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Real dimension

Let S be the semi-algebraic set :
S={xeR"A(x)="--=1f(x)=0,g1(x) >0,...,8(x) > 0}.

with fi, ... o, 81, .., 8 in R[Xq,..., Xp]

Definition

The real dimension of S is the maximum integer d such that in generic
coordinates, Interior(m4(S)) # 0 where g @ (X1,...,%n) = (X1, ..., Xq)-
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@ Applications in computational real algebraic geometry.
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Motivations
@ Applications in computational real algebraic geometry.

o Computing the set of realizable sign conditions. Barone/Basu 2012

@ Computing a bound on the number of connected component of real algebraic
sets. Barone/Basu 2013
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Motivations

Motivations
@ Applications in computational real algebraic geometry.

@ Applications in mechanics.

Overconstraint analysis on spatial 6-link loops, Jin/Yang,2002
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State-of-the-art

Let S={x e R"|fi(x) =--- =fp(x) =0,81(x) >0,...,8(x) > 0} with
maximum degree D and real dimension d.

Ivan Bannwarth Real dimension 4th November 2014 4 /16



State-of-the-art

Let S={x e R"|fi(x) =--- =fp(x) =0,81(x) >0,...,8(x) > 0} with
maximum degree D and real dimension d.
o Collins's Cylindrical Algebraic Decomposition algorithm [~ 70'g]

— ((s + 1)D)**"

Ivan Bannwarth Real dimension 4th November 2014 4 /16



State-of-the-art

Let S={x e R"|fi(x) =--- =fp(x) =0,81(x) >0,...,8(x) > 0} with
maximum degree D and real dimension d.

o Collins's Cylindrical Algebraic Decomposition algorithm [~ 70'g]
— ((s+1)D)*""
@ Vorobjov, Basu/Pollack/Roy, Koiran's algorithms [~ 90's]

— ((s + 1)D)0d(n=d)

Ilvan Bannwarth Real dimension 4th November 2014 4 /16



State-of-the-art

Let S={x e R"|fi(x) =--- =fp(x) =0,81(x) >0,...,8(x) > 0} with
maximum degree D and real dimension d.

o Collins's Cylindrical Algebraic Decomposition algorithm [~ 70'g]
— ((s+1)D)*""
@ Vorobjov, Basu/Pollack/Roy, Koiran's algorithms [~ 90's]

— ((s + 1)D)0d(n=d)

o No information on the constant in the exponent.

Ilvan Bannwarth Real dimension 4th November 2014 4 /16



State-of-the-art

Let S={x e R"|fi(x) =--- =fp(x) =0,81(x) >0,...,8(x) > 0} with
maximum degree D and real dimension d.

o Collins's Cylindrical Algebraic Decomposition algorithm [~ 70'g]

— ((s + 1)D)**"

@ Vorobjov, Basu/Pollack/Roy, Koiran's algorithms [~ 90's]

— ((s + 1)D)0d(n=d)

o No information on the constant in the exponent.
e There is no efficient implementation today.

Ivan Bannwarth Real dimension 4th November 2014 4 /16



State-of-the-art

Let S={x e R"|fi(x) =--- =fp(x) =0,81(x) >0,...,8(x) > 0} with
maximum degree D and real dimension d.

o Collins's Cylindrical Algebraic Decomposition algorithm [~ 70'g]
20(n)

— ((s+1)D)

e Best implementation but limited (n < 3 for non-trivial examples).

@ Vorobjov, Basu/Pollack/Roy, Koiran's algorithms [~ 90's]

— ((s + 1)D)0Otd(n=d))

o No information on the constant in the exponent.
o There is no efficient implementation today.
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Contribution

Contribution

@ New algorithm for hypersurfaces Vg(f) (defined by f = 0)

General Observation
In the real case,
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Contribution

Contribution

@ New algorithm for hypersurfaces Vg(f) (defined by f = 0)
@ Best known complexity class :

0 (D3d(n7d)+6n+3)

o f : a polynomial of degree D
@ d : the real dimension of Vg(f).
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Contribution

Contribution

@ New algorithm for hypersurfaces Vg(f) (defined by f = 0)
@ Best known complexity class :

0 (D3d(n7d)+6n+3)

© Probabilistic algorithm

Probabilistic subroutines

— Generic change of variables
— One point per connected components and test of emptiness.
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Contribution

