod g_i^+}{2} \right\rceil, h \in \mathbb{R}[\mathbf{x}]_{2t-deg(g_i^0)} \right\}$$

$$\cdots f_{t,G}^{\mu} \leq f_{t+1,G}^{\mu} \leq \cdots \leq f^*$$

3

ヨト イヨト

Issues of Lasserre relaxation:

The size and number of parameters in each problem become unhandled when t grows.

Using border basis

- We reduce the size and number of parameters of each problem.
- Sometimes we find the minimum at a lower degree.

We take *B* a monomial set **connected to 1** and we define $B^+ = B \cup x_1 B \cup \cdots \cup x_n B$ and $\partial B = B^+ \setminus B$.

Definition

 $F \subset \mathbb{R}[\mathbf{x}]$ is a **border basis** for B in degree $t \in \mathbb{N}$, if

- $\forall m \in \partial B \cap \mathbb{R}[\mathbf{x}]_t, \exists f \in F_t \text{ s.t. } f = m + \sum_{b \in B_t} c_i b$
- $\mathbb{R}[\mathbf{x}]_t = \langle B \rangle_t \oplus \langle F | t \rangle$

Definition

We define $\pi_{B_t,F_{2t}}$ the **projection** of $\mathbb{R}[\mathbf{x}]_{2t}$ on $\langle B_t \rangle$ along $\langle F | 2t \rangle$.

э

• • = • • = •

 $B = \{1, x, y, xy\},\$ $B^{+} = B \cup xB \cup yB = \{1, x, y, xy, x^{2}, x^{2}y, xy^{2}, y^{2}\},\$ $\partial B = B^{+} \setminus B = \{x^{2}, x^{2}y, xy^{2}, y^{2}\},\$ $F_{2} = \{x^{2} - 1, y^{2} - 1\}$

< □ > < □ > < □ > < □ > < □ > < □ >

э

Border basis hierarchy

•
$$G_t^0 = \{ p - \pi_{B_t, F_{2t}}(p), p \in B_t \cdot B_t \}$$

•
$$G_t^+ = \pi_{B_t,F_{2t}}(\mathbf{g}^+).$$

Proposition

$$\cdots \leq f^{\mu}_{B_{\mathbf{t}},G_{\mathbf{t}}} \leq f^{\mu}_{B_{\mathbf{t}+1},G_{\mathbf{t}+1}} \leq \cdots \leq f^*$$

M. Abril-Bucero, B. Mourrain (Inria)

э

Definition

• Let $E \subset \mathbb{R}[x]$ be a vector space and let $\Lambda \in \langle E \cdot E \rangle^*$ be a linear form,

$$\begin{array}{cccc} H^{E}_{\Lambda}: E & \longrightarrow & E^{*} \\ p & \longmapsto & p \cdot \Lambda = \Lambda(pq) \; \forall q \in E \end{array}$$

is a truncated Hankel operator.

• ker
$$H^{E}_{\Lambda} = \{ p \in E \mid p \cdot \Lambda = 0, i.e, \Lambda(pq) = 0 \forall q \in E \}$$

• The matrix of this operator H^{E}_{Λ} is the **Moment Matrix**: $[H^{\mathsf{E}}_{\Lambda}] = (\Lambda(\mathbf{x}^{\alpha+\beta}))_{\mathbf{x}^{\alpha}\in\mathsf{E},\mathbf{x}^{\beta}\in\mathsf{E}}$

Definition

• Let $E \subset \mathbb{R}[x]$ be a vector space and let $\Lambda \in \langle E \cdot E \rangle^*$ be a linear form,

$$\begin{array}{cccc} H^{E}_{\Lambda}: E & \longrightarrow & E^{*} \\ p & \longmapsto & p \cdot \Lambda = \Lambda(pq) \; \forall q \in E \end{array}$$

is a truncated Hankel operator.

