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Preliminaries

Structured matrices are encountered almost everywhere

The structure of a matrix reflects the peculiarity of the mathematical
model that the matrix describes

Exploiting matrix structures is a mandatory step for designing highly
efficient ad hoc algorithms for solving computational problems

Structure analysis often reveals rich and interesting theoretical properties

Linear models lead naturally to matrices

Some structures are evident, some other structures are more hidden

Nonlinear model are usually linearized or approximated by means of linear
models



Preliminaries

Some examples:
Band matrices: locality properties, functions with compact support. Spline
interpolation, finite differences

Toeplitz matrices: shift invariance properties. Polynomial computations,
queueing models, image restoration

Displacement structures, Toeplitz-like matrices: Vandermonde, Cauchy,
Hankel, Bezout, Pick

Semi-separable and quasi-separable matrices: inverse of band matrices,
polynomial and matrix polynomial computations, integral equations

Sparse matrices: Web, Page Rank, social networks, complex networks



Preliminaries

In this short course we will limit ourselves to describe some computational
aspect of

Toeplitz matrices

Rank-structured matrices

and show some applications

The spirit is to give the flavour of the available results with pointers to the
literature

Notations:
F is a number field, for our purpose F ∈ {R, C}
N = {0, 1, 2, 3, . . .}, Z = {. . . ,−2,−1, 0, 1, 2, . . .}
T is the unit circle in the complex plane
i imaginary unit such that i2 = −1
Fm×n set of m × n matrices with entries in F



Toeplitz matrices [Otto Toeplitz 1881-1940]

Let F be a field (F ∈ {R,C})
Given a bi-infinite sequence {ai}i∈Z ∈ FZ and an integer n, the n × n
matrix Tn = (ti ,j)i ,j=1,n such that ti ,j = aj−i is called Toeplitz matrix

T5 =


a0 a1 a2 a3 a4
a−1 a0 a1 a2 a3
a−2 a−1 a0 a1 a2
a−3 a−2 a−1 a0 a1
a−4 a−3 a−2 a−1 a0


Tn is a leading principal submatrix of the (semi) infinite Toeplitz matrix
T∞ = (ti ,j)i ,j∈N, ti ,j = aj−i

T∞ =


a0 a1 a2 . . .

a−1 a0 a1
. . .

a−2 a−1
. . .

. . .
...

. . .
. . .

. . .





Toeplitz matrices
Theorem (Otto Toeplitz) The matrix T∞ defines a bounded linear
operator in `2(N), x → y = T∞x , yi =

∑+∞
j=0 aj−ixj if and only if ai are

the Fourier coefