An efficient probabilistic algorithm to compute the real dimension of a real algebraic set. JNCF 2014

Ivan Bannwarth ¹ Mohab Safey El Din ¹²

¹Université Pierre et Marie Curie INRIA, POLSYS Team LIP6 - CNRS ²Institut Universitaire de France

4th November 2014

Real dimension

Let S be the semi-algebraic set :

$$S = \{x \in \mathbb{R}^n | f_1(x) = \cdots = f_p(x) = 0, g_1(x) > 0, \dots, g_s(x) > 0\}.$$

with $f_1, \ldots, f_p, g_1, \ldots, g_s$ in $\mathbb{R}[X_1, \ldots, X_n]$

Definition

The real dimension of S is the maximum integer d such that in **generic** coordinates, Interior $(\pi_d(S)) \neq \emptyset$ where $\pi_d : (x_1, \ldots, x_n) \mapsto (x_1, \ldots, x_d)$.

Real dimension

Let S be the semi-algebraic set :

$$S = \{x \in \mathbb{R}^n | f_1(x) = \cdots = f_p(x) = 0, g_1(x) > 0, \dots, g_s(x) > 0\}.$$

with $f_1, \ldots, f_p, g_1, \ldots, g_s$ in $\mathbb{R}[X_1, \ldots, X_n]$

Definition

The real dimension of S is the maximum integer d such that in generic coordinates, Interior $(\pi_d(S)) \neq \emptyset$ where $\pi_d : (x_1, \ldots, x_n) \mapsto (x_1, \ldots, x_d)$.

Real dimension

Let S be the semi-algebraic set :

$$S = \{x \in \mathbb{R}^n | f_1(x) = \cdots = f_p(x) = 0, g_1(x) > 0, \dots, g_s(x) > 0\}.$$

with $f_1, \ldots, f_p, g_1, \ldots, g_s$ in $\mathbb{R}[X_1, \ldots, X_n]$

Definition

The real dimension of S is the maximum integer d such that in generic coordinates, Interior $(\pi_d(S)) \neq \emptyset$ where $\pi_d : (x_1, \ldots, x_n) \mapsto (x_1, \ldots, x_d)$.

• Applications in computational real algebraic geometry.

• Applications in computational real algebraic geometry.

- Computing the set of realizable sign conditions. Barone/Basu 2012
- Computing a bound on the number of connected component of real algebraic sets. Barone/Basu 2013

- Applications in computational real algebraic geometry.
- Applications in mechanics.

- Applications in computational real algebraic geometry.
- Applications in mechanics.

Overconstraint analysis on spatial 6-link loops, Jin/Yang,2002

Let $S = \{x \in \mathbb{R}^n | f_1(x) = \cdots = f_p(x) = 0, g_1(x) > 0, \dots, g_s(x) > 0\}$ with maximum degree D and real dimension d.

Let $S = \{x \in \mathbb{R}^n | f_1(x) = \cdots = f_p(x) = 0, g_1(x) > 0, \dots, g_s(x) > 0\}$ with maximum degree D and real dimension d.

• Collins's Cylindrical Algebraic Decomposition algorithm

 $[\sim 70's]$

 $\rightarrow ((s+1)D)^{2^{O(n)}}$

Let $S = \{x \in \mathbb{R}^n | f_1(x) = \cdots = f_p(x) = 0, g_1(x) > 0, \dots, g_s(x) > 0\}$ with maximum degree D and real dimension d.

• Collins's Cylindrical Algebraic Decomposition algorithm

$$\rightarrow ((s+1)D)^{2^{O(n)}}$$

• Vorobjov, Basu/Pollack/Roy, Koiran's algorithms

$$ightarrow \left((s+1)D
ight)^{\mathbf{O}(d(n-d))}$$

 $[\sim 70's]$

Let $S = \{x \in \mathbb{R}^n | f_1(x) = \cdots = f_p(x) = 0, g_1(x) > 0, \dots, g_s(x) > 0\}$ with maximum degree D and real dimension d.

