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Preliminaries

Structured matrices are encountered almost everywhere

The structure of a matrix reflects the peculiarity of the mathematical
model that the matrix describes

Exploiting matrix structures is a mandatory step for designing highly
efficient ad hoc algorithms for solving computational problems

Structure analysis often reveals rich and interesting theoretical properties

Linear models lead naturally to matrices

Some structures are evident, some other structures are more hidden

Nonlinear model are usually linearized or approximated by means of linear
models



Preliminaries

Some examples:
Band matrices: locality properties, functions with compact support. Spline
interpolation, finite differences

Toeplitz matrices: shift invariance properties. Polynomial computations,
queueing models, image restoration

Displacement structures, Toeplitz-like matrices: Vandermonde, Cauchy,
Hankel, Bezout, Pick

Semi-separable and quasi-separable matrices: inverse of band matrices,
polynomial and matrix polynomial computations, integral equations

Sparse matrices: Web, Page Rank, social networks, complex networks



Preliminaries

In this short course we will limit ourselves to describe some computational
aspect of

@ Toeplitz matrices

@ Rank-structured matrices

and show some applications

The spirit is to give the flavour of the available results with pointers to the
literature

Notations:

F is a number field, for our purpose F € {R, C}
N={0,1,2,3,...}, Z={...,-2,-1,0,1,2,...}
T is the unit circle in the complex plane

i imaginary unit such that i = —1

Fm*n" set of m x n matrices with entries in F



Toeplitz matrices [Orro TorpLITZ 1881-1940]
Let F be a field (F € {R,C})

Given a bi-infinite sequence {a;};cz € FZ and an integer n, the n x n
matrix T, = (t;j)ij=1,n such that t; ; = aj_; is called Toeplitz matrix

a0 ai an a3 dq
a_1 ao ail ar as
T5 = |a—2 a-1 =l ai an
da_3 4d-2 a-1 a0 a1
d_4 4a-3 4-2 a-1 Aao

T, is a leading principal submatrix of the (semi) infinite Toeplitz matrix
Too = (tij)ijen, tij = aj—i



Toeplitz matrices

Theorem (Otto Toeplitz) The matrix To, defines a bounded linear

operator in /2(N), x = y = TooX, yi = Z}L:‘)g aj_;x; if and only if a; are

the Fourier coefficients of a function a(z) € L*°(T)

400 1 2 ) .
a(z) = Z anz", ap= 7 a(e?)e " dp
n=—o0
In this case
| T|| = ess sup,erla(z)|, where || T||:= sup || Tx]||

[IxlI=1

The function a(z) is called symbol associated with T,

Example
If a(z) = fo:_k a;z' is a Laurent polynomial, then T, is a banded
Toeplitz matrix which defines a bounded linear operator



Block Toeplitz matrices
Let F be a field (F € {R,C})
Given a bi-infinite sequence {A;}icz, Ai € F™*™ and an integer n, the
mn x mn matrix T, = (t;)ij=1,n such that t; ; = A;_; is called block
Toeplitz matrix
AO Al A2 A3 A4
Ar Ay Al A Az
Ts= A A1 Ay A A
Az A A1 Ay A
Ay A3 AL A1 A
T, is a leading principal submatrix of the (semi) infinite block Toeplitz
matrix To = (ti,j)i,jENr tij = Aj,,'
Ao A1 A
A1 Ay A

A, A

Too =



Block Toeplitz matrices with Toeplitz blocks

The infinite block Toeplitz matrix T, defines a bounded linear operator in

/2(N) iff the blocks Ay = (agj-)) are the Fourier coefficients of a
matrix-valued function A(z) : T — C™*™,

A(Z) = Z:ioo XkAk = (a,-L,-(z)),-J:l,m such that a,-vj(x) S LOO(T)

If the blocks A; are Toeplitz themselves we have a block Toeplitz matrix
with Toeplitz blocks

A function a(z,w) : T x T — C having the Fourier series
a(z,w) = L-o:o_oo a;jz'w/ defines an infinite block Toeplitz matrix
Too = (Aj—j) with infinite Toeplitz blocks Ax = (akj—i).

T~ defines a bounded operator iff a(z, w) € L

For any pair of integers n, m we may construct an n x n Toeplitz matrix
Tm,n = (Aj—i)f,j:17” with m x m Toeplitz blocks AJ'_,' = (akd',,'),'u':]_,m



Multilevel Toeplitz matrices

A function a : T9 — C having the Fourier expansion

+o0

_ E i iz
3(21,22,...,Zd) = a,-17,-27“_7,~dz. zZ= - Z

n-n
1yeeeyig=—00

g
id

defines a d-multilevel Toeplitz matrix: that is a block Toeplitz matrix with
blocks that are themselves (d — 1)-multilevel Toeplitz matrices



Generalization: Toeplitz-like matrices

Let L; and U; be lower triangular and upper triangular n x n Toeplitz
matrices, respectively, where i = 1,... k and k is independent of n

k

A:ZL;U;

i=1

is called a Toeplitz-like matrix
If k=2, L1 = U, =1 then A is a Toeplitz matrix.

If Ais an invertible Toeplitz matrix then there exist L;, U;, i = 1,2 such
that
A =110 + LUs

that is, A~ 1 is Toeplitz-like



Applications: polynomial arithmetic
Polynomial multiplication

a(x) = S0 g aixl,  b(x) = X bix,
c(x) == a(x)b(x), c(x) = X" cixd

co = aobo
= aob1 + albo

Co a0
a ail do
bo
. b
= |é@n . ao .
a1 bm
| Cm+n | i an |




Applications: polynomial arithmetic
Polynomial division

a(x) =" aix', b(x) =Y, bix', bym #0
a(x) = b(x)q(x) + r(x), degr(x) <m

q(x) quotient, r(x) remainder of the division of a(x) by b(x)

[ | bo - -

a b1 bg o
qo0
. . q1 _
am| = by . . by T rmO 1
by dn—m

. 0

L an ] bm i i

The last n — m + 1 equations form a triangular Toeplitz system



Applications: polynomial arithmetic

Polynomial division

bm bm—]_ b2m—n qO
bm : a |
bm—l :
bm dn—m

Its solution provides the coefficients of the quotient.