Contribution

@ New algorithm for hypersurfaces Vg(f) (defined by f = 0)
@ Best known complexity class :

0 (D3d(n7d)+6n+3)

© Probabilistic algorithm
@ Efficient implementation

@ Checking procedures

@ Grobner basis instead of geometric resolution

@ Example reached : n=6, D = 8, 130 sec.
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Previous approach : Quantifier Elimination (QE)

IZeR,X24+Y24+22-1=0

@ Compute ® quantifier free formula defining 7;(S).
X24+Y2-1<0

2

Ilvan Bannwarth Real dimension

4th November 2014

6 /16



Previous approach : Quantifier Elimination (QE)

IZeR,X24+Y24+22-1=0
@ Compute ® quantifier free formula defining 7;(S).
X24+Y2-1<0

Q@ Compute ® with strict inequalities defining an open
dense semi-algebraic subset of 7;(S).

2

Ilvan Bannwarth Real dimension

4th November 2014

6 /16



Previous approach : Quantifier Elimination (QE)

IZeR,X24+Y24+22-1=0

@ Compute ® quantifier free formula defining 7;(S).
X24+Y2-1<0

Q@ Compute ® with strict inequalities defining an open
dense semi-algebraic subset of 7;(S).

© Test if this set is empty.

2

Ilvan Bannwarth Real dimension

4th November 2014

6 /16



Previous approach : Quantifier Elimination (QE)

IZeRX24+Y24+22-1=0

@ Compute  quantifier free formula defining ;(S).
X?2+Y2-1<0
@ Compute ® with strict inequalities defining an open
dense semi-algebraic subset of m;(S).

© Test if this set is empty.

v

New appoach : Variant of QE (Hong/Safey 12)
@ Compute Boundary(m;(5)).

— Hypotheses : the algebraic variety assoc. to the
polynomial equations is smooth and equidimensional, the
projection of S is proper.

2

2

Ivan Bannwarth Real dimension

4th November 2014



Previous approach : Quantifier Elimination (QE)

IZeRX24+Y24+22-1=0

@ Compute  quantifier free formula defining ;(S).
X?2+Y2-1<0
@ Compute ® with strict inequalities defining an open
dense semi-algebraic subset of m;(S).

© Test if this set is empty.

v

New appoach : Variant of QE (Hong/Safey 12)
@ Compute Boundary(m;(5)).

@ Compute one point per connected component.

— Hypotheses : the algebraic variety assoc. to the
polynomial equations is smooth and equidimensional, the
projection of S is proper.

2

2

Ivan Bannwarth Real dimension

4th November 2014



Previous approach : Quantifier Elimination (QE)

IZeRX24+Y24+22-1=0

@ Compute  quantifier free formula defining ;(S).
X?2+Y2-1<0
@ Compute ® with strict inequalities defining an open
dense semi-algebraic subset of m;(S).

© Test if this set is empty.

v

New appoach : Variant of QE (Hong/Safey 12)
@ Compute Boundary(m;(5)).

@ Compute one point per connected component.
@ Lift the fibers.
— Hypotheses : the algebraic variety assoc. to the

polynomial equations is smooth and equidimensional, the
projection of S is proper.

2

2

Ivan Bannwarth Real dimension

4th November 2014



Previous approach : Quantifier Elimination (QE)

IZeRX24+Y24+22-1=0

@ Compute  quantifier free formula defining ;(S).
X?2+Y2-1<0
@ Compute ® with strict inequalities defining an open
dense semi-algebraic subset of m;(S).

© Test if this set is empty.

v

New appoach : Variant of QE (Hong/Safey 12)
@ Compute Boundary(m;(5)).
o Projection of Polar Varieties.
@ Compute one point per connected component.
@ Lift the fibers.

— Hypotheses : the algebraic variety assoc. to the
polynomial equations is smooth and equidimensional, the
projection of S is proper.

2

2

Ivan Bannwarth Real dimension

4th November 2014



Previous approach : Quantifier Elimination (QE)

IZeRX24+Y24+22-1=0

@ Compute  quantifier free formula defining ;(S).
X?2+Y2-1<0
@ Compute ® with strict inequalities defining an open
dense semi-algebraic subset of m;(S).

© Test if this set is empty.

v

Our appoach : Variant of QE

@ Compute Boundary(m;(S)).

o Deformation + Projection of Polar Varieties.

© Compute one point per connected component.
© Lift the fibers.