• ker
$$H^{E}_{\Lambda} = \{ p \in E \mid p \cdot \Lambda = 0, i.e, \Lambda(pq) = 0 \ \forall q \in E \}$$

• The matrix of this operator H^{E}_{Λ} is the **Moment Matrix**: $[H^{\mathsf{E}}_{\Lambda}] = (\Lambda(\mathbf{x}^{\alpha+\beta}))_{\mathbf{x}^{\alpha}\in\mathsf{E},\mathbf{x}^{\beta}\in\mathsf{E}}$

$$\mathcal{L}_{E,G} = \{ \Lambda \in \langle E \cdot E \rangle^*, \ \Lambda(1) = 1, \ \Lambda(p) \ge 0, \ \forall p \in \mathcal{P}_{E,G} \}$$

Definition

 $\Lambda^* \in \mathcal{L}_{E,G} \text{ is optimal linear form for } f \text{ if rank } H^{E}_{\Lambda^*} = \max_{\Lambda \in \mathcal{L}_{E,G}, \Lambda(f) = f^{\mu}_{E,G}} \text{ rank } H^{E}_{\Lambda}.$

Theorem

Let our polynomial f and the set S and let $G \subset \mathbb{R}[x]$ be a set of constraints defined as our border basis relaxation. There exist $t_1 \in \mathbb{N}$ such that $\forall t \geq t_1$

•
$$f_{t,G}^{\mu} = f^*$$
 is reached for some $\Lambda^* \in \mathcal{L}_{t,G}$

•
$$\forall \Lambda^* \in \mathcal{L}_{t,G}$$
 optimal for f , $\Lambda^*(f) = f^*$ and ker $H^t_{\Lambda^*} = I_{min}$.

How to find $\Lambda^* \in \mathcal{L}_{E,G}$ optimal linear form for f?

æ

イロト イ団ト イヨト イヨト

Input: $f \in \mathbb{R}[\mathbf{x}]$, $B_t = (\mathbf{x}^{\alpha})_{\alpha \in A}$ a monomial set containing 1 with $f \in \langle B_t \cdot B_t \rangle$, $G \subset \mathbb{R}[\mathbf{x}]$.

• SDP problem: $\operatorname{argmin}_{\Lambda} \Lambda(f)$ s.t.

Output: the minimum $f_{t,G}^{\mu}$ of f and $\Lambda^* \in \langle B_t \cdot B_t \rangle^*$.

Image Tools for solving this SemiDefinite Programing problem: SDPA, MOSEK,...

Minimize $x^2 + 3$ s.t. $g = x^4 - x^3 - x + 1 = (x - 1)^2(x^2 + x + 1) = 0$.

M. Abril-Bucero, B. Mourrain (Inria)

3

イロト イ理ト イヨト イヨト

Minimize $x^2 + 3$ s.t. $g = x^4 - x^3 - x + 1 = (x - 1)^2(x^2 + x + 1) = 0$.

 $F_3 = \{x^4 - x^3 - x + 1\}, \ B_3 = \{1, x, x^2, x^3\}, \ G_3^0 = \{\underline{x^4} - x^3 - x + 1, \underline{x^5} - x^3 - x^2 + 1, \underline{x^6} - 2x^3 + 1\}$

3

イロト イ理ト イヨト イヨト

Minimize
$$x^2 + 3$$
 s.t. $g = x^4 - x^3 - x + 1 = (x - 1)^2(x^2 + x + 1) = 0$.

$$F_{3} = \{x^{4} - x^{3} - x + 1\}, \ B_{3} = \{1, x, x^{2}, x^{3}\}, \ G_{3}^{0} = \{\underline{x^{4}} - x^{3} - x + 1, \underline{x^{5}} - x^{3} - x^{2} + 1, \underline{x^{6}} - 2x^{3} + 1\}$$

$$\begin{aligned} \text{Minimize } \Lambda(x^2 + 3) &= \Lambda(x^2) + 3 \\ \text{with } \Lambda \text{ s.t.} \\ \Lambda(1) &= 1, \\ \Lambda(x^4) &= \Lambda(x^3) + \Lambda(x) - \Lambda(1), \\ \Lambda(x^5) &= \Lambda(x^3) + \Lambda(x^2) - \Lambda(1), \\ \Lambda(x^6) &= 2 \Lambda(x^3) - \Lambda(1) \\ \text{and} \\ H^3_{\Lambda} &:= \begin{pmatrix} 1 & a & b & c \\ a & b & c & c + a - 1 \\ b & c & c + a - 1 & c + b - 1 \\ c & c + a - 1 & c + b - 1 & 2 c - 1 \end{pmatrix} \succcurlyeq 0 \\ \text{where } a &= \Lambda(x), \ b &= \Lambda(x^2), \ c &= \Lambda(x^3). \end{aligned}$$