The remainder can be computed as a difference.

o ao bo

m—-1 dm—1 bmfl bO

(in the picture n— m=m—1)

dm+1

an

q0

dn—m



Applications: polynomial arithmetic
Polynomial gcd
If g(x) = ged(a(x), b(x)), deg(g(x)) = k, deg(a(x)) = n, deg(b(x)) = m.
Then there exist polynomials r(x), s(x) of degree at most m — k — 1,
n— k — 1, respectively, such that (Bézout identity)
g(x) = a(x)r(x) + b(x)s(x)
In matrix form one has the (m + n — k) x (m + n — 2k) system

ao bo n _gO_
air aog b1 b n :
8k
. . . . Fm—k—
dan . .o dp bm . . bo m—k=1 =10
a e by s1
L an bm 1 LSn—k—1] _0_

Sylvester matrix



Applications: polynomial arithmetic

Polynomial gcd

The last m + n — 2k equations provide a linear system of the kind

where S is the (m 4 n — 2k) x (m+ n — 2k) submatrix of the Sylvester
matrix in the previous slide formed by two Toeplitz matrices.



Applications: polynomial arithmetic
Infinite Toeplitz matrices

Let a(x), b(x) be polynomials of degree n, m with coefficients a;, b;, define
the Laurent polynomial

c(x) = a(x Z Cix

i=—m

Then the following infinite UL factorization holds

G c bm
0 . n
a ... an bm-1 bo
Co : -
= ao dn
Com by

If the zeros of a(x) and b(x) lie in the unit disk, this factorization is called
Wiener-Hopf factorization. This factorization is encountered in many
applications.




Applications: polynomial arithmetic

Infinite Toeplitz matrices

The Wiener—Hopf factorization can be defined for matrix-valued functions
C(x) = Cix', C; € C™™ in the Wiener class, i.e, such that

i=—00

| Gi|| < o0, prowded that det C(x) # 0 for |x| = 1.

i=—00

A canonical Wiener-Hopf factorization takes the form
C(x) = A(x)B(x7Y), A(x) = Zx Ai, B(x) = ZBX

where A(x) and B(x) have zeros in the open unit disk.

Its matrix representation provides a block UL factorization of the infinite
block Toeplitz matrix (Cj_;)



Applications: Polynomial arithmetic

G G
C_1 C() C1 =



Applications: Queueing models
The shortest queue problem

= el —
L%—-Sé/-%—-%~\4 my ol —
0 50 0 I

The problem: There are m gates at the highway:
@ at each instant k cars arrive with a known probability
@ each car follows the shortest line

@ at each instant a car leaves its gate



Applications: Queueing models
The shortest queue problem

= el —
L%—-Sé/-%—-%~\4 my ol —
0 50 0 I

The problem: There are m gates at the highway:
@ at each instant k cars arrive with a known probability
@ each car follows the shortest line
@ at each instant a car leaves its gate

what is the probability that there are £ cars in the lines waiting to be
served?

Similar model: the wireless IEEE 802.11 protocol



Applications: Queueing models

The shortest queue problem

Denoting p; ; the probability that after one instant of time the length of
the queue changes from i to j then p;; = aj_;, if i > m, where a, > 0 is
the probability that m + k cars arrive, Zioz_m axr=1 a=0for k< —m

The problem turns into an infinite eigenvalue problem of the kind
T P=x',

7 € R is a probability vector, i.e., Y mi =1, 7, >0, and P = (p; ;) is
almost Toeplitz in generalized upper Hessenberg form



Applications: Queueing models
[ b11 b1

bm,l bm,2
do al an

a0 ai

where b;  are suitable boundary probabilities. This matrix can be
partitioned into m x m blocks as follows

B B B
A1 Ay A
0 A1 Ao



Applications: Queueing models

Removing the first block row and the first block column of the above
matrix yields the block Hessenberg block Toeplitz matrix

Ao At A
- A1 Ay A
P—

0 AL

The Wiener-Hopf factorization of P — I allows to solve easily the problem
m(P—1)=0



Applications: Queueing models
The Wiener-Hopf factorization of P — I takes the following form
Up Ui ... I

. _ -G
P—1= Uo U1 . -G /

where G is the solution of the following matrix equation

+oo ]
X=> AX
i=—1
having nonnegative entries and spectral radius p(X) = 1.

A way for solving this equation is to reduce it to the following infinite
linear block Toeplitz system

Ao—1 A A X —A_;
Ay A—1 A | |X? 0
Al A= .| |X3 T o0



Applications: Image restoration

In the image restoration models, the blur of a single point of an image is
independent of the location of the point and is defined by the
Point-Spread Function (PSF)

_>

The relation between the blurred and noisy image, stored as a vector b
and the real image, represented by a vector x has the form

Ax = b — noise

Shift invariance of the PSF = A is block Toeplitz with Toeplitz blocks

Due to the local effect of the blur, the PSF has compact support so that A
is block banded with banded blocks

Typically, A is ill-conditioned so that solving the system Ax = b obtained
by ignoring the noise provides a highly perturbed solution



For instance the PSF which transforms a unit point of light into the 3 x 3

1 2 1
square [2 3 2} leads to the following block Toeplitz matrix

1 2 1
B A
) A B A
T:— .
15 )
A B A
A B
where
2 1 3 2
1 2 1 2 3 2
A: s B:
1 2 1 2 3 2
1 2 2 3

This way, restoring a blurred image is reduced to solving a block banded
block Toeplitz systems with banded Toeplitz blocks. According to the
boundary conditions assumed in the blurring model, the matrix can take
additional specific structures.



Applications: Differential equations

The numerical treatment of linear partial differential equations with
constant coefficients by means of the finite difference technique leads to
linear systems where the matrix is block Toeplitz with Toeplitz blocks

For instance the discretization of the Laplace operator Au(x,y) applied to
a function u(x, y) defined over [0, 1] x [0, 1]

A%u  Q%u 1
—Au(x,y) = *(ﬁ + (97)/2) = p(4ui,j — Uiy1j— Uim1j — Ujj1, —Uij—1) + O(h?)

for xi = ih, yj =jh, i,j=1,n, h=1/(n+1), ujj = u(x;,y;) leads to the
matrix

The symbol associated with L is a(x,y) =4 —x —x"1 —y —y~!



Asymptotic spectral properties and preconditioning

Definition: Let f(x) : [0,27] — R be a Lebesgue integrable function. A
sequence {/\5")};:1,,,, neN, )\,(-") € R is distributed as f(x) if

2
1 (my _ 1
nIl_)rrgonZF)\ 277/ F(f(x))dx

for any continuous F(x) with bounded support.

Example /\( " = f(2im/n), i=1,...,n, n € N is distributed as f(x).

With abuse of notation, given a(z) : T — R we write a(6) in place of
a(x(0)), x(0) = cosf +isinf €T



Asymptotic spectral properties and preconditioning

Assume that

@ the symbol a(#) : [0: 27] — R is a real valued function so that
a(f) = ap+2> ;2 akcos kd

e T, is the sequence of Toeplitz matrices associated with a(f), i.e.,
Ty = (a)j—i|)ij=1,n; observe that T(M is symmetric

® m, = essinfycpona(0), Ma = esssupgeoorja(f) are the essential
infimum and the essential supremum

° )\gn) < )\gn) <. < )\5,") are the eigenvalues of T, sorted in
nondecreasing order (observe that T, is real symmetric).

Then



Asymptotic spectral properties and preconditioning

Q if my < M, then )\E") € (ma, M,) forany nand i =1,...,n; if
m, = M, then a(0) is constant and T,(a) = m,/p;

Q lim,_ /\(1n) =m,, lim,_ )\gn) = M,;

© the eigenvalues sequence {)\g"), cee /\5,")} are distributed as a(6)
Moreover

e if a(x) > 0 the condition number p(" = || T(M||o||(TM)~1||5 of T("
is such that limp_,o u(" = M,/m,
e a(h) > 0 implies that T(" is uniformly well conditioned

@ a(f) = 0 for some 6 implies that lim,_oo ptp = 00



Asymptotic spectral properties and preconditioning

In red: eigenvalues of the Toeplitz matrix T, associated with the symbol

f(0) =2 — 2cos — 3 cos(26) for n =10, n = 20

In blue: graph of the symbol. As n grows, the values /\E") fori=1,...,ntend to
be shaped as the graph of the symbol



Asymptotic spectral properties and preconditioning

The same asymptotic property holds true for

@ block Toeplitz matrices generated by a matrix valued symbol A(x)

@ block Toeplitz matrices with Toeplitz blocks generated by a bivariate
symbol a(x, y)
@ multilevel block Toeplitz matrices generated by a multivariate symbol
a(x1, X2, ..., Xd)
@ singular values of any of the above matrix classes
The same results hold for the product Pn_1 T, where T, and P, are
associated with symbols a(#), p(0), respectively
@ eigenvalues are distributed as a(0)/p(0)

o (preconditioning) given a(f) > 0 such that a(fy) = 0 for some 6p; if
there exists a trigonometric polynomial p(6) = 31X, px cos(kf)
such that p(fp) = 0, limg_g, a(9)/p(0) # 0 then P, 1T, has
condition number uniformly bounded by a constant



Trigonometric matrix algebras and Fast multiplication

Let w, = cos 27” + isin 27” be a primitive nth root of 1, that is, such that
wh=1and {1,wp,...,w" 1} has cardinality n.

Define the n x n matrix Q, = (w[{.),-’j:o,n_l, Fn= %Qn.

One can easily verify that F;F, = I that is, F, is a unitary matrix.
For x € C" define
o y = DFT(x) = 1Qx the Discrete Fourier Transform (DFT) of x
e x =IDFT(y) = Qy the Inverse DFT (IDFT) of y
Remark: conda(F,) = ||Fall2lF, Y2 =1, conda(Q,) =1

This shows that the DFT and IDFT are numerically well conditioned when
the perturbation errors are measured in the 2-norm.



Trigonometric matrix algebras and Fast multiplication

If nis an integer power of 2 then the IDFT of a vector can be computed
with the cost of %nlogz n arithmetic operations by means of FFT

FFT is backward numerically stable in the 2-norm. That is, if X is the
value computed in floating point arithmetic with precision 4 in place of
x = IDFT(y) then

[Ix = Xll2 < pylix||2 loga n

for a moderate constant

norm-wise well conditioning of DFT and the norm-wise stability of FFT
make this tool very effective for most numerical computations.

Unfortunately, the norm-wise stability of FFT does not imply the
component-wise stability. That is, the inequality

|xi — Xi| < py|xi|logy n

is not generally true for all the components x;.



Trigonometric matrix algebras and Fast multiplication

This is a drawback of DFT and of FFT when numerically used for symbolic
computations since, in order to guarantee a sufficiently accurate relative
precision in the result, one has to choose a suitable value of the machine
precision of the floating point arithmetic whose value depends on the ratio
between the maximum and the minimum absolute value of the output.

This fact implies that the complexity bounds are depending on this ratio.
When using FFT in this framework one should be aware of this fact.

There are algorithms for computing the DFT in O(nlog n) ops whatever is
the value of n.

DFT and FFT can be defined over finite fields where there exists a
primitive root of 1. For instance, Z17 is a finite field and 3 is a primitive
16th root of 1. DFT and FFT can be defined over certain rings.



An example: Graeffe iteration

Let p(x) = D7, pix' be a polynomial of degree n such that p(x) has
zeros x;, i = 1,...,n such that

Ix1] < < |xm| <1< |xXmy1] <+ < |Xn

With po(x) := p(x) define the sequence (Graeffe iteration)
q(xz) :pk(X)pk(_X)7 pk+1(X) = q(X)/qm7 for k:O717277"‘

The zeros of py(x) are x,-2k, so that limy_,o px(x) = x™

If pr(x) = X0 p\¥)x' then
. k k k
Jim [p, /pi M2 = P

moreover, convergence is very fast. Similar equations hold for |x;|



An example: Graeffe iteration

. k k k
Jim [p89;/p{9 112" = ||

On the other hand (if m< n—1)
lim |p%) | = lim |p()] =
Jim_|pp2y| = lim |pn”| =0

with double exponential convergence

Computing px(x) given px_1(x) by using FFT (evaluation interpolation at
the roots of unity) costs O(nlog n) ops.

But as soon as |p,(,k)| and |p,(,k_)1| are below the machine precision the
relative error in these two coefficients is greater than 1. That is no digit is
correct in the computed estimate of |x,]|.



An example: Graeffe iteration

Figure: The values of log;, |p§6)\ for i =0,...,n for the polynomial obtained
after 6 Graeffe steps starting from a random polynomial of degree 100. In red the
case where the coefficients are computed with FFT, in blue the coefficients
computed with the customary algorithm



An example: Graeffe iteration

step

custom

FFT

SOl WwWw N

1.40235695
2.07798429
2.01615072
2.01971626
2.01971854
2.01971854

1.40235695
2.07798429
2.01615072
2.01857621
1.00375471
0.99877589



An example: Graeffe iteration

A specific analysis shows that in order to have d correct digits in the
computed approximation, one must use a floating point arithmetic with ¢
digits, where

s log(Ixal /Ixa])
c=d <””log<\xnr/|xn_1r)>’ 7=t

Problems are encountered if |xp| & |x,—1| or |xn/x1| is large.

In the situation where the separation from two consecutive zeros is
uniform, i.e., |xi41/X;| = |xn/x1|/" then the number of digits is

c=dx*(1+~n)

O(nlog n) ops with O(nd) digits more expensive than O(n?) ops with d digits



Trigonometric matrix algebras and Fast multiplication

There are many other useful trigonometric transforms that can be
computed fast

@ Sine transforms (8 different types), example: S = (4/ nil sin n’fl)

@ Cosine transforms (8 different types), example
C = (12 cos "L,

© Hartley transform H = \/%(cos 21 4 gin 27i)

n n




Trigonometric matrix algebras and Fast multiplication

Given the row vector [ag, a1, ..., an—1], the n X n matrix
4o ai an—1
dpn—1 ao
A=(aj—i modn)ij=tn= | "
ai
ai dn—1 a0
is called the circulant matrix associated with [ag, a1,...,a,-1] and is

denoted by Circ(ag, a1, ..., an—1).

If a; = A; are m x m matrices we have a block circulant matrix

Any circulant matrix A can be viewed as a polynomial with coefficients a;
in the unit circulant matrix S defined by its first row (0,1,0,...,0)

0 1
n—1
A= E 8;5', S=
i=0 0 R
10 ... 0

Clearly, S" — | = 0 so that circulant matrices form a matrix algebra
isomorphic to the algebra of polynomials with the product modulo x” — 1



Trigonometric matrix algebras and Fast multiplication

If Ais a circulant matrix with first row r’ and first column ¢, then
1
A= ;QT, Diag(w)Q2, = F*Diag(w)F

where w = Q,c = Q' r.

Consequences

Ax = DFT,(IDFT,(c) * IDFT o(x))

where “x" denotes the Hadamard, or component-wise product of vectors.

The product Ax of an n x n circulant matrix A and a vector x, as well as

the product of two circulant matrices can be computed by means of two
IDFTs and a DFT of length nin O(nlog n) ops

1
Al = ;Q: Diag(w ™ 1)Q,,

The inverse of a circulant matrix can be computed in O(nlog n) ops



Trigonometric matrix algebras and Fast multiplication

The definition of circulant matrix is naturally extended to block matrices
where a; = A; are m X m matrices.

The inverse of a block circulant matrix can be computed by means of 2m?
IDFTs of length n and n inversions of m x m matrices for the cost of
O(m?nlog n + nm?)

The product of two block circulant matrices can be computed by means of
2m? IDFTs, m? DFT of length n and n multiplications of m x m matrices
for the cost of O(m?nlog n+ nm?3).



z-circulant matrices

A generalization of circulant matrices is provided by the class of
z-circulant matrices.

Given a scalar z # 0 and the row vector [ag, a1, . . ., ap—1], the n X n matrix
a0 ai an—1
A |71 A
. o
zay ... Zap—1 Qo
is called the z-circulant matrix associated with [ag, a1, ..., ap-1].
Denote by S, the z-circulant matrix whose first row is [0,1,0,...,0], i.e.,
[0 1 0 ... 07
0 0 1
S;= | W
0 0 1
2z 0 0 0]




z-circulant matrices

@ Any z-circulant matrix can be viewed as a polynomial in S,.

n—1
A= Z a,-S;.
i=0

o S;n=12D,SD;', D, =Diag(1,z,2°%,...,2" 1),
where S is the unit circulant matrix.

@ If Ais the z"-circulant matrix with first row r’ and first column ¢
then

1
A = =D, Diag(w)Q,D;
n

with w = Q:D,r = Q,D; c.

@ Multiplication of z-circulants costs 2 IDFTs, 1 DFT and a scaling

@ Inversion of a z-circulant costs 1 IDFT, 1 DFT, n inversions and a
scaling

@ The extension to block matrices trivially applies to z-circulant
matrices.



Embedding Toeplitz matrices into circulants

An n x n Toeplitz matrix A = (t; ), t;j = aj—j, can be embedded into the
2n x 2n circulant matrix B whose first row is

[a0,a1,---,3n—1,%,3—nt1,--.,3—1], where x denotes any number.
do ai ar * da_o2 ad_—1
a_i1 ag ai an * a_p
B— d_o2 ad_—1 a0 ay an *
- x a_o a_1| a a1 a
an * a_o | da—1 do ai
ai an * d_o2 a_—1 ao

More generally, an n x n Toeplitz matrix can be embedded into a g X g
circulant matrix for any g > 2n — 1.

Consequence: the product y = Ax of an n x n Toeplitz matrix A and a
vector x can be computed in O(nlog n) ops.



Embedding Toeplitz matrices into circulants

y = AXx,
=2l 15 A A
w 0 H Al |0 Hx
@ embed the Toeplitz matrix A into the circulant matrix B
@ embed the vector x into the vector v = [{]
@ compute the product u = Bv
o sety=(ur,...,us)"

Cost: 3 FFTs of order 2n, that is O(nlog n) ops medskip
Similarly, the product y = Ax of an n x n block Toeplitz matrix with
m x m blocks and a vector x € C™ can be computed in O(m?nlog n) ops.



Triangular Toeplitz matrices
Let Z = (zij)ij=1,n be the n x n matrix

0 0
z=|1 :
0 1 0

Clearly Z" = 0, moreover, given the polynomial a(x) = Z, o ai x' the

matrix a(Z) = ,f':_(} a;Z' is a lower triangular Toeplitz matrix deflned by
its first column (ag,a1,...,an-1)"
do 0
ai do
a(Z) = .
dn—1 al 40

The set of lower triangular Toeplitz matrices forms an algebra isomorphic
to the algebra of polynomials with the product modulo x".



Inverting a triangular Toeplitz matrix

The inverse matrix T, ! is still a lower triangular Toeplitz matrix defined by
its first column v,,. It can be computed by solving the system T,v, = ¢;

Let n = 2h, h a positive integer, and partition T, into h x h blocks

Tn:|:Th 0:|7

Wh | Th
where Tp, Wy are h x h Toeplitz matrices and Tj, is lower triangular.
N
= =1 =1 =T | -
n T, W, T, T,

The first column v, of T, 1 is given by

Vo= T, e; = i = vh
n— 'n "1 —Th_l Whvp, —L(Vh)Wth ’

where L(vy) = T, ! is the lower triangular Toeplitz matrix whose first
column is vj.



Inverting a triangular Toeplitz matrix

The same relation holds if T, is block triangular Toeplitz. In this case, the
elements ag, ..., a,_1 are replaced with the m x m blocks Ag,...,An_1
and v, denotes the first block column of T, L.

Recursive algorithm for computing v, (block case)

INPUT: n =2 Ao,..., A1
OUuTPUT: v,

COMPUTATION:
@ Set vy = AO_1
@ Fori=0,...,k—1, given vy, h=2i
@® Compute the block Toeplitz matrix-vector products w = W)v;, and

u=—L(vy)w.
@ Set
»=|]
2= ]

Cost: O(nlog n) ops



z-circulant and triangular Toeplitz matrices

If ¢ = |z| is “small” then a z-circulant approximates a triangular Toeplitz

ap dl . an—1 a 4d1 ... dp-—1
Zdp—1 40 . ~ a0
a1 - al
Zay ... Zdp-1 ao dap

Inverting a z-circulant is less expensive than inverting a triangular Toeplitz
(roughly by a factor of 10/3)

The advantage is appreciated in a parallel model of computation, over
multithreading architectures



z-circulant and triangular Toeplitz matrices

Numerical algorithms for approximating the inverse of (block) triangular
Toeplitz matrices. Main features:

o Total error=approximation error + rounding errors

e Rounding errors grow as e

in z

, approximation errors are polynomials

@ the smaller € the better the approximation, but the larger the
rounding errors

@ good compromise: choose € such that € = je~!. This implies that the
total error is O(u/?): half digits are lost

Different strategies have been designed to overcome this drawback



z-circulant and triangular Toeplitz matrices

Assume to work over R

@ (interpolation) The approximation error is a polynomial in z.
Approximating twice the inverse with, say z =€ and z = —¢ and
taking the arithmetic mean of the results the approximation error
becomes a polynomial in €.

= total error= O(u%/3)

o (generalization) Approximate k times the inverse with values
z1 = ewl, i=0,...,k — 1. Take the arithmetic mean of the results
and get the error O(€).
= total error= O(pk/(k+1),
Remark: for k = n the approximation error is zero



z-circulant and triangular Toeplitz matrices

@ (Higham trick) Choose z = je then the approximation error affecting
the real part of the computed approximation is O(e?).
= total error= O(1?/3), i.e., only 1/3 of digits are lost

o (combination) Choose z; = ¢(1 +i)/v/2 and zp = —z;; apply the
algorithm with z = z; and z = z; take the arithmetic mean of the

results. The approximation error on the real part turns out to be
O(e*). The total error is O(u*/®). Only 1/5 of digits are lost.

o (replicating the computation) In general choosing as z; the kth roots
of i and performing k inversions the error becomes O(p2</(2k+1)),
i.e., only 1/2h of digits are lost



Other matrix algebras

With any trigonometric transform G we may associate the matrix algebra

{A = GDG™1, D diagonal}. These classes are closely related to Toeplitz
matrices

n+1 n+1
T-algebra generated by S = tridiag,(1,0,1)

@ Sine transform G = \/T(Sin(ij )

@ Sine transform G = 2ni1 (sin(i(2j — 1)2,77;1))

algebra generated by S = tridiag,(1,0,1) + ere]
@ There are 8 cosine transforms. For instance the DCT-IV is
G = \/2(cos (i +1/2)(j +1/2))

@ The Hartley transform G = \/%(cos(ij%) +sin(ij X))
= Hartley algebra which contains symmetric circulants



Displacement operators

Recall that S, =

Then

5,T—-TS,

01

a b
andlet T= (¢ ¢
f e
0 g f

1T — —
e a b c Zd
f e a b | |=zc
g f e a zob
_zla 21b zZ1C Zld Zz2a

o L T 0
L T 0 Q

R o o
-~ 0 L o
o L o 0

(rank at most 2)



T — S5, T — TS, displacement operator of Sylvester type

T—>T-S5, TSZ-’Z— displacement operator of Stein type

If the eigenvalues of S, are disjoint from those of S,, then the operator of
Sylvester type is invertible. Tis holds if z; # z

If the eigenvalues of S,, are different from the reciprocal of those of S,
then the operator of Sylvester type is invertible. This holds if zyzp # 1



Displacement operators: Some properties
0

For simplicity, here we consider Z := SOT — |1

. 1.0

If Ais Toeplitz then A(A) = AZ — ZA is such that

dp a2 ... adp—1 ‘ 0
1 —dn-1
A(A) = [ — |- [ 1 ] = 0 : =vwT,
. —ar
—ap
1] 0 ] ar 0
0 an—1 .
V= |, w=
: dn—1 0
0 ai ] 0 -1

Any pair V, W € F"*k such that A(A) = VWT is called displacement
generator of rank k.



Displacement operators: Some properties
Proposition.

If A€ F"™%" has first column a and A(A) = VWT, V, W € F"*K then
a1

A=L(a) +ZL(V, (Zw;), L(a)=

an ... a1

Proposition.

For A(A) = AZ — ZA it holds that A(AB) = AA(B) + A(A)B and
AAT) = -AtAA)ATT

Therefore

k
A7l = )= > LAT)LT(ZA Tw)
i=1

In particular, the inverse of a Toeplitz matrix is Toeplitz-like



Displacement operators: Some properties

The Gohberg-Semencul-Trench formula

1
T4 = = (LT (dy) = L)L (Z4))
1
X = T_lel, y= T_len7 J= [1 1}
@ The first and the last column of the inverse define all the entries

e Multiplying a vector by the inverse costs O(nlog n)



Other operators

Define A(X) = D1X — XDy, Dy = diag(d\™, ..., dS"),
g i(2) 2) W, @
D, = diag(d;™, ... ,dn "), where d; # d;*’ for i # j.

1

It holds that
u;jv;
AA) =w & 8=t
J di(l) _ dj(z)
Similarly, given n x k matrices U, V, one finds that
A(B) = UVT by — Zr=Lbinis
( ) - A LY d(l) _ d(z)

J

A is said Cauchy matrix, B is said Cauchy-like matrix



Other operators: Some properties

A nice feature of Cauchy-like matrices is that their Schur complement is
still a Cauchy-like matrix

Consider the case k = 1: partition the Cauchy-like matrix C as

uivy v

Ui Vvn 7
d{l)—d£2) dfl)—df) e d]?l)_(,[(f)
uavy
1 2
c— | &"-d?

o

Unpvy

d,(,l)fdf)

where C is still a Cauchy-like matrix. The Schur complement is given by

uvi
1 2
) -d? | 1) ()
/C\_ . d]. — d [ uivo uiVvn ]
- . EEEEE— 1) _ 2 - (1) 4(2)
: uLvy dM—df dM—df
Unvi

d,(,l)—df)



Other operators: Some properties

The entries of the Schur complement can be written in the form

v, Y e d? — ¢
., U= U V= v
d’_(l) — dj(2) di(l) B d{z) =Y d{l) B dj(2)

The values U; and V; can be computed in O(n) ops.

The computation can be repeated until the LU decomposition of C is
obtained

The algorithm is known as Gohberg-Kailath-Olshevsky (GKO) algorithm
Its overall cost is O(n?) ops

There are variants which allow pivoting



Algorithms for Toeplitz inversion

Consider A(A) = S1A — AS_1 where S is the unit circulant matrix and
S_1 is the unit (—1)-circulant matrix.

We have observed that the matrix A(A) has rank at most 2

Now, recall that S; = F*DiF, S_1 = DF*D_1FD~!, where

Dy = Diag(1,@,&2,...,@"" 1), D_y = 6Dy, D = Diag(1,6,6°,...,6"1),

6= w,l,/z = woy, SO that

A(A) = F*DFA — ADF*D_FD™!
multiply to the left by F, and to the right by DF* and discover that

D1B — BD_1 has rank at most 2, where B = FADF*

That is, B is Cauchy like of rank at most 2.

Toeplitz systems can be solved in O(n?) ops by means of the GKO
algorithm



Super fast Toeplitz solvers

The term “fast Toeplitz solvers” denotes algorithms for solving n x n
Toeplitz systems in O(n?) ops.

The term “super-fast Toeplitz solvers” denotes algorithms for solving
n x n Toeplitz systems in O(nlog? n) ops.

Idea of the Bitmead-Anderson superfast solver
Operator F(A) = A~ ZAZT = - N =

Partition the matrix as

Ax1 Ao

)

A [A1,1 Alﬂ

)



Super fast Toeplitz solver

/ 0] [A11 Aio )
A:[AMAI& 'HO 5| B=A2 A AL

Fundamental property

The Schur complement B is such that rankF(A) = rankF(B); the other
blocks of the LU factorization have almost the same displacement rank of
the matrix A

Solving two systems with the matrix A (for computing the displacement
representation of A~1) is reduced to solving two systems with the matrix
A1,1 for computing Af} and two systems with the matrix B which has
displacement rank 2, plus performing some Toeplitz-vector products

Cost:  C(n)=2C(n/2)+ O(nlogn) = C(n)= O(nlog?n)



Trigonometric matrix algebras and preconditioning

The solution of a positive definite n x n Toeplitz system A,x = b can be
approximated with the Preconditioned Conjugate Gradient (PCG) method

Some features of the Conjugate Gradient (CG) iteration:

it applies to positive definite systems Ax = b

CG generates a sequence of vectors {xx}x=012,.. converging to the
solution in n steps

each step requires a matrix-vector product plus some scalar products.
Cost for Toeplitz systems O(nlog n)

residual error: [|Axq — b|| < 70, where 6 = (/i —1)/(\/ + 1),

i = Amax/Amin is the condition number of A

convergence is fast for well-conditioned systems, slow otherwise.
However:

(Axelsson-Lindskog) Informal statement: if A has all the eigenvalues
in the interval [, 5] where 0 < o < 1 < 3 except for g outliers which
stay outside, then the residual error is bounded by 7191(_‘7 for

01 = (o1 —1)/(/p1 + 1), where py = 3/a.



Trigonometric matrix algebras and preconditioning

Features of the Preconditioned Conjugate Gradient (PCG) iteration:

@ it consists of the Conjugate Gradient method applied to the system
P~1A,x = P~1b, the matrix P is the preconditioner
@ The preconditioner P must be choosen so that:

> solving the system with matrix P is cheap

» P mimics the matrix A so that P~1A has either condition number close
to 1, or has eigenvalues in a narrow interval [«, 3] containing 1, except
for few outliers

For Toeplitz matrices P can be chosen in a trigonometric algebra. In this
case
@ each step of PCG costs O(nlog n)

@ the spectrum of P~1A is clustered around 1



Example of preconditioners

If A, is associated with the symbol a(8) = ap +2>.2; a; and a(d) >0,
then u(A,) — maxa(f)/ min a(0)

Choosing P, = C,, where C, is the symmetric circulant which minimizes
the Frobenius norm ||A, — C,||f, then the eigenvalues of B, = P, 1C, are
clustered around 1. That is, for any e there exists ng such that the
eigenvalues of P, 1A belong to [1 — ¢, 1+ €] except for a few outliers.

Effective preconditioners can be found in the 7 and in the Hartley
algebras, as well as in the class of banded Toeplitz matrices



Example of preconditioners

Consider the n x n matrix A associated with the symbol
a(f) = 6 + 2(—4 cos(#) + cos(26)), that is

6 -4 1

Its eigenvalues are distributed as the symbol a(f) and its cond is O(n*)

The eigenvalues of the preconditioned matrix P~1A where P is circulant,
are clustered around 1 with very few outliers.



Example of preconditioners

The following figure reports the log of the eigenvalues of A (in red) and of
the log of the eigenvalues of P~1A in blue

Figure: Log of the eigenvalues of A (in red) and of P~1A in blue



Wiener-Hopf factorization and matrix equations

Consider the equations
BX? + AX+C=0, CY>4+AY +B=0, (1)

where we assume that A, B, C are n X n matrices and that there exist
solutions X, Y with spectral radius p(X) =n <1, p(Y)=v < L.

The two equations can be rewritten in terms of infinite block Toeplitz
systems. For instance, the first equation takes the form

A B X —-C
C A B X2 0
C A B X3l = 1o

Similarly we can do for the second equation.



This infinite system can be solved by means of the Cyclic Reduction (CR)
method introduced by Gene Golub for the numerical solution of the
discrete Poisson equation over a rectangle and here adjusted to the infinite
block Toeplitz case. The CR technique works this way:

@ permute block rows and block columns in the above equation by
writing the even numbered ones first, followed by the odd numbered
ones and get the system

A C B X2 [0
A c . X4 0

B : A : X |~ —C
C B A X3 0




e eliminate the unknowns X2, X*, ... by taking a Schur complement
and arrive at the system

A B X —-C
G A B X3 0

G A B X5l =10

where
A1 = Ay — BoAy 1 Co — CoAy ' Bo
B1 = —BoAy ' Bo
G = —GAyt G
A = Ao — BoAy G

with Ag = A, By = B, Go = C, Ay = A.

where we assume that A is nonsingular.



This latter system has almost the block Toeplitz structure of the original
one except for the (1,1) block. Therefore we can repeat the same
procedure by generating the sequence of block triangular systems with
blocks C;, A;, B; and A; such that

~ X
i Bi X2+1 -C
G A B X3+2+1 0

where
A1 = A — BATIC — GAT'B;
Bit1 = —B/A7'B;
i1 =—GAT'G
A1 = A — BATLG

Here, we assume that all the blocks A; generated this way are nonsingular.



The first equation of this system takes the form
AX + BiX? = —C

Moreover,
to the solution X with error O((vn)?)

|Bi|| = O(I/zi) so that X; = —//Z\ITIC provides an approximation

This makes CR one of the fastest algorithms for this kind of problems

Besides this formulation given in terms of Toeplitz matrices, there is a
more elegant formulation given in functional form which provides a
generalization of the Graeffe iteration. More precisely, define

¢i(z) = z71C; + A; + zB; and find that

pi+1(2?) = pi(2) A Npi(—2),

that is a generalization to the case of matrix polynomials of the celebrated
Graeffe-Lobachewsky-Dandelin iteration (OsTROWSKI 1940)



Another nice interpretation of CR can be given in terms of the matrix
functions 1;(z) = p;(z)~! defined for all the z € C where ;(z) is
nonsingular. In fact, one can easily verify that

Vi (2) = $ilz) +¥l=z) +2wi(_z)
Yo(z) = (z7'C+A+zB)!

This formulation enables one to provide the proof of convergence
properties just by using the analyticity of the involved functions.

Moreover, the same formulation allows to define the functions (z) in the
cases where there is a break-down in the construction of the sequence
©i(z) due to the singularity of some A;.



The solutions G and R of the matrix equations in (1) provide the
Wiener-Hopf factorization of ¢(z)

o(z) = (I —zR)W(I — zflG)7 W =B+ AG
which in matrix form takes the following expression

I
A B I —R w G
C A B _ I —R w

The same technique can be extended to matrix equations of the kind
e .
> AX =0
i=—1

and to the computation of the Wiener-Hopf factorization of the function
A(z) =322 | Z'A;, that is, the block UL factorization of the infinite
block Toeplitz matrix in block Hessenberg form associated with A(z).



A recent application

In the Erlangian approximation of Markovian fluid queues, one has to
compute

Y =X = =X
o I!
where
Xo Xi ... X
X = 1| mx mblocks Xy, .., X,
Xo X
Xo

X has negative diagonal entries, nonnegative off-diagonal entries, the sum
of the entries in each row is nonpositive

Clearly, since block triangular Toeplitz matrices form a matrix algebra then
Y is still block triangular Toeplitz

What is the most convenient way to compute Y in terms of CPU time and
error?



A recent application
Embed X into an infinite block triangular block Toeplitz matrix X

obtained by completing the sequence Xg, X1, ..., Xy with zeros
Xo ... X¢ O
Xo . Xg 0
Xoo = _

Denote Yy, Yi, ... the blocks defining Y, = eXoo

Then Y is the (£ + 1) x (¢4 1) principal submatrix of Y

We can prove the following decay property
1Villoo < €@ Do Vo >1

where o = max;(—(Xo); )
This property is fundamental to prove error bounds of the following
different algorithms



A recent application

Using e-circulant matrices
Approximate X with an e-circulant matrix X(© and approximate Y with
Y(© = X We can prove that if, 8 = I[X1,- .., Xe]||oo then

1Y = Yo < 4 —1 =5+ O(lef?)
and, if € is purely imaginary then

1Y = YOl < el — 1= |e28 + O(|¢[*)

Using circulant matrices

Embed X into a K x K block circulant matrix X(5) for K > ¢ large, and
approximate Y with the K x K submatrix Y (K) of X"

We can prove the following bound

(’.—1_1) O-_KJ’_E

=y o>1

1Yo — Y, Y= Yoo < (€8 — 1)@



A recent application
Method based on Taylor expansion
The matrix Y is approximated by truncating the series expansion to r

terms
,

y(r) — le
il
i=0
10°
0---0.
Tre--
10° oo,
Fxe . ]
_ T C--se..
S
fin]
107°H
1]
-©-cw-rel
-x nw-rel
10’15 L L L L
107"° 10°° 107° 107 1072 10°

Figure: Norm-wise error, component-wise relative and absolute errors for the solution
obtained with the algorithm based on e-circulant matrices with € = /6.



A recent application

Error

10" H-©-cw-rel i

-x- nw-rel

4n 8n 16n
Block size K
Figure: Norm-wise error, component-wise relative and absolute errors for the solution
obtained with the algorithm based on circulant embedding for different values of the
embedding size K.



A recent application

- emb
10" £ |-e-epc
-=-taylor

CPU time (sec)

I
2048 4096

2 1
Block size n

Figure: CPU time of the Matlab function expm, and of the algorithms based on
e-circulant, circulant embedding, power series expansion.



A recent application
Open issues

Can we prove that the exponential of a general block Toeplitz matrix does
not differ much from a block Toeplitz matrix? Numerical experiments
confirm this fact but a proof is missing.

Can we design effective ad hoc algorithms for the case of general block
Toeplitz matrices?

Can we apply the decay properties of BEnz1, Borto 2014 7




Rank structured matrices

Informally speaking, a rank-structured matrix is a matrix where its
submatrices located in some part of its support have low rank

Example of quasi-separable matrices: the submatrices strictly contained in
the upper or in the lower triangular part have rank at most 1.

Tridiagonal matrices are quasi-separable

The inverse B = A™1 of an irreducible tridiagonal matrix A is
quasi-separable
uivi fori>j
b,'j = . .
k wiz; fori<j
that is, triu(B) = triu(wz'), tril(B) = tril(uv ')
The vectors u, v, w, z are called generators



Rank structured matrices

In general, we say that Ais (h, k) quasi-separable if the submatrices strictly
contained in the lower triangular part have rank at most h, the submatrices
strictly contained in the upper triangular part have rank at most k

If h = k we say that A is k quasi-separable

Band matrices are an example of (h, k) quasi-separable matrices and it can
be proved that their inverses still share this property

Rank structured matrices are investigated in different fields like integral
equations, statistics, vibrational analysis

There is a very wide literature on this subject, and recent books by VAN
BAREL, VANDEBRIL AND MASTRONARDI; EIDELMAN



Basic properties of rank structured matrices

Let A be k quasi-separable

@ If Ais invertible then A~! is k quasi-separable.

@ If A= LU is the LU factorization of A then L and U are
quasi-separable of rank (k,0) and (0, k), respectively

Q If A= QR is a QR factorization of A then @ is quasi-separable of
rank k and and U is quasi-separable of rank (0, 2k).

@ The matrices L;, U;, A; defined by the LR iteration A; =: L;U;,
Ai+1 = U;L; are quasi-separable of rank (k,0), (0, k), k, respectively

Moreover, there are algorithms for
@ computing A~! in O(nk?) ops;
@ solving the system Ax = b in O(nk?) ops;
© computing the LU and the QR factorization of A in O(nk?) ops;



Companion matrices

Let a(x) = >_"_; a;x' be a monic polynomial, i.e., such that a, = 1. A
companion matrix associated with a(x) is a matrix A such that
det(x/ — A) = a(x)

Among the m