— Hypotheses :

2

2

projeetion-of-S—is—proper: Hypersurfaces
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Polar Varieties  Todd/Severi (~30s), Bank/Giusti/Heintz/Mandel/Mbakop

@ V C C" = smooth hypersurface defined by f =0

o i (X1, X)) (X1, .0, X)

Polar variety W, associated to V and 7;

W=Tx e VIm(TV) £CT 2

where T,V the tangent space to V at x. /

0 2
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@ V C C" = smooth hypersurface defined by f =0

o i (X1, X)) (X1, .0, X)
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Polar Varieties  Todd/Severi (~30s), Bank/Giusti/Heintz/Mandel/Mbakop

@ V C C" = smooth hypersurface defined by f =0

o i (X1, X)) (X1, .0, X)

Polar variety W, associated to V and 7;

W=Tx e VIm(TV) £CT

where T,V the tangent space to V at x.

W, = {x e C"f(x) = ai—lfﬂ(x) =... = aa)in(x) = O}

Proposition Hong/Safey (09,12), Safey/Schost (03), Greuet/Safey (13)
If V is compact and smooth, then Boundary(m;(V)) C m;(W;).
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Three different cases

V() a real algebraic set defined by f = 0.
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Three different cases

V() a real algebraic set defined by f = 0.

e Sing(f) = {x e C"|f(x) = (5_;1()() =... = ;—)?n(x) = 0}

@ Reg(f) = C" — Sing(f)
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Three different cases

V() a real algebraic set defined by f = 0.

Q@ Vi(f) N Reg(Vr(f))#0
— dim(Vg(f)) =n—1.

e Sing(f) = {x e C"|f(x) = (,;a—);(x) =... = aa;n(x) = }
@ Reg(f) = C" — Sing(f)




Three different cases

V() a real algebraic set defined by f = 0.

Q@ Vi(f)NReg(Vr(f))#0
— dim(Vg(f)) =n—1.

@ Vi(f) C Sing(f)

e Sing(f) = {x e C"|f(x) = (,f—);(x) =... = ;—;n(x) = 0}
@ Reg(f) = C" — Sing(f)




The algorithm on Vg((x* + y? — 1)? + 2?)

Projection over x :

T/OX

1. Vg C Sing(f)

There is no smooth point
Let x such that f(x) = fi(x)? + f2(x)? = 0 then

of o0fy of
33 ) = 26,0052 () + 2(x)55-(x) = 0.
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The algorithm on VR((x* + y? — 1)? + z°)

Projection over x :

1. Vg C Sing(f)

2. Deformation

Infinitesimal deformation and generic coordinates

o V. defined by f — & = 0 with ¢ infinitesimal
e V. is smooth

@ Generic coordinates — random change of variables
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The algorithm on Vg((x* + y? — 1)? + 2?)

Projection over x :

z ff\l
&=
X

1. Vg C Sing(f) 3. Polar variety

2. Deformation

Polar varieties
The i-th polar variety W, ; associated to V. and m; is defined in C" by
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The algorithm on Vg((x* + y? — 1)? + 2?)

Projection over x :

z = z o]
R— IRl —

1. Vg C Sing(f) 3. Polar variety

2. Deformation

Main geometric results B./Safey 2014

In generic coordinates,

@ lim._0 W, ; NR" exists,
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The algorithm on Vg((x* + y? — 1)? + 2?)

Projection over x :

z / z = z
1 &

1. Vg C Sing(f) 3. Polar variety 5. Projection

2. Deformation 4. Limit

Main geometric results B./Safey 2014

In generic coordinates,

@ lim._0 W, ; NR" exists,
e Boundary(mi(Wr)) C mi(lime_o W.; NR")
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The algorithm on Vg((x* + y? — 1)? + 2?)

Projection over x :

z / z ﬁ < z
1 &

1. Vg C Sing(f) 3. Polar variety 5. Projection

2. Deformation 4. Limit 6. Fibers

Main geometric results B./Safey 2014

In generic coordinates,

@ lim._0 W, ; NR" exists,
e Boundary(mi(Wr)) C mi(lime_o W.; NR")
e Codim(m;(limeo W2 ; NR")) > 1
— one point per connected components of R’ — 7;(lim._o W.; NR").
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The algorithm on Vg((x* + y? — 1)? + 2?)

