Algorithmes rapides de résolution de systèmes de Toeplitz bandes

Skander Belhaj

Travail en commun avec MARWA DRIDI & AHMED SALAM

University of Tunis El Manar, ENIT-LAMSIN & Manouba University, ISAMM

JNCF 3-7 NOVEMBER 2014, LUMINY (FRANCE)

Skander Belhaj Matrices structurées

- 2 Méthodes existantes
- In the second second
- Exemples & tests numériques
- Onclusions & perspectives

Motivation

2 Méthodes existantes

In Notre contribution

- Exemples & tests numériques
- 6 Conclusions & perspectives

- 2 Méthodes existantes
- Otre contribution
- Exemples & tests numériques
- Onclusions & perspectives

- 2 Méthodes existantes
- Ontre contribution
- Exemples & tests numériques
- 6 Conclusions & perspectives

- 2 Méthodes existantes
- Ontre contribution
- Exemples & tests numériques
- 6 Conclusions & perspectives

Motivation

Méthodes existantes

- Réduction cyclique (Bini&Meini)
- Factorisation spectrale (Malyshev&Sadkan)

3 Notre contribution

- 4 Exemples & tests numériques
- 5 Conclusions & perspectives

Système linéaire

Applications

Plusieurs problèmes :

- Equation aux dérivées partielles
- Ingénierie
- Traitemement de signal
- Chaine de markov

•

Résolution par des méthodes directes

- 1750 : Cramer $\rightarrow \mathcal{O}(n(n+1)!)$ opérations.
- 1810 : Gauss $\rightarrow \mathcal{O}(n^3)$ opérations, (2 $n^3/3$ opérations).

$$Ax = b$$

Exemple

Différences finies pour le laplacien en dimension trois, avec maillage uniforme de pas $\frac{1}{100}$ sur un cube.

$$\Rightarrow \\ \Downarrow$$

Matrice obtenue A de taille

 $10^6\times 10^6$

 $2 \times 10^{18}/3$ opérations !

Solution

Chercher à exploiter la structure pour réduire :

- temps de calcul
- mémoire.

Exemple

Différences finies pour le laplacien en dimension trois, avec maillage uniforme de pas $\frac{1}{100}$ sur un cube.

$$\Rightarrow \\ \Downarrow$$

Matrice obtenue A de taille $10^6 \times 10^6$

 $2 imes 10^{18}/3$ opérations !

Solution

Chercher à exploiter la structure pour réduire :

- temps de calcul
- mémoire.

Les matrices structurées

Toeplitz
$$T = (t_{i-j})_{i,j=0}^{n-1}$$

 $\begin{pmatrix} t_0 & t_{-1} & \dots & t_{-n+1} \\ t_1 & t_0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & t_{-1} \\ t_{n-1} & \dots & t_1 & t_0 \end{pmatrix}$

Vandermonde
$$V = (V_i^j)_{i,j=0}^{n-1}$$

 $\begin{pmatrix} 1 & v_0 & \cdots & v_0^{n-1} \\ 1 & v_1 & \cdots & v_1^{n-1} \\ \vdots & \vdots & & \vdots \\ 1 & v_{n-1} & \cdots & v_{n-1}^{n-1} \end{pmatrix}$

Skander Belhaj

Hankel
$$H = (h_{i+j})_{i,j=0}^{n-1}$$

$$\begin{pmatrix} h_0 & h_1 & \cdots & h_{n-1} \\ h_1 & h_2 & \cdots & h_n \\ \vdots & \ddots & \ddots & \vdots \\ h_{n-1} & h_n & \cdots & h_{2n-2} \end{pmatrix}$$

Cauchy
$$C = \left(\frac{1}{s_i - t_j}\right)_{i,j=0}^{n-1}$$

 $\left(\begin{array}{cccc} \frac{1}{s_0 - t_0} & \cdots & \frac{1}{s_0 - t_{n-1}} \\ \frac{1}{s_1 - t_0} & \cdots & \frac{1}{s_0 - t_{n-1}} \\ \vdots & \vdots \\ \frac{1}{s_{n-1} - t_0} & \cdots & \frac{1}{s_0 - t_{n-1}} \end{array}\right)$
Matrices structurées

Les caractéristiques de matrices structurées

Nombre de paramètre

- 2n-1 pour Toeplitz et Hankel
- *n* pour Vandermonde
- 2n pour Cauchy

Multiplication matrice \times vecteur

- $\mathcal{O}(n \log n)$ Toeplitz et Hankel
- $\mathcal{O}(n \log^2 n)$ Vandermonde et Cauchy

Résolution rapide et ultra-rapide du système linéaire

- algorithmes rapide $\longrightarrow \mathcal{O}(n^2)$
- algorithmes ultra-rapide $\longrightarrow \mathcal{O}(n \log^2 n)$

Réduction cyclique (Bini&Meini) Factorisation spectrale (Malyshev&Sadkan)

Motivation

Méthodes existantes

- Réduction cyclique (Bini&Meini)
- Factorisation spectrale (Malyshev&Sadkan)

Notre contribution

- 4 Exemples & tests numériques
- 5 Conclusions & perspectives

Réduction cyclique (Bini&Meini) Factorisation spectrale (Malyshev&Sadkan)

・ 一 マ ト ・ 日 ト ・

Résolution d'un système de Toeplitz bande

Le prolème de résolution d'un système de Toeplitz bande peut être résolu :

- Les méthodes directes
 - Méthode de Gauss $\mathcal{O}(k^2n)$
 - Réduction cyclique à $(n \log n + m^2 n)$ (Bini 1984), (Grcar&Sameh 1984), (Bini&Capovani 1983), (Bini 1988)
 - Réduction cyclique à $O(n \log m + m \log m + m \log^2 m \log \frac{n}{m})$, (Bini&Meini 1999)
 - Méthode basée sur la factorization spectral et de l'utilisation de la formule Morrison-Sherman-Woodbury à $\mathcal{O}(n \log m) + \mathcal{O}(m^3)$ (Malyshev&Sadkan 2012)
- Les méthodes itératives : sur la base du gradient conjugué préconditionné (GCP) à $(n \log n)$ dans chaque itération (Chan&Ng 1996), (Serra 1997), (Strang 1986)

Réduction cyclique (Bini&Meini) Factorisation spectrale (Malyshev&Sadkan)

2

Système de Toeplitz bande

$$T_n x = f$$

$$T_n = \begin{pmatrix} t_0 & t_{-1} & \cdots & t_{-m_r} & & \\ t_1 & t_0 & t_{-1} & \ddots & & \\ \vdots & \ddots & \ddots & \ddots & \ddots & \\ t_{m_c} & t_1 & t_0 & t_{-1} & t_{-m_r} \\ & \ddots & & \ddots & \ddots & \vdots \\ & & & & \ddots & t_{-1} \\ & & & t_{m_c} & \cdots & t_1 & t_0 \end{pmatrix}$$
$$t_{m_c} \neq 0 \text{ et } t_{-m_r} \neq 0.$$

Réduction cyclique (Bini&Meini) Factorisation spectrale (Malyshev&Sadkan)

On pose
$$n = mq$$
, $m = \max(m_r, m_c)$, $q = 2^p$

$$T_n = \begin{pmatrix} A_0 & A_{-1} & 0 \\ A_1 & A_0 & \ddots \\ & \ddots & \ddots & A_{-1} \\ 0 & & A_1 & A_0 \end{pmatrix}$$

$$A_1 = \begin{pmatrix} t_m & t_{m-1} & \cdots & t_1 \\ 0 & t_m & \ddots & \vdots \\ \vdots & \ddots & \ddots & t_{m-1} \\ 0 & \cdots & 0 & t_m \end{pmatrix}, A_0 = \begin{pmatrix} t_0 & t_{-1} & \cdots & t_{-m+1} \\ t_1 & t_0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & t_{-1} \\ t_{m-1} & \cdots & t_1 & t_0 \end{pmatrix},$$

$$A_{-1} = \begin{pmatrix} t_{-m} & 0 & \cdots & 0 \\ t_{-m+1} & t_{-m} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ t_{-1} & \cdots & t_{-m+1} & t_{-m} \end{pmatrix}$$

Skander Belhaj

Matrices structurées

Réduction cyclique (Bini&Meini) Factorisation spectrale (Malyshev&Sadkan

Par la méthode d'élimination de Gauss, on obtient

$$\begin{cases} (H_{22} - H_{21}H_{11}^{-1}H_{12})x_{pair} = f^{(1)} \\ f^{(1)} = f_{pair} - H_{21}H_{11}^{-1}f_{impair} \\ x_{impair} = H_{11}^{-1}(f_{impair} - H_{12}f_{paire}) \end{cases}$$

< ロ > < 同 > < 三 > < 三 >

On note $T_{n_1}^{(1)} = H_{22} - H_{21}H_{11}^{-1}H_{12}$ le complément de schur de H_{22} , et $x^{(1)} = x_{pair}$.

On obtient un système de taille 2^{q-1} à résoudre :

$$T_{n_1}^{(1)}x^{(1)} = f^{(1)}.$$

La réduction cyclique génère ainsi une séquence de systèmes $T^j_{n_j}x^{(j)} = f^{(j)}, \quad j = 1, 2, \cdots, q, \ n_j = m2^{p-j}.$

Conclusions

- Pour les matrices SDP et les matrices à diagonale dominante, la réduction cyclique semble le meilleur choix.
- Elle échoue parfois dans le cas non symétrique.

Réduction cyclique (Bini&Meini) Factorisation spectrale (Malyshev&Sadkan)

3

Notations

- $a(\lambda) = a_{m_c}\lambda^{m_c} + \cdots + a_1\lambda + a_{-1}\lambda^{-1} + \cdots + a_{-m_r}\lambda^{-m_r}$ la fonction génératrice associée à T_n .
- $p(\lambda) = a(\lambda)\lambda^{m_r} = a_{m_c}\lambda^{m_r+m_c} + \dots + a_1\lambda^{m_r+1} + a_0\lambda^{m_r} + a_{-1}\lambda^{m_r-1} + \dots + a_{-m_r}$
- λ_i les racines de polynôme p associée à la fonction a: $0 < |\lambda_1| \le |\lambda_2| \le \cdots \le |\lambda_{m_r}| \le |\lambda_{m_r+1}| \le \cdots \le |\lambda_{m_r+m_c}|$

Formule de Sherman-Morrison-Woodbury

Soient $A \in \mathbb{K}^{n \times n}$, G, $H \in \mathbb{K}^{n \times n}$. Si $I_k + H^T A^{-1} G$ est inversible, alors

$$(A + GH^{T})^{-1} = A^{-1} - A^{-1}G(I_{k} + H^{T}A^{-1}G)^{-1}H^{T}A^{-1}$$

Réduction cyclique (Bini&Meini) Factorisation spectrale (Malyshev&Sadkan)

- 4 目 ト - 日 ト - 4

Théorème

Supposons que $|\lambda_{m_r}| \leq 1$ et $|\lambda_{m_r+1}| \geq 1$. Alors, il existe un scalaire non nul s et deux polynômes

$$l(\lambda) = 1 + l_1 \lambda + \ldots + l_{m_c} \lambda^{m_c}$$
$$u(\lambda) = 1 + u_1 \lambda + \ldots + u_{m_r} \lambda^{m_r}$$

dont les racines se situent en dehors du disque unité ouvert et telle que $a(\lambda) = l(\lambda).s.u(\lambda^{-1})$. De plus, la matrice diagonale D = sI et les matrices de Toeplitz bandes triangulaires L, U

Réduction cyclique (Bini&Meini) Factorisation spectrale (Malyshev&Sadkan)

assurent l'identité suivante

$$T = LDU + \begin{pmatrix} \check{L}\check{D}\check{U} & & \\ & 0 & \\ & & \ddots & \\ & & & \ddots & \\ & & & & 0 \end{pmatrix} \text{ où } \check{L}\check{D}\check{U} = \begin{pmatrix} l_m & \cdots & l_1 \\ & \ddots & \vdots \\ & & & l_m \end{pmatrix} s \begin{pmatrix} u_m & & \\ \vdots & \ddots & \\ u_1 & \cdots & u_m \end{pmatrix}$$

avec $l_i = 0$ pour i > k et $u_i = 0$ pour i > m.

Matrice Pencil

On considère la matrice Pencil $A - \lambda B$ avec

$$A = \begin{pmatrix} 0 & 1 & & \\ & 0 & 1 & & \\ & & \ddots & \ddots & \\ & & & 0 & 1 \\ -a_{-m_r} & -a_{-m_r} & \dots & \dots & -a_{m_c-1} \end{pmatrix}, \ B = \begin{pmatrix} 1 & & & & \\ & 1 & & & \\ & & \ddots & & \\ & & & 1 & \\ & & & & a_{m_c} \end{pmatrix}$$

dont les valeurs propres coïncident avec les racines de $P(\lambda) = a(\lambda)\lambda^{m_r}$

Réduction cyclique (Bini&Meini) Factorisation spectrale (Malyshev&Sadkan)

イロト イボト イヨト イヨト

э

Théorème

Soient $V \in \mathbb{C}^{(m_c+m_r) \times m_r}$ et $W \in \mathbb{C}^{(m_c+m_r) \times m_c}$ les matrice dont les colonnes engendrent le sous-espace droit de la matrice pencil $A - \lambda B$ associée aux valeurs propres $\lambda_1, \ldots, \lambda_k$ et $\lambda_{k+1}, \ldots, \lambda_{k+m}$, respectivement. Les partitions de V et W sont données come suit :

$$V = \begin{pmatrix} V_1 \\ v^* \\ V_2 \end{pmatrix}, \ V_1 \in \mathbb{C}^{k \times k}, \ v^* \in \mathbb{C}^{1 \times k}, \ V_2 \in \mathbb{C}^{(m-1) \times k}$$
$$W = \begin{pmatrix} W_1 \\ w^* \\ W_2 \end{pmatrix}, \ W_1 \in \mathbb{C}^{(k-1) \times m}, \ w^* \in \mathbb{C}^{1 \times m}, \ W_2 \in \mathbb{C}^{m \times m}$$

Si les sous-matrices V_1 and W_2 sont inversible, alors les coefficients de $l(\lambda)$ et $u(\lambda)$ sont donnés par :

$$(u_{m_r}, u_{m_r-1}, \cdots, u_1) = -v^* V_1^{-1}$$

$$(l_1, l_2, \cdots, l_{m_c}) = -w^* W_2^{-1}$$

Réduction cyclique (Bini&Meini) Factorisation spectrale (Malyshev&Sadkan)

Algorithme

Appliquer la formule Woodbury à $T = LDU + E\check{L}\check{D}\check{U}E^{T}$, où $E = \begin{pmatrix} I_m \\ 0 \end{pmatrix}$ afin de génèrer la représentation suivante :

$$\begin{split} T^{-1} &= (LDU)^{-1} - (LDU)^{-1} E\check{L}\check{D}[I + \check{U}E^T (LDU)^{-1} E\check{L}\check{D}]^{-1} \check{U}E^T (LDU)^{-1} \\ &= (LDU)^{-1} - (LU)^{-1} E\check{L}[I + \check{U}E^T (LU)^{-1} E\check{L}]^{-1} \check{U}E^T (LDU)^{-1}. \end{split}$$

Notons par

$$y = (LDU)^{-1}f = \frac{1}{s}U^{-1}L^{-1}f.$$

alors

$$x = y - U^{-1}L^{-1} \begin{pmatrix} \check{L} \\ 0 \end{pmatrix} Q^{-1} \begin{pmatrix} \check{U} & 0 \end{pmatrix}$$

avec
$$Q = I + \check{U}C\check{L}$$
, et $C = \begin{pmatrix} I_m & 0 \end{pmatrix} U^{-1}L^{-1} \begin{pmatrix} I_m \\ 0 \end{pmatrix}$

Réduction cyclique (Bini&Meini) Factorisation spectrale (Malyshev&Sadkan)

(日)

Estimation

La forward erreur $||x - \hat{x}|| / ||x||$, pour la méthode de factorization spectral et la formule de Woodbury de la résolution d'un système de Toeplitz bande de taille $n \times n$:

$$||x - \hat{x}|| / ||x|| \leq \mathcal{O}(\epsilon_{machine})(||T|| ||T^{-1}||)^{3/2}$$

Conclusions

- La méthode donne des bons résultats dans le cas non-symétrique.
- Si V_1 et W_1 sont mal-conditionnées, la méthode échoue.

Motivation

Méthodes existantes

- Réduction cyclique (Bini&Meini)
- Factorisation spectrale (Malyshev&Sadkan)

3 Notre contribution

- 4 Exemples & tests numériques
- 5 Conclusions & perspectives

Notre contribution

ldée

Étendre T_n dans une matrice M triangulaire inférieure de Toeplitz bande de taille $(n + m_r) \times (n + m_r)$ avec r représente la première colonne :

$$r = (t_{-m_r}, \dots, t_{-1}, t_0, t_1, \dots, t_{m_c}, \underbrace{0, \dots, 0}_{n - (m_c + 1)})^T$$

$$M = \begin{pmatrix} t_{-m_r} & & & & \\ \vdots & \ddots & & & \\ t_{-1} & \cdots & t_{-m_r} & & & \\ \hline t_0 & t_{-1} & \cdots & t_{-m_r} & & \\ \vdots & \ddots & \ddots & \ddots & \ddots & \\ t_{m_c} & t_1 & t_{-1} & t_{-m_r} & & \\ & \ddots & \ddots & \ddots & \ddots & \vdots & t_{-m_r} \\ & & & \ddots & \ddots & \ddots & \vdots & t_{-m_r} \\ & & & & & \vdots & \ddots & \\ & & & & & t_{1-1} & t_{-1} & \cdots & t_{-m_r} \\ & & & & & & t_{1-1} & t_{-1} & \cdots & t_{-m_r} \\ & & & & & & t_{1-1} & t_{0} & t_{-1} & \cdots & t_{-m_r} \end{pmatrix}$$
$$= \begin{pmatrix} L & 0 & \cdots & 0 \\ & & & \vdots \\ T & & & & L \end{pmatrix}.$$

Théorème

Soit T une matrice de Toeplitz bande inversible et M une matrice triangulaire inférieure associée à T. Supposons que M^{-1} est réparti comme suit

$$M^{-1} = \left(\begin{array}{cc} A & B \\ C & D \end{array}\right)$$

où A, B, C, et D sont des matrices de taille $n \times p$, $n \times n$, $p \times p$, $p \times n$ respectivement. Ensuite, l'inverse de T_n est donné par

$$T_n^{-1} = -AC^{-1}D + B.$$

Coût

La résolution d'un système linaire de Toeplitz bande inversible nécéssite environ

$$\mathcal{O}(n\log n) + \mathcal{O}((m_r + m_c + 1)n) + \mathcal{O}((n - m_r)\log(n - m_r)) + \mathcal{O}(m_r^2)$$

Estimation

La forward erreur $\|x-\hat{x}\|/\|x\|,$ pour notre méthode est

$$\frac{\|x - \hat{x}\|_p}{\|x|_p} \leqslant \mathcal{O}(\epsilon_{machine})(Cond_p(T) + \|T\|_p)$$

p-norm (où $p = 1, \infty$)

< 一 一 一 ト 、 、 三 ト

Motivation

Méthodes existantes

- Réduction cyclique (Bini&Meini)
- Factorisation spectrale (Malyshev&Sadkan)

3 Notre contribution

- Exemples & tests numériques
 - 5 Conclusions & perspectives

On calcul l'erreur absolue :

 $\|\tilde{x} - x\|_{\infty}$

avec \tilde{x} est la solution approchée et x est la solution exacte.

TABLE: La matrice Toeplitz a $t_0 = 0,5$ sur la diagonale principale et 1 ailleurs au sein de la bande. L'ordre de T_n est fixé à $n = 2^{20}$, et $m_r = m$ and $m_c = m/2$, où m varie.

m	$ x - x_E _{\infty}$	Time(s)	$ x - x_c _{\infty}$	Time (s)	$\ x - x_{Cr}\ _{\infty}$	Time (s)
4	$4.60.10^{-12}$	0.53	$1.82.10^{-11}$	0.81	$3.75.10^{-12}$	0.22
8	$8.50.10^{-11}$	0.53	$1.84.10^{-7}$	0.90	$2.40.10^{-12}$	0.21
16	$3.53.10^{-10}$	0.8	$1.27.10^{-4}$	1.80	$2.94.10^{-11}$	0.34
32	$6.30.10^{-11}$	0.9	$2.31.10^{+12}$	2.26	$4.37.10^{-9}$	0.36
64	$1.18.10^{-10}$	0.98	échoue		$1.89.10^{-9}$	0.52
128	$8.18.10^{-10}$	0.72	échoue		$7.89.10^{-9}$	0.64
256	$8.18.10^{-10}$	0.57	échoue		$1.35.10^{-7}$	1.23
512	$9.83.10^{-8}$	1.15	échoue		$2.24.10^{-7}$	8.83
1024	$6.18.10^{-8}$	0.58	échoue		$2.85.10^{-6}$	35.41

TABLE: Nous choisissons $t_0 = 1.0001$ sur la diagonale principale et 1 ailleurs au sein de la bande. L'ordre de T_n est fixé $n = 2^{20}$ et q = m and p = m/2, où m varie.

m	$ x - x_E _{\infty}$	Time(s)	$\ x-x_c\ _{\infty}$	Time (s)	$\ x - x_{Cr}\ _{\infty}$	Time (s)
32	$2.64.10^{-10}$	0.54	$3.77.10^{-12}$	1.18	échoue	0.62
64	$1.59.10^{-10}$	0.54	$7.48.10^{-12}$	1.2	échoue	0.75
128	$3.35.10^{-10}$	0.55	$2.01.10^{-11}$	1.4	échoue	1.51
256	$8.73.10^{-7}$	0.57	$4.68.10^{-8}$	7.344	échoue	2.76
512	$2.72.10^{-6}$	0.69	$7.82.10^{-7}$	38.18	échoue	2.34
1024	$1.04.10^{-8}$	0.52	$8.30.10^{-8}$	315.789	échoue	8.2614

TABLE: Soit $t_0 = 1 + 10^{-14}$ sur la diagonale principale et 1 les coefficients ailleurs au sein de la bande, p = q = m, et $n = 2^{20}$.

$\mid m \mid$	$ x-x_E _{\infty}$	Time(s)	$ x - x_c _{\infty}$	Time (s)	$\ x - x_{Cr}\ _{\infty}$	Time (s)
4	$4,27.10^{-5}$	0.86	$6, 3.10^{-3}$	0.62	$3.5.10^{20}$	0.52
8	$2,7145.10^{-11}$	0.73	$5, 2.10^{-2}$	0.7	3.10^{15}	0.53

TABLE: La matrice T_n est la bande Toeplitz, a $t_0 = 1$ sur la diagonale principale et 2 ailleurs au sein de la bande. L'ordre de T_n est fixé à $n = 2^{20}$, et nous choisissons $m_r = m$ et $m_c = m$, où m varie.

m	$ x - x_E _{\infty}$	Time(s)	$\ x-x_c\ _{\infty}$	Time (s)	$ x - x_{Cr} _{\infty}$	Time (s)
8	$8.50.10^{-11}$	0.62	$5.11.10^{-11}$	0.85	$2.40.10^{-12}$	0.22
16	$3.53.10^{-10}$	0.8	$1.34.10^{-6}$	1.46	$2.94.10^{-11}$	0.29
32	$6.3.10^{-11}$	0.73	0.003	1.57	$4.37.10^{-9}$	0.29
64	$1.18.10^{-10}$	0.51	$3.48.10^{7}$	2.13	$1.89.10^{-9}$	0.25
128	$1.97.10^{-10}$	0.6	échoue		$7.89.10^{-9}$	0.52
256	$8.18.10^{-10}$	0.69	échoue		$1.35.10^{-7}$	1.58
512	$9.83.10^{-8}$	0.7	échoue		$2.24.10^{-7}$	6.09
1024	$6.18.10^{-8}$	0.58	échoue		$2.85.10^{-6}$	31.31

< A > <

Motivation

Méthodes existantes

- Réduction cyclique (Bini&Meini)
- Factorisation spectrale (Malyshev&Sadkan)

3 Notre contribution

- 4 Exemples & tests numériques
- 5 Conclusions & perspectives

Conclusions

- L'implémentation de l'algorithme de factorisation spectrale de Miloud&Malyshev nécessite quatre fois plus de temps que la méthode de la réduction cyclique.
- La méthode de la réduction cyclique hérite des propriétés de stabilité de la décomposition de Cholesky pour les matrices symétriques définies positives et l'élimination de Gauss pour les matrices à diagonale dominante. Il semble que c'est la meilleure méthode dans ces cas.
- La méthode de Miloud&Malyshev peut donner de résultats précis où la réduction cyclique ne le peut pas (cas non symétrique) mais parfois échoue ou nécessite un énorme temps de calcul.
- La méthode proposé est l'une des bonnes alternatives non seulement en terme d'efficacité et de temps de calcul mais aussi quand les méthodes existantes échouent.

Références I

A. Malyshev, M. Skadkane

Fast solution of unsymmetric banded Toeplitz systems by means of spectral factorization and Woodbury's formula. Numerical Linear Algebra and it Application 2012.

D. Bini, B. Meini

Effective Methods for Solving Banded Toeplitz Systems. SIAM J. Matrix Anal. Appl., 1999, 20 : 700–719.

D. Bini, B. Meini The cyclic reduction algorithm : from Poisson equation to stochastic processes and beyond. In memoriam of Gene H.Golub. Numerical Algorithms 2009; 51(1) : 23-60.

Fu-Rong Lin, Wai-Ki Ching, M. K. Ng, Fast inversion of triangular Toeplitz matrices. Theoretical computer Science 315 (2004) 511–523.

S. Belhaj, M Dridi, *A note on computing the inverse of a triangular Toeplitz.* Appl. Math. Comput. 236 (2014), 512-523.

Merci pour votre attention

Skander Belhaj Matrices structurées

▲ 同 ▶ → 三 ▶