3

イロト イヨト イヨト イヨト

Minimize
$$x^2 + 3$$
 s.t. $g = x^4 - x^3 - x + 1 = (x - 1)^2(x^2 + x + 1) = 0$.

$$F_{3} = \{x^{4} - x^{3} - x + 1\}, \ B_{3} = \{1, x, x^{2}, x^{3}\}, \ G_{3}^{0} = \{\underline{x^{4}} - x^{3} - x + 1, \underline{x^{5}} - x^{3} - x^{2} + 1, \underline{x^{6}} - 2x^{3} + 1\}$$

$$\begin{array}{l} \text{Minimize } \Lambda(x^2 + 3) = \Lambda(x^2) + 3 \\ \text{with } \Lambda \text{ s.t.} \\ \Lambda(1) = 1, \\ \Lambda(x^4) = \Lambda(x^3) + \Lambda(x) - \Lambda(1), \\ \Lambda(x^5) = \Lambda(x^3) + \Lambda(x^2) - \Lambda(1), \\ \Lambda(x^6) = 2 \Lambda(x^3) - \Lambda(1) \\ \text{and} \\ H^3_{\Lambda} := \begin{pmatrix} 1 & a & b & c \\ a & b & c & c + a - 1 \\ b & c & c + a - 1 \\ c & c + a - 1 & c + b - 1 \\ c & c + a - 1 & c + b - 1 \\ c & c + a - 1 & c + b - 1 \end{pmatrix} \succcurlyeq 0 \\ \text{where } a = \Lambda(x), \ b = \Lambda(x^2), \ c = \Lambda(x^3). \\ \begin{array}{l} \text{Solution: } \Lambda^*(1) = 1, \ \Lambda^*(x) = 1, \ \Lambda^*(x^2) = 1, \ \Lambda^*(x^3) = 1 \\ \Lambda(x^2 + 3) = \Lambda(x^2) + 3 = 4. \\ \text{ker } H_{\Lambda^*} = \langle x - 1, x^2 - x, x^3 - x^2 \rangle. \end{array}$$

M. Abril-Bucero, B. Mourrain (Inria)

13 / 28

3

How to detect when the minimum is reached? ($\Lambda^*(f) = f^*$)

(Curto-Fialkov 96) If $H^E_{\Lambda} \succcurlyeq 0$ and rank $H^E_{\Lambda} = r$ then

$$\Lambda = \sum_{i=1}^{r} \omega_i \mathbf{1}_{\xi_i}, \ \xi_i \in V(\textit{ker } H^{\mathsf{E}}_{\Lambda})$$

M. Abril-Bucero, B. Mourrain (Inria)

э

Theorem - Convergence Certification

Let $B \subset E \subset \mathbb{R}[\mathbf{x}]$ be finite dimensional vector spaces connected to 1 with

- $B^+ \subset E$,
- $G^0 \cdot B \subset \langle E \cdot E \rangle$,

•
$$G^+ \cdot B \cdot B \subset \langle E \cdot E \rangle$$

Let
$$\Lambda \in \mathcal{L}_{E,G}$$
 with rank $H^{E}_{\Lambda} =$ rank $H^{B}_{\Lambda} =$ dim B. Then

1
$$\exists \tilde{\Lambda} \in \mathbb{R}[\mathbf{x}]^*$$
 which extends Λ ,
2 $\tilde{\Lambda} = \sum_{i=1}^r \omega_i \mathbf{1}_{\xi_i}$ with $\omega_i > 0, \xi_i \in \mathcal{S}(G$
3 $(kerH^E_{\Lambda}) = I(\xi_1, \dots, \xi_r).$

э

- ∢ ∃ ▶

How to check this flat extension property? Flat extension Algorithm

Input: a vector space *E* connected to 1 and a linear form $\Lambda^* \in \langle E \cdot E \rangle^*$ and the inner product $\langle p, q \rangle_* := \Lambda^*(p q)$.

- **1** Take $B_0 := \{1\}, i = 0;$
- 2 While $B_i^+ \subset E$ or $L_i \neq \{0\}$
 - compute L_i of maximal dim. in B_i^+

$$\langle L_i, B_i \rangle_* = 0 - L_i \cap \ker H_{\Lambda^*}^{B_i^+} = \{0\}.$$

•
$$B_{i+1} = B_i + L_i$$
, $i = i + 1$.