Projection over x :

z = : i
& & g2

1. Vg C Sing(f) 3. Polar variety 5. Projection

2. Deformation 4. Limit 6. Fibers

Testing fibers

For each point P in a connected component, test the emptiness of

7TI_1(P) N Vk.
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The algorithm on VR((x* + y? — 1)? + z°)

Projection over (x,y) :

3. Polar variety
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The algorithm on Vg((x* + y? — 1)? + 2?)

Projection over (x,y) :

y (—
/ X / X
3. Polar variety 4. limit & projection

Main geometric results B./Safey 2014

In generic coordinates,

@ lime_0 W, ;i NR” exists,
e Boundary(m;(V&)) C mi(limemo Wz ; NR")

V.
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The algorithm on Vg((x* + y? — 1)? + 2?)

Projection over (x,y) :

G=2 0
\'/

L L L. L .
3. Polar variety 4. limit & projection 5. Fibers

Main geometric results B./Safey 2014

In generic coordinates,

s

@ lime_0 W, ;i NR” exists,
e Boundary(m;(V&)) C mi(limemo W ; NR")
("] Codim(w,-(lima_)o W57,' ﬂRn)) > 1

— one point per connected components of R’ — 7;(lim._o W, ; NR").

V.
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The algorithm on VR((x* + y? — 1)? + z°)

Projection over (x,y) :

y
d L. .
3. Polar variety 4. limit & projection 5. Fibers
The interior of the projection is empty so dim(Vg) < 2 )
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of of
W F= J f — = = ... = =
.. {X eC"|f(x)—¢ X (x) X (%) O}
(] deg(limEHO Ws,i) < Dr—i (4] deg(ﬂ,-(limEHO Ws,i)) < Dr—i
Complexity
o Computing 7;(lime—o W. ;) : Lecerf 01, Schost 03

o) (D(nfi)i+4n+8>

o Computing one point per connected component of R’ — 7;(lim._,o W, ;) :
Safey/Schost 03

0 <D3(n—i)i+6n)

o Complexity algorithm :
0 <D3(n7d)d+6n>
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Computational tools
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Computational tools

@ Grobner basis elimination to compute polynomials defining
7T,'(|im8_)o Wa,i) D Boundary(ﬂ',-(VR)).
e FGb library in C, by J-C. Faugere.
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Computational tools

@ Grobner basis elimination to compute polynomials defining
7T,'(|im8_,o Wa,i) D Boundary(ﬂ',-(VR)).
e FGb library in C, by J-C. Faugere.

@ Computing One Point per Connected Components and testing
emptiness of a semi-algebraic set.
o RAG library in Maple, by M. Safey El Din.
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Benchmark : random polynomials in n variables

@ CAD : multithread implementation in Maple.
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Benchmark : random polynomials in n variables

@ CAD : multithread implementation in Maple. 0o means > 24hours

n s degrees d CAD Dim

4 1 2 3 | 0.3 sec. 6 sec.
4 2 2,2 2 00 27 sec.
4 3 21,1 1 0 58 sec.
5 1 2 4 3 sec. 7 sec.
5 2 2,2 3 0 2324 sec.
5 3 2,2,1 2 00 388 sec.
5 4 2,11,1 1 0 141 sec.
6 1 2 5 | 2.2 sec. 9 sec.
6 2 2,2 4 00 185 sec.
6 3 2,1,1 3 00 1253 sec.
6 4 21,11 2 00 11 hours.
6 5 21111 1 o9 325 sec.

Table : Running time for VR(fl2 + -4 fs2), random polynomials in n variables
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Benchmark : random polynomials in n variables

@ CAD : multithread implementation in Maple. 0o means > 24hours
@ Step 1 : computing m;(lim._o W, ;), Step 2 : one point per connected
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Benchmark : random polynomials in n variables

@ CAD : multithread implementation in Maple. 0o means > 24hours
@ Step 1 : computing m;(lim._o W, ;), Step 2 : one point per connected
components, Step 3 : testing fibers.

n s degrees d CAD Dim Step1 | Step 2 | Step 3 | # fibers
4 1 2 3 | 0.3 sec. 6 sec. 49% 1% 50% 1
4 2 2,2 2 o) 27 sec. 5% 75% 20% 49
4 3 2,1,1 1 o0 58 sec. 3% 6% 91% 38
5 1 2 4 | 3sec. 7 sec. / / /