• Collins's Cylindrical Algebraic Decomposition algorithm

$$\rightarrow ((s+1)D)^{2^{O(n)}}$$

• Vorobjov, Basu/Pollack/Roy, Koiran's algorithms

$$ightarrow \left((s+1)D
ight)^{\mathbf{O}(d(n-d))}$$

• No information on the constant in the exponent.

 $[\sim 70's]$

Let $S = \{x \in \mathbb{R}^n | f_1(x) = \cdots = f_p(x) = 0, g_1(x) > 0, \dots, g_s(x) > 0\}$ with maximum degree D and real dimension d.

• Collins's Cylindrical Algebraic Decomposition algorithm

$$ightarrow ((s+1)D)^{2^{O(n)}}$$

• Vorobjov, Basu/Pollack/Roy, Koiran's algorithms

$$ightarrow \left((s+1)D
ight)^{\mathbf{O}(d(n-d))}$$

- No information on the constant in the exponent.
- There is no efficient implementation today.

 $[\sim 70's]$

Let $S = \{x \in \mathbb{R}^n | f_1(x) = \cdots = f_p(x) = 0, g_1(x) > 0, \dots, g_s(x) > 0\}$ with maximum degree D and real dimension d.

• Collins's Cylindrical Algebraic Decomposition algorithm

$$ightarrow \left((s+1)D
ight)^{2^{O(n)}}$$

■ **Best implementation** but limited (*n* ≤ 3 for non-trivial examples).

Vorobjov, Basu/Pollack/Roy, Koiran's algorithms

$$ightarrow ((s+1)D)^{\mathbf{O}(d(n-d))}$$

- No information on the constant in the exponent.
- There is no efficient implementation today.

 $[\sim 70's]$

Contribution

• New algorithm for hypersurfaces $V_{\mathbb{R}}(f)$ (defined by f = 0)

General Observation

In the real case,

$$f_1(x) = \cdots = f_p(x) = 0 \iff f_1^2(x) + \cdots + f_p^2(x) = 0$$

Contribution

- New algorithm for hypersurfaces $V_{\mathbb{R}}(f)$ (defined by f = 0)
- Best known complexity class :

$$\widetilde{O}\left(D^{\mathbf{3d(n-d)}+6n+3}\right)$$

Input :

- f : a polynomial of degree D
- d: the real dimension of $V_{\mathbb{R}}(f)$.

Contribution

- New algorithm for hypersurfaces $V_{\mathbb{R}}(f)$ (defined by f = 0)
- Best known complexity class :

$$\widetilde{O}\left(D^{\mathbf{3d}(\mathbf{n}-\mathbf{d})+6n+3}
ight)$$

Probabilistic algorithm

Probabilistic subroutines

- \rightarrow Generic change of variables
- \rightarrow One point per connected components and test of emptiness.

Contribution

- **(**) New algorithm for hypersurfaces $V_{\mathbb{R}}(f)$ (defined by f = 0)
- Best known complexity class :

$$\widetilde{O}\left(D^{\mathbf{3d}(\mathbf{n}-\mathbf{d})+6n+3}
ight)$$

- Probabilistic algorithm
- Efficient implementation

- Checking procedures
- Grobner basis instead of geometric resolution
- Example reached : n = 6, D = 8, 130 sec.

$$\exists Z \in \mathbb{R}, X^2 + Y^2 + Z^2 - 1 = 0$$

• Compute Φ quantifier free formula defining $\pi_i(S)$. $X^2 + Y^2 - 1 \le 0$

$$\exists Z \in \mathbb{R}, X^2 + Y^2 + Z^2 - 1 = 0$$

• Compute Φ quantifier free formula defining $\pi_i(S)$. $X^2 + Y^2 - 1 \le 0$

• Compute $\tilde{\Phi}$ with strict inequalities defining an open dense semi-algebraic subset of $\pi_i(S)$.

$$\exists Z \in \mathbb{R}, X^2 + Y^2 + Z^2 - 1 = 0$$

- Compute Φ quantifier free formula defining $\pi_i(S)$. $X^2 + Y^2 - 1 \le 0$
- Compute $\tilde{\Phi}$ with strict inequalities defining an open dense semi-algebraic subset of $\pi_i(S)$.
- Test if this set is empty.

$$\exists Z \in \mathbb{R}, X^2 + Y^2 + Z^2 - 1 = 0$$

- Compute Φ quantifier free formula defining $\pi_i(S)$. $X^2 + Y^2 - 1 \le 0$
- Some compute $\tilde{\Phi}$ with strict inequalities defining an open dense semi-algebraic subset of $\pi_i(S)$.

Test if this set is empty.

New appoach : Variant of QE

• Compute Boundary $(\pi_i(S))$.

 \rightarrow Hypotheses : the algebraic variety assoc. to the polynomial equations is smooth and equidimensional, the projection of S is proper.

(Hong/Safey 12)

$$\exists Z \in \mathbb{R}, X^2 + Y^2 + Z^2 - 1 = 0$$

- Compute Φ quantifier free formula defining $\pi_i(S)$. $X^2 + Y^2 - 1 \le 0$
- **2** Compute $\tilde{\Phi}$ with strict inequalities defining an open dense semi-algebraic subset of $\pi_i(S)$.

Test if this set is empty.

New appoach : Variant of QE

(Hong/Safey 12)

- Compute Boundary($\pi_i(S)$).
- Occupate one point per connected component.

 \rightarrow Hypotheses : the algebraic variety assoc. to the polynomial equations is smooth and equidimensional, the projection of S is proper.

$$\exists Z \in \mathbb{R}, X^2 + Y^2 + Z^2 - 1 = 0$$

- Compute Φ quantifier free formula defining $\pi_i(S)$. $X^2 + Y^2 - 1 \le 0$
- **2** Compute $\tilde{\Phi}$ with strict inequalities defining an open dense semi-algebraic subset of $\pi_i(S)$.

Test if this set is empty.

New appoach : Variant of QE

(Hong/Safey 12)

- Compute Boundary $(\pi_i(S))$.
- Compute one point per connected component.Lift the fibers.

 \rightarrow Hypotheses : the algebraic variety assoc. to the polynomial equations is smooth and equidimensional, the projection of S is proper.

$$\exists Z \in \mathbb{R}, X^2 + Y^2 + Z^2 - 1 = 0$$

- Compute Φ quantifier free formula defining $\pi_i(S)$. $X^2 + Y^2 - 1 \le 0$
- **2** Compute $\tilde{\Phi}$ with strict inequalities defining an open dense semi-algebraic subset of $\pi_i(S)$.

Test if this set is empty.

New appoach : Variant of QE

(Hong/Safey 12)

- Compute Boundary $(\pi_i(S))$.
 - Projection of Polar Varieties.
- Occupate one point per connected component.
- Ift the fibers.

 \rightarrow Hypotheses : the algebraic variety assoc. to the polynomial equations is smooth and equidimensional, the projection of S is proper.

$$\exists Z \in \mathbb{R}, X^2 + Y^2 + Z^2 - 1 = 0$$

- Compute Φ quantifier free formula defining $\pi_i(S)$. $X^2 + Y^2 - 1 \le 0$
- **2** Compute $\tilde{\Phi}$ with strict inequalities defining an open dense semi-algebraic subset of $\pi_i(S)$.
- Test if this set is empty.

Our appoach : Variant of QE

- Compute Boundary $(\pi_i(S))$.
 - Deformation + Projection of Polar Varieties.
- Occupate one point per connected component.
- Ift the fibers.

 \rightarrow Hypotheses : the algebraic variety assoc. to the polynomial equations is smooth and equidimensional, the projection of S is proper. Hypersurfaces

Polar Varieties Todd/Severi (~30's), Bank/Giusti/Heintz/Mandel/Mbakop

- $V \subset \mathbb{C}^n$ = smooth hypersurface defined by f = 0
- $\pi_i: (x_1,\ldots,x_n) \mapsto (x_1,\ldots,x_i)$

- $V \subset \mathbb{C}^n$ = smooth hypersurface defined by f = 0
- $\pi_i: (x_1, \ldots, x_n) \mapsto (x_1, \ldots, x_i)$

Polar variety W_i associated to V and π_i

$$W_i = \overline{\{x \in V \mid \pi_i(T_x V) \neq \mathbb{C}^i\}}^{\operatorname{Zar}}$$

where $T_x V$ the tangent space to V at x.

$$W_i = \left\{ x \in \mathbb{C}^n | f(x) = \frac{\partial f}{\partial X_{i+1}}(x) = \dots = \frac{\partial f}{\partial X_n}(x) = 0 \right\}$$

- $V \subset \mathbb{C}^n$ = smooth hypersurface defined by f = 0
- $\pi_i: (x_1,\ldots,x_n) \mapsto (x_1,\ldots,x_i)$

Polar variety W_i associated to V and π_i

$$W_i = \overline{\{x \in V \mid \pi_i(T_x V) \neq \mathbb{C}^i\}}^{\operatorname{Zar}}$$

where $T_x V$ the tangent space to V at x.

$$W_i = \left\{ x \in \mathbb{C}^n | f(x) = \frac{\partial f}{\partial X_{i+1}}(x) = \dots = \frac{\partial f}{\partial X_n}(x) = 0 \right\}$$

Proposition

Hong/Safey (09,12), Safey/Schost (03), Greuet/Safey (13)

If V is compact and smooth, then $\text{Boundary}(\pi_i(V)) \subset \pi_i(W_i)$.

 $V_{\mathbb{R}}(f)$ a real algebraic set defined by f = 0.

 $V_{\mathbb{R}}(f)$ a real algebraic set defined by f = 0. • $V_{\mathbb{R}}(f) = \emptyset \to \dim(V_{\mathbb{R}}(f)) = -1$.

 $V_{\mathbb{R}}(f)$ a real algebraic set defined by f = 0. • $V_{\mathbb{R}}(f) = \emptyset \to \dim(V_{\mathbb{R}}(f)) = -1$.

•
$$\operatorname{Sing}(f) = \left\{ x \in \mathbb{C}^n | f(x) = \frac{\partial f}{\partial X_1}(x) = \dots = \frac{\partial f}{\partial X_n}(x) = 0 \right\}$$

• $\operatorname{Reg}(f) = \mathbb{C}^n - \operatorname{Sing}(f)$

 $V_{\mathbb{R}}(f)$ a real algebraic set defined by f = 0. $V_{\mathbb{R}}(f) = \emptyset \to \dim(V_{\mathbb{R}}(f)) = -1$.

•
$$\operatorname{Sing}(f) = \left\{ x \in \mathbb{C}^n | f(x) = \frac{\partial f}{\partial X_1}(x) = \dots = \frac{\partial f}{\partial X_n}(x) = 0 \right\}$$

• $\operatorname{Reg}(f) = \mathbb{C}^n - \operatorname{Sing}(f)$

 $V_{\mathbb{R}}(f)$ a real algebraic set defined by f = 0. $V_{\mathbb{R}}(f) = \emptyset \to \dim(V_{\mathbb{R}}(f)) = -1$.

• $V_{\mathbb{R}}(f) \subset \operatorname{Sing}(f)$

•
$$\operatorname{Sing}(f) = \left\{ x \in \mathbb{C}^n | f(x) = \frac{\partial f}{\partial X_1}(x) = \dots = \frac{\partial f}{\partial X_n}(x) = 0 \right\}$$

• $\operatorname{Reg}(f) = \mathbb{C}^n - \operatorname{Sing}(f)$

Projection over x :

1. $V_{\mathbb{R}} \subset \text{Sing}(f)$

There is no smooth point

Let x such that $f(x) = f_1(x)^2 + f_2(x)^2 = 0$ then

$$\frac{\partial f}{\partial X_i}(x) = 2f_1(x)\frac{\partial f_1}{\partial X_i}(x) + 2f_2(x)\frac{\partial f_2}{\partial X_i}(x) = 0.$$

Projection over x :

- 1. $V_{\mathbb{R}} \subset \operatorname{Sing}(f)$
- 2. Deformation

Infinitesimal deformation and generic coordinates

- V_{ε} defined by $f \varepsilon = 0$ with ε infinitesimal
 - $V_{arepsilon}$ is smooth
- \bullet Generic coordinates \rightarrow random change of variables

Projection over x :

- 1. $V_{\mathbb{R}} \subset \operatorname{Sing}(f)$
- 2. Deformation

Polar varieties

$$f - \varepsilon = \frac{\partial f}{\partial X_{i+1}} = \dots = \frac{\partial f}{\partial X_n} = 0$$

Projection over x :

- 1. $V_{\mathbb{R}} \subset \operatorname{Sing}(f)$
- 2. Deformation

Polar varieties

$$f - \varepsilon = \frac{\partial f}{\partial X_{i+1}} = \dots = \frac{\partial f}{\partial X_n} = 0$$

Projection over x :

- 1. $V_{\mathbb{R}} \subset \operatorname{Sing}(f)$
- 2. Deformation

Polar varieties

$$f - \varepsilon = \frac{\partial f}{\partial X_{i+1}} = \dots = \frac{\partial f}{\partial X_n} = 0$$

Projection over x :

- 1. $V_{\mathbb{R}} \subset \operatorname{Sing}(f)$
- 2. Deformation

Polar varieties

$$f - \varepsilon = \frac{\partial f}{\partial X_{i+1}} = \dots = \frac{\partial f}{\partial X_n} = 0$$

Projection over x :

- 1. $V_{\mathbb{R}} \subset \operatorname{Sing}(f)$
- 2. Deformation

3. Polar variety

Main geometric results

In generic coordinates,

• $\lim_{\varepsilon \to 0} W_{\varepsilon,i} \cap \mathbb{R}^n$ exists,

Projection over x :

- 1. $V_{\mathbb{R}} \subset \operatorname{Sing}(f)$
- 2. Deformation

- 3. Polar variety
 - 4. Limit

5. Projection

Main geometric results

In generic coordinates,

- $\lim_{\varepsilon \to 0} W_{\varepsilon,i} \cap \mathbb{R}^n$ exists,
- Boundary $(\pi_i(V_{\mathbb{R}})) \subset \pi_i(\lim_{\varepsilon \to 0} W_{\varepsilon,i} \cap \mathbb{R}^n)$

Projection over x :

- 1. $V_{\mathbb{R}} \subset \operatorname{Sing}(f)$
- 2. Deformation

- 3. Polar variety
 - 4. Limit

5. Projection

Main geometric results

In generic coordinates,

- $\lim_{\varepsilon \to 0} W_{\varepsilon,i} \cap \mathbb{R}^n$ exists,
- Boundary $(\pi_i(V_{\mathbb{R}})) \subset \pi_i(\lim_{\varepsilon \to 0} W_{\varepsilon,i} \cap \mathbb{R}^n)$

Projection over x :

- 1. $V_{\mathbb{R}} \subset \operatorname{Sing}(f)$
- 2. Deformation

- 3. Polar variety
 - 4. Limit

- 5. Projection
 - 6. Fibers

Main geometric results

In generic coordinates,

- $\lim_{\varepsilon \to 0} W_{\varepsilon,i} \cap \mathbb{R}^n$ exists,
- Boundary $(\pi_i(V_{\mathbb{R}})) \subset \pi_i(\lim_{\varepsilon \to 0} W_{\varepsilon,i} \cap \mathbb{R}^n)$
- $\operatorname{Codim}(\pi_i(\lim_{\varepsilon \to 0} W_{\varepsilon,i} \cap \mathbb{R}^n)) \ge 1$

 \rightarrow one point per connected components of $\mathbb{R}^i - \pi_i(\lim_{\varepsilon \to 0} W_{\varepsilon,i} \cap \mathbb{R}^n)$.

Projection over x :

- 1. $V_{\mathbb{R}} \subset \operatorname{Sing}(f)$
- 2. Deformation

- 3. Polar variety
 - 4. Limit

6. Fibers

Testing fibers

For each point P in a connected component, test the emptiness of

 $\pi_i^{-1}(P) \cap V_{\mathbb{R}}.$

Main geometric results

In generic coordinates,

- $\lim_{\varepsilon \to 0} W_{\varepsilon,i} \cap \mathbb{R}^n$ exists,
- Boundary $(\pi_i(V_{\mathbb{R}})) \subset \pi_i(\lim_{\varepsilon \to 0} W_{\varepsilon,i} \cap \mathbb{R}^n)$

Main geometric results

In generic coordinates,

- $\lim_{\varepsilon \to 0} W_{\varepsilon,i} \cap \mathbb{R}^n$ exists,
- Boundary $(\pi_i(V_{\mathbb{R}})) \subset \pi_i(\lim_{\varepsilon \to 0} W_{\varepsilon,i} \cap \mathbb{R}^n)$
- $\operatorname{Codim}(\pi_i(\lim_{\varepsilon \to 0} W_{\varepsilon,i} \cap \mathbb{R}^n)) \ge 1$

 \rightarrow one point per connected components of $\mathbb{R}^i - \pi_i(\lim_{\epsilon \to 0} W_{\epsilon,i} \cap \mathbb{R}^n)$.

The interior of the projection is empty so dim $(V_{\mathbb{R}}) < 2$

$$W_{\varepsilon,i} = \left\{ x \in \mathbb{C}^n \mid f(x) - \varepsilon = \frac{\partial f}{\partial X_{i+1}}(x) = \cdots = \frac{\partial f}{\partial X_n}(x) = 0 \right\}$$

•
$$\mathsf{deg}(\mathsf{lim}_{arepsilon o 0} W_{arepsilon,i}) \leq D^{n-i}$$

•
$$\mathsf{deg}(\pi_i(\mathsf{lim}_{arepsilon o 0} W_{arepsilon,i})) \leq D^{n-i}$$

Complexity

• Computing $\pi_i(\lim_{\varepsilon \to 0} W_{\varepsilon,i})$:

Lecerf 01, Schost 03

$$\widetilde{O}\left(D^{(n-i)i+4n+8}\right)$$

• Computing one point per connected component of $\mathbb{R}^{i} - \pi_{i}(\lim_{\varepsilon \to 0} W_{\varepsilon,i})$: Safey/Schost 03

$$\widetilde{O}\left(D^{\mathbf{3}(n-i)i+6n}
ight)$$

• Complexity algorithm :

$$\widetilde{O}\left(D^{\mathbf{3}(n-d)d+6n}\right)$$

Ivan Bannwarth

Computational tools

- Gröbner basis elimination to compute polynomials defining $\pi_i(\lim_{\varepsilon \to 0} W_{\varepsilon,i}) \supset \text{Boundary}(\pi_i(V_{\mathbb{R}})).$
 - FGb library in C, by J-C. Faugère.

- Gröbner basis elimination to compute polynomials defining $\pi_i(\lim_{\varepsilon \to 0} W_{\varepsilon,i}) \supset \text{Boundary}(\pi_i(V_{\mathbb{R}})).$
 - **FGb** library in *C*, by J-C. Faugère.
- Computing **One Point per Connected Components** and testing **emptiness** of a semi-algebraic set.
 - RAG library in Maple, by M. Safey El Din.

• CAD : multithread implementation in Maple.

• CAD : multithread implementation in Maple. ∞ means > 24hours

n	5	degrees	d	CAD	Dim	
4	1	2	3	0.3 sec.	б sec.	
4	2	2,2	2	∞	27 sec.	
4	3	2,1,1	1	∞	58 sec.	
5	1	2	4	3 sec.	7 sec.	
5	2	2,2	3	∞	2324 sec.	
5	3	2,2,1	2	∞	388 sec.	
5	4	2,1,1,1	1	∞	141 sec.	
6	1	2	5	2.2 sec.	9 sec.	
6	2	2,2	4	∞	185 sec.	
6	3	2,1,1	3	∞	1253 sec.	
6	4	2,1,1,1	2	∞	11 hours.	
6	5	2,1,1,1,1	1	∞	325 sec.	

Table : Running time for $V_{\mathbb{R}}(f_1^2 + \cdots + f_s^2)$, random polynomials in *n* variables

- CAD : multithread implementation in Maple. ∞ means > 24hours
- Step 1 : computing π_i(lim_{ε→0} W_{ε,i}), Step 2 : one point per connected components, Step 3 : testing fibers.

n	5	degrees	d	CAD	Dim	
4	1	2	3	0.3 sec.	6 sec.	
4	2	2,2	2	∞	27 sec.	
4	3	2,1,1	1	∞	58 sec.	
5	1	2	4	3 sec.	7 sec.	
5	2	2,2	3	∞	2324 sec.	
5	3	2,2,1	2	∞	388 sec.	
5	4	2,1,1,1	1	∞	141 sec.	
6	1	2	5	2.2 sec.	9 sec.	
6	2	2,2	4	∞	185 sec.	
6	3	2,1,1	3	∞	1253 sec.	
6	4	2,1,1,1	2	∞	11 hours.	
6	5	2,1,1,1,1	1	∞	325 sec.	

Table : Running time for $V_{\mathbb{R}}(f_1^2 + \cdots + f_s^2)$, random polynomials in *n* variables

- CAD : multithread implementation in Maple. ∞ means > 24hours
- Step 1 : computing π_i(lim_{ε→0} W_{ε,i}), Step 2 : one point per connected components, Step 3 : testing fibers.

n	5	degrees	d	CAD	Dim	Step 1	Step 2	Step 3	# fibers
4	1	2	3	0.3 sec.	6 sec.	49%	1%	50%	1
4	2	2,2	2	∞	27 sec.	5%	75%	20%	49
4	3	2,1,1	1	∞	58 sec.	3%	6%	91%	38
5	1	2	4	3 sec.	7 sec.	/	/	/	
5	2	2,2	3	∞	2324 sec.	0%	95%	5%	77
5	3	2,2,1	2	∞	388 sec.	2%	55%	43%	
5	4	2,1,1,1	1	∞	141 sec.	1%	27%	72%	46
6	1	2	5	2.2 sec.	9 sec.	/	/	/	
6	2	2,2	4	∞	185 sec.	0.3%	10.7%	89%	132
6	3	2,1,1	3	∞	1253 sec.	0.3%	95.7%	4%	17
6	4	2,1,1,1	2	∞	11 hours.	0%	99.6%	0.4%	
6	5	2,1,1,1,1	1	∞	325 sec.	1%	21%	78%	25

Table : Running time for $V_{\mathbb{R}}(f_1^2 + \cdots + f_s^2)$, random polynomials in *n* variables

Polynomials naturally sum of square of polynomials

• Input : discriminant of the characteristic polynomial of a linear matrix.

n	k	D	d	CAD	Dim	Step 1	Step 2	Step 3	#fibers
3	2	2	1	0.02 sec.	1.2 sec.	71%	7%	22%	4
3	3	6	1	220 sec.	4 sec.	72%	7%	21%	3
3	4	12	1	∞	248 sec.	1%	0%	99%	2
4	2	2	2	0.06 sec.	2 sec	57%	10%	33%	4
4	3	6	2	∞	16 sec.	5%	46%	49%	77
5	2	2	3	0.08 sec.	2 sec.	53%	10%	37%	4
5	3	6	3	∞	213 sec.	1%	92%	7%	123
6	2	2	4	0.06 sec.	3 sec.	39%	13%	48%	4
6	3	6	4	∞	600 sec.	9%	64%	27%	133
7	2	2	5	0.12 sec.	1.8 sec.	70%	10%	20%	4

Table : Running time for $V_{\mathbb{R}}(f)$. Linear matrix of size k.

Polynomials naturally sum of square of polynomials

• Input : discriminant of the characteristic polynomial of a linear matrix.

n	k	D	d	CAD	Dim	Step 1	Step 2	Step 3	#fibers
3	2	2	1	0.02 sec.	1.2 sec.	71%	7%	22%	4
3	3	6	1	220 sec.	4 sec.	72%	7%	21%	3
3	4	12	1	∞	248 sec.	1%	0%	99%	2
4	2	2	2	0.06 sec.	2 sec	57%	10%	33%	4
4	3	6	2	∞	16 sec.	5%	46%	49%	77
5	2	2	3	0.08 sec.	2 sec.	53%	10%	37%	4
5	3	6	3	∞	213 sec.	1%	92%	7%	123
6	2	2	4	0.06 sec.	3 sec.	39%	13%	48%	4
6	3	6	4	∞	600 sec.	9%	64%	27%	133
7	2	2	5	0.12 sec.	1.8 sec.	70%	10%	20%	4

Table : Running time for $V_{\mathbb{R}}(f)$. Linear matrix of size k.

• Polynomial Voronoi I : n = 6, deg = 8 : dim = 4 with 130 sec.

Everet/Lazard/Lazard/Safey 09

Other examples :

Parillo, PhD these, 2000

Serie I:
$$f_n := (\sum_{i=1}^n x_i^2)^2 - \sum_{i=1}^{n-1} x_i^2 x_{i+1}^2 - x_n^2 x_1^2$$

Serie II: $f_n := \sum_{i=1}^n x_i^6 - 3 \prod_{i=1}^n x_i^2$
Serie III: $f_n := \prod_{i=1}^n x_i^2 + n - 1 - n^{n-2} (\sum_{i=1}^n x_i)^2$

Serie	n	D	d	CAD	Dim	Step 1	Step 2	Step 3	#fibers
	3	4	2	0.9 sec.	1.5 sec.	85%	7%	8%	4
	4	4	3	0.3 sec.	3.4 sec.	62%	1%	37%	1
1	5	4	3	17 sec.	34 sec.	1%	88%	11%	144
	6	4	4	5500 sec.	95 sec.	0.4%	90%	9.6%	256
	7	4	5	∞	300 sec.	0.1%	93%	6.9%	384
II	3	6	1	1.06sec.	3.865 sec.	80%	7%	13%	3
	5	6	4	∞	8.5 hours	0%	100%	0%	163
	3	4	0	1.74 sec.	5.5 sec.	31%	0.7%	68.3%	3
111	4	4	0	40 sec.	68 sec.	4%	0.1%	95.9%	7
	5	4	0	∞	7680 sec.	10%	0%	90%	3

Table : Running time for $V_{\mathbb{R}}(f)$. Linear matrix of size k.

• Generalization to real algebraic and semi-algebraic sets

- Generalization to real algebraic and semi-algebraic sets
- A new variant quantifier elimination

- Generalization to real algebraic and semi-algebraic sets
- A new variant quantifier elimination
- Other invariant (connectivity queries of curves in \mathbb{R}^n, \ldots)

- Generalization to real algebraic and semi-algebraic sets
- A new variant quantifier elimination
- Other invariant (connectivity queries of curves in \mathbb{R}^n, \ldots)

Motivation for connectivity queries of curves in \mathbb{R}^n

• Experimentally : too many fibers

- Generalization to real algebraic and semi-algebraic sets
- A new variant quantifier elimination
- Other invariant (connectivity queries of curves in \mathbb{R}^n, \ldots)

Motivation for connectivity queries of curves in \mathbb{R}^n

- Experimentally : too many fibers
- Goal : only one point per connected components

- Generalization to real algebraic and semi-algebraic sets
- A new variant quantifier elimination
- Other invariant (connectivity queries of curves in \mathbb{R}^n, \ldots)

Motivation for connectivity queries of curves in \mathbb{R}^n

- Experimentally : too many fibers
- Goal : only one point per connected components
- Idea : connectivity queries of curves in \mathbb{R}^n and roadmap Sa

Safey/Schost 2014