 $If B_i^+ \not\subset E \Rightarrow failed$

else
$$L_i=\{0\}$$
 and $B_i^+=B_i\oplus \ker H_{\Lambda^*}^{B_i^+}\Rightarrow$ success.

Output: failed or success with

• a basis
$$B = \{b_1, \ldots, b_r\} \subset \mathbb{R}[\mathtt{x}];$$

• the relations $x_k b_j - \sum_{i=1}^r \frac{\langle x_k b_j, b_i \rangle_*}{\langle b_i, b_i \rangle_*} b_i$, $j = 1 \dots r \ k = 1 \dots n$.

・ロト ・ 理ト ・ 国ト ・ 国ト …

min $f(x) = (x - 1)^2 \cdot (x - 2)^2 \cdot (x^2 + 1) + (y - 1)^2 \cdot (y^2 + 1)$

M. Abril-Bucero, B. Mourrain (Inria)

(日) (四) (三) (三) (三)

min $f(x) = (x - 1)^2 \cdot (x - 2)^2 \cdot (x^2 + 1) + (y - 1)^2 \cdot (y^2 + 1)$

We compute the optimal linear form (SDP with t=3) and we obtain: $\Lambda^*(1) = 1, \Lambda^*(x) = 1.5, \Lambda^*(y) = 1, \Lambda^*(x^2) = 2.5, \Lambda^*(xy) = 1.5, \Lambda^*(y^2) = 1, \Lambda^*(y^3) = 1, \Lambda^*(xy^2) = 1.5, \Lambda^*(x^2y) = 2.5, \Lambda^*(x^3) = 4.5, \Lambda^*(y^4) = 1, \Lambda^*(xy^3) = 1.5, \Lambda^*(x^2y^2) = 2.5, \Lambda^*(x^3y^1) = 4.5, \Lambda^*(x^4) = 8.5, \dots$

э

イロト イポト イヨト イヨト

min $f(x) = (x - 1)^2 \cdot (x - 2)^2 \cdot (x^2 + 1) + (y - 1)^2 \cdot (y^2 + 1)$

We compute the optimal linear form (SDP with t=3) and we obtain: $\Lambda^*(1) = 1, \Lambda^*(x) = 1.5, \Lambda^*(y) = 1, \Lambda^*(x^2) = 2.5, \Lambda^*(xy) = 1.5, \Lambda^*(y^2) = 1, \Lambda^*(y^3) = 1, \Lambda^*(xy^2) = 1.5, \Lambda^*(x^2y) = 2.5, \Lambda^*(x^3) = 4.5, \Lambda^*(y^4) = 1, \Lambda^*(xy^3) = 1.5, \Lambda^*(x^2y^2) = 2.5, \Lambda^*(x^3y) = 4.5, \Lambda^*(x^4) = 8.5, ...$ \bullet $B_0 = \{1\}, \ \partial B_0 = \{x, y\}, \ B_0^+ = \{1, x, y\}$

$$H_{\Lambda}^{\mathbf{B}^{+}} = \begin{pmatrix} 1 & 1.5 & 1 \\ 1.5 & 2.5 & 1.5 \\ 1 & 1.5 & 1 \end{pmatrix} \longrightarrow H_{\Lambda}^{\{1,x-1.5,y-1\}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0.25 & 0 \\ 0 & 0 & 0 \end{pmatrix} \longrightarrow rank \ H_{\Lambda}^{\mathbf{B}^{+}} = 2,$$

э.

イロト イポト イヨト イヨト

min $f(x) = (x - 1)^2 \cdot (x - 2)^2 \cdot (x^2 + 1) + (y - 1)^2 \cdot (y^2 + 1)$