5 2 2,2 3 0 2324 sec. 0% 95% 5% 77
5 3 2,2,1 2 00 388 sec. 2% 55% 43%

5 4 2,111 1 o) 141 sec. 1% 27% 72% 46
6 1 2 5 | 2.2 sec. 9 sec. / / /

6 2 2,2 4 00 185 sec. 0.3% 10.7% 89% 132
6 3 2,1,1 3 00 1253 sec. 0.3% | 95.7% 4% 17
6 4 2,111 2 o) 11 hours. 0% 99.6% 0.4%

6 5 21111 1 o) 325 sec. 1% 21% 78% 25

Table : Running time for VR(fl2 + -4 fs2), random polynomials in n variables
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Polynomials naturally sum of square of polynomials

@ Input : discriminant of the characteristic polynomial of a linear matrix.

n k D d CAD Dim Step 1 | Step 2 | Step 3 | #fibers
3 2 2 1|0.02sec. | 1.2sec. 71% 7% 22% 4
3 3 6 1 220 sec. 4 sec. 72% 7% 21% 3
3 4 12 1 oo 248 sec. 1% 0% 99% 2
4 2 2 2| 0.06 sec. 2 sec 57% 10% 33% 4
4 3 6 2 oo 16 sec. 5% 46% 49% 77
5 2 2 3| 0.08sec. 2 sec. 53% 10% 37% 4
5 3 6 3 oo 213 sec. 1% 92% 7% 123
6 2 2 4| 0.06 sec. 3 sec. 39% 13% 48% 4
6 3 6 4 00 600 sec. 9% 64% 27% 133
7 2 2 5| 0.12sec. | 1.8 sec. 70% 10% 20% 4

Table : Running time for Ve(f). Linear matrix of size k.
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Polynomials naturally sum of square of polynomials

@ Input : discriminant of the characteristic polynomial of a linear matrix.

n k D d CAD Dim Step 1 | Step 2 | Step 3 | #fibers
3 2 2 1|0.02sec. | 1.2sec. 71% 7% 22% 4
3 3 6 1 220 sec. 4 sec. 72% 7% 21% 3
3 4 12 1 oo 248 sec. 1% 0% 99% 2
4 2 2 2| 0.06 sec. 2 sec 57% 10% 33% 4
4 3 6 2 oo 16 sec. 5% 46% 49% 77
5 2 2 3| 0.08sec. 2 sec. 53% 10% 37% 4
5 3 6 3 oo 213 sec. 1% 92% 7% 123
6 2 2 4| 0.06 sec. 3 sec. 39% 13% 48% 4
6 3 6 4 00 600 sec. 9% 64% 27% 133
7 2 2 5| 0.12sec. | 1.8 sec. 70% 10% 20% 4

Table : Running time for Ve(f). Linear matrix of size k.

@ Polynomial Voronoi | : n =6, deg = 8 : dim = 4 with 130 sec.
Everet/Lazard/Lazard/Safey 09
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Other examples : Parillo, PhD these, 2000

Serie | : f, := (3_;_ 1X:2)2 -2 11 X2X:2+1 — xpx{
Serie Il : f,:= 3", , —3TI, x?
Serie Il : f, =T x>+ n—1—n"2(3" x)?

Serie | n D d CAD Dim Step 1 | Step 2 | Step 3 | #fibers

3 4 2] 0.9 sec. 1.5 sec. 85% 7% 8% 4
4 4 3 0.3 sec. 3.4 sec. 62% 1% 37% 1

| 5 4 3 17 sec. 34 sec. 1% 88% 11% 144
6 4 4 | 5500 sec. 95 sec. 0.4% 90% 9.6% 256
7 4 5 00 300 sec. 0.1% 93% 6.9% 384

] 3 6 1| 1.06sec. 3.865 sec. 80% 7% 13% 3
5 6 4 00 8.5 hours 0% 100% 0% 163
3 4 0| 1.74 sec. 5.5 sec. 31% 0.7% | 68.3% 3

1l 4 4 0 40 sec. 68 sec. 4% 0.1% | 95.9% 7
5 4 0 oo 7680 sec. 10% 0% 90% 3

Table : Running time for Vk(f). Linear matrix of size k.
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o Generalization to real algebraic and semi-algebraic sets

@ A new variant quantifier elimination

@ Other invariant (connectivity queries of curves in R”, ...)

Motivation for connectivity queries of curves in R”

o Experimentally : too many fibers

@ Goal : only one point per connected components

o Idea : connectivity queries of curves in R” and roadmap Safey/Schost 2014
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