We compute the optimal linear form (SDP with t=3) and we obtain: $\Lambda^*(1) = 1, \Lambda^*(x) = 1.5, \Lambda^*(y) = 1, \Lambda^*(x^2) = 2.5, \Lambda^*(xy) = 1.5, \Lambda^*(y^2) = 1, \Lambda^*(y^3) = 1, \Lambda^*(xy^2) = 1.5, \Lambda^*(x^2y) = 2.5, \Lambda^*(x^3) = 4.5, \Lambda^*(y^4) = 1, \Lambda^*(xy^3) = 1.5, \Lambda^*(x^2y^2) = 2.5, \Lambda^*(x^3y) = 4.5, \Lambda^*(x^4) = 8.5, \dots$ • $B_0 = \{1\}, \ \partial B_0 = \{x, y\}, \ B_0^+ = \{1, x, y\}$

$$H_{\Lambda}^{\mathbf{B}^{+}} = \begin{pmatrix} 1 & 1.5 & 1 \\ 1.5 & 2.5 & 1.5 \\ 1 & 1.5 & 1 \end{pmatrix} \longrightarrow H_{\Lambda}^{\{1,x-1,5,y-1\}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0.25 & 0 \\ 0 & 0 & 0 \end{pmatrix} \longrightarrow \operatorname{rank} H_{\Lambda}^{\mathbf{B}^{+}} = 2,$$

where $\tilde{B} = \{1, x - 1.5, y - 1, x^2 - 3x + 2, xy - 1.5y - x + 1.5\}$

$$\longrightarrow$$
 rank $H_{\Lambda}^{\boldsymbol{B_1^+}} = 2, L_1 = \{0\},$

э.

イロト 不得下 イヨト イヨト

min $f(x) = (x - 1)^2 \cdot (x - 2)^2 \cdot (x^2 + 1) + (y - 1)^2 \cdot (y^2 + 1)$

We compute the optimal linear form (SDP with t=3) and we obtain: $\Lambda^*(1) = 1, \Lambda^*(x) = 1.5, \Lambda^*(y) = 1, \Lambda^*(x^2) = 2.5, \Lambda^*(xy) = 1.5, \Lambda^*(y^2) = 1, \Lambda^*(y^3) = 1, \Lambda^*(xy^2) = 1.5, \Lambda^*(x^2y) = 2.5, \Lambda^*(x^3) = 4.5, \Lambda^*(y^4) = 1, \Lambda^*(xy^3) = 1.5, \Lambda^*(x^2y^2) = 2.5, \Lambda^*(x^3y) = 4.5, \Lambda^*(x^4) = 8.5, \dots$ • $B_0 = \{1\}, \ \partial B_0 = \{x, y\}, \ B_0^+ = \{1, x, y\}$

$$H_{\Lambda}^{\mathbf{B}^{+}} = \begin{pmatrix} 1 & 1.5 & 1 \\ 1.5 & 2.5 & 1.5 \\ 1 & 1.5 & 1 \end{pmatrix} \longrightarrow H_{\Lambda}^{\{1,x-1,5,y-1\}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0.25 & 0 \\ 0 & 0 & 0 \end{pmatrix} \longrightarrow \operatorname{rank} H_{\Lambda}^{\mathbf{B}^{+}} = 2,$$

where $\tilde{B} = \{1, x - 1.5, y - 1, x^2 - 3x + 2, xy - 1.5y - x + 1.5\}$

э

イロト 不得下 イヨト イヨト

How to compute minimizers points? Minimizer points Algorithm

Multiplication operators: $M_k : a \in \mathcal{A}_{min} \mapsto x_k a \in \mathcal{A}_{min} \ k = 1, \dots, n$ where $\mathcal{A}_{min} = \mathbb{R}[\mathbf{x}]/I_{min}$ and $I_{min} = \mathcal{I}(\xi_1, \dots, \xi_r) = \langle x_k b_j - \sum_{i=1}^r \frac{\Lambda^*(x_k b_j b_i)}{\Lambda^*(b_i b_i)} b_i \rangle_{j=1\dots r, k=1\dots n}$

Input: $B = \{b_1, \dots, b_r\}$ basis of \mathcal{A}_{min} and $x_k b_j \equiv \sum_{i=1}^r \frac{\Lambda^*(x_k b_j b_i)}{\Lambda^*(b_i b_j)} b_i \mod I_{min}$

• Compute the matrices of the operator M_k in the basis $B: [M_k] = (\frac{\Lambda^*(x_k \ b_i \ b_j)}{\Lambda^*(b_i \ b_j)})_{1 \le i,j \le r}$.

- For a generic choice of $l_1, \ldots, l_n \in \mathbb{R}$, compute the eigenvectors $\mathbf{u}_1, \ldots, \mathbf{u}_r$ of $l_1[M_1] + \cdots + l_n[M_n]$.
- Compute $\xi_{i,k} \in \mathbb{R}$ such that $M_k \mathbf{u}_i = \xi_{i,k} \mathbf{u}_i$.

Output: the minimizers $\xi_i = (\xi_{i,1}, \ldots, \xi_{i,n}), i = 1 \ldots r$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Minimizer points Algorithm: Example

$$\begin{split} \mathcal{M}_{x}^{B=\{1,x-1.5\}} &= \begin{pmatrix} 1.5 & 0.25 \\ 1 & 1.5 \end{pmatrix} \longrightarrow \begin{cases} x = 1.5 \cdot 1 + 1 \cdot (x - 1.5) \\ x(x - 1.5) = 0.25 \cdot 1 + 1.5 \cdot (x - 1.5) \end{cases} \\ \mathcal{M}_{y}^{B=\{1,x-1.5\}} &= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \longrightarrow \begin{cases} y = 1 \cdot 1 + 0 \cdot (x - 1.5) \\ y(x - 1.5) = 0 \cdot 1 + 1 \cdot (x - 1.5) \end{cases} \\ \mathcal{M} = \mathcal{M}_{x}^{B} + \mathcal{M}_{y}^{B} = \begin{pmatrix} 2.5 & 0.25 \\ 1 & 1.5 \end{pmatrix} \longrightarrow \lambda_{1} = 2, \lambda_{2} = 3 \end{cases} \\ \mathcal{M} \cdot u_{1} = \lambda_{1} \cdot u_{1} \longrightarrow u_{1}^{T} = (-0.5, 1); \quad \mathcal{M} \cdot u_{2} = \lambda_{2} \cdot u_{2} \longrightarrow u_{2}^{T} = (0.5, 1) \\ \mathcal{M}_{x}^{B} \cdot u_{1}^{T} = x_{1} \cdot u_{1}^{T} \longrightarrow x_{1} = 1; \quad \mathcal{M}_{x}^{B} \cdot u_{2}^{T} = x_{2} \cdot u_{2}^{T} \longrightarrow x_{2} = 2 \\ \mathcal{M}_{y}^{B} \cdot u_{1}^{T} = y_{1} \cdot u_{1}^{T} \longrightarrow y_{1} = 1; \quad \mathcal{M}_{y}^{B} \cdot u_{2}^{T} = y_{2} \cdot u_{2}^{T} \longrightarrow y_{2} = 1 \end{split}$$

The minimizers points are (1, 1) and (2, 1).

æ

イロト イポト イヨト イヨト

Input: A real polynomial function f and a set of constraints $\mathbf{g} \subset \mathbb{R}[\mathbf{x}]$ with V_{min} non-empty finite.

Output: the minimum $f^* = f^*_{G_t, B_t}$, the minimizers $V_{min} = V$, $I_{min} = (K)$.

3

イロト イ理ト イヨト イヨト

$$f(x,y) = 1 + x^{6} - x^{4} - x^{2} + y^{6} - y^{4} - y^{2} - x^{4}y^{2} - x^{2}y^{4} + 3x^{2}y^{2};$$

$$\nabla f = (6x^5 - 4x^3 - 2x - 4x^3y^2 - 2xy^4 + 6xy^2, 6y^5 - 4y^3 - 2y - 4y^3x^2 - 2yx^4 + 6yx^2)$$

Iteration	Degree	Size	Parameters	min $\Lambda(f)$	Flat extension
1	3	10	21(28)	-0.93	failed
2	4	15	21(45)	0	success

-∢∃>

We obtain:

•
$$f^* = 0;$$

• $I_{min} = (x^3 - x, y^3 - y, x^2y^2 - x^2 - y^2 + 1)$
• $B = \{1, x, y, x^2, xy, y^2, x^2y, xy^2\}$
• $V_{min} = \{(1, 1), (1, -1), (-1, 1), (-1, -1), (1, 0), (-1, 0), (0, 1), (0, -1)\}$

Note: Gloptipoly must go to degree t = 7 to find the minimum.

Implementation

- This algorithm is implemented in the package BORDERBASIX of MATHEMAGIX software.
- SDP problems are computed using SDPA and MOSEK software.

Implementation

- This algorithm is implemented in the package BORDERBASIX of MATHEMAGIX software.
- SDP problems are computed using SDPA and MOSEK software.
- Advantages our Algorithm vs Gloptipoly
 - If there are equality constraints the size of the moments matrices and the number of parameters in our method is smaller due to the use of border basis.
 - In the other case the Decomposition Algorithm and Minimizer points algorithm are more efficient and quicker than the reconstruction algorithm of Gloptipoly.

Implementation

- This algorithm is implemented in the package BORDERBASIX of MATHEMAGIX software.
- SDP problems are computed using SDPA and MOSEK software.
- Advantages our Algorithm vs Gloptipoly
 - If there are equality constraints the size of the moments matrices and the number of parameters in our method is smaller due to the use of border basis.
 - In the other case the Decomposition Algorithm and Minimizer points algorithm are more efficient and quicker than the reconstruction algorithm of Gloptipoly.

v	с	d	so	t bbr	° bbr	Pbbr	s bbr	^t bbr+msk	t fmr	° fmr	P fmr	s fmr
2	0	6	8	0.15	4	21	15	0.08	*	119	36	
2	0	6	4	0.17	4	26	15	0.12	*	9	189	55
3	1	6	1	3.78	5	167	56	1.27	9.57	5	286	56
2	0	4	1	0.030	2	8	6	0.023	0.050	2	14	6
2	0	4	1	0.030	2	8	6	0.028	0.050	2	14	6
2	0	6	4	0.432	4	25	15	0.091	*	8	152	45
2	3	2	3	0.045	2	14	6	0.035	0.053	2	14	6
1	2	4	1	0.023	2	4	3	0.022	0.042	2	4	3
2	5	4	1	0.060	2	13	6	0.03	0.077	2	14	6
2	6	4	1	0.20	4	44	15	0.12	0.29	4	44	15
5	11	2	1	7.60	3	461	56	4.45	12.23	3	461	56
6	13	2	1	1.00	2	209	26	0.40	1.29	2	209	26
6	15	2	1	1.01	2	209	26	0.42	1.48	2	209	26
10	11	2	1	12.3	2	714	44	1.83	16 76	2	1000	55
10	25	2	1	28.60	2	1000	66	5.92	43.68	2	1000	66
10	31	2	1	29.70	2	1000	66	12.50	44.29	2	1000	66
13	35	2	1	383.97	2	2379	78	32.41	417.96	2	2379	78
15	16	2	1	674.534	2	3059	120	40.35	780.371	2	3875	136
20	30	2	1	33219.9	2	10625	231	1117.33	35310.7	2	10625	231
24	58	2	1	3929.23	2	3875	136	311.94	>14h	2	20475	325

Experimentations on a 2.4 Ghz Intel core i5 processor based laptop with 3.8 GBytes memory.

M. Abril-Bucero, B. Mourrain (Inria)

3

(日) (四) (日) (日) (日)

Given a tensor $\mathcal{F} = (\mathcal{F}_{i_1, \dots, i_m})_{1 \leq i_1 \leq n_1, \dots, 1 \leq i_m \leq n_m} \in \mathbb{R}^{n_1 \times n_2 \cdots \times n_m}$

æ

イロト イポト イヨト イヨト

Applications: Best 1-rank tensor approximation

Given a tensor
$$\mathcal{F} = (\mathcal{F}_{i_1,...,i_m})_{1 \leq i_1 \leq n_1,...,1 \leq i_m \leq n_m} \in \mathbb{R}^{n_1 \times n_2 \cdots \times n_m}$$

$$\min_{\mathcal{X} \in \mathbb{R}^{n_1 \times n_2 \cdots \times n_m}, rank \mathcal{X} = 1} || \mathcal{F} - \mathcal{X} ||^2$$

æ

- - E > - E >

where
$$F(x^{1},...,x^{m}) = \sum_{1 \le i_{1} \le n_{1},...,1 \le i_{m} \le n_{m}} \mathcal{F}_{i_{1},...,i_{m}} \cdot (x^{1})_{i_{1}} \cdots (x^{m})_{i_{m}}$$

æ

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

< AP

Example Best 1-rank symmetric tensor approximation

 $\mathcal{F} \in S^3(\mathbb{R}^3)$ with entries $\mathcal{F}_{111} = 0.0517, \mathcal{F}_{112} = 0.3579, \mathcal{F}_{113} = 0.5298, \mathcal{F}_{122} = 0.7544, \mathcal{F}_{123} = 0.2156,$ $\mathcal{F}_{133} = 0.3612, \mathcal{F}_{222} = 0.3943, \mathcal{F}_{223} = 0.0146, \mathcal{F}_{233} = 0.6718, \mathcal{F}_{333} = 0.9723.$ $\mathcal{F} \in S^3(\mathbb{R}^3)$ with entries $\mathcal{F}_{111} = 0.0517, \mathcal{F}_{112} = 0.3579, \mathcal{F}_{113} = 0.5298, \mathcal{F}_{122} = 0.7544, \mathcal{F}_{123} = 0.2156,$ $\mathcal{F}_{133} = 0.3612, \mathcal{F}_{222} = 0.3943, \mathcal{F}_{223} = 0.0146, \mathcal{F}_{233} = 0.6718, \mathcal{F}_{333} = 0.9723.$

 $\begin{array}{l} F(x_0,x_1,x_2)=0.0517x_0^3+0.3579x_0^2x1+0.5298x_0^2x_2+0.7544x_0x_1^2+0.2156x_0x_1x_2+\\ 0.3612x_0x_2^2+0.3943x_1^3+0.0146x_1^2x_2+0.6718x_1x_2^2+0.9723x_2^3; \end{array}$

 $\mathcal{F} \in S^3(\mathbb{R}^3)$ with entries $\mathcal{F}_{111} = 0.0517, \mathcal{F}_{112} = 0.3579, \mathcal{F}_{113} = 0.5298, \mathcal{F}_{122} = 0.7544, \mathcal{F}_{123} = 0.2156, \mathcal{F}_{133} = 0.3612, \mathcal{F}_{222} = 0.3943, \mathcal{F}_{223} = 0.0146, \mathcal{F}_{233} = 0.6718, \mathcal{F}_{333} = 0.9723.$

 $\begin{array}{l} F(x_0,x_1,x_2)=0.0517x_0^3+0.3579x_0^2x1+0.5298x_0^2x_2+0.7544x_0x_1^2+0.2156x_0x_1x_2+\\ 0.3612x_0x_2^2+0.3943x_1^3+0.0146x_1^2x_2+0.6718x_1x_2^2+0.9723x_2^3; \end{array}$

 $\max | F(x_0, x_1, x_2) |$ s.t $x_0^2 + x_1^2 + x_2^2 = 1$ $\mathcal{F} \in S^3(\mathbb{R}^3)$ with entries $\mathcal{F}_{111} = 0.0517, \mathcal{F}_{112} = 0.3579, \mathcal{F}_{113} = 0.5298, \mathcal{F}_{122} = 0.7544, \mathcal{F}_{123} = 0.2156,$ $\mathcal{F}_{133} = 0.3612, \mathcal{F}_{222} = 0.3943, \mathcal{F}_{223} = 0.0146, \mathcal{F}_{233} = 0.6718, \mathcal{F}_{333} = 0.9723.$

 $\begin{array}{l} F(x_0,x_1,x_2)=0.0517x_0^3+0.3579x_0^2x1+0.5298x_0^2x_2+0.7544x_0x_1^2+0.2156x_0x_1x_2+\\ 0.3612x_0x_2^2+0.3943x_1^3+0.0146x_1^2x_2+0.6718x_1x_2^2+0.9723x_2^3; \end{array}$

 $\max | F(x_0, x_1, x_2) |$ s.t $x_0^2 + x_1^2 + x_2^2 = 1$

Solution: the rank-1 tensor $\lambda \cdot u^{\otimes 3}$ with $\lambda = 1.093$, u = (-0.203893, -0.248661, -0.946887) $|| \mathcal{F} - \lambda \cdot u^{\otimes 3} ||^2 = 1.515159281$.

イロト イポト イヨト イヨト

Applications: Root system model-Stochastic model

- 14 parameters (only 4 estimated on images).
- 15 statistics (size, shape, ...)

- Objective: study which statistics are important.
- Minimize quadratic problem in 15 variables (statistics) where its sum is equal to 1 and all of them are non-negatives
- Solution: The variables which are zero correspond to statistics which are not important.

THANK YOU FOR YOUR ATTENTION !!!

Ξ.

イロト イヨト イヨト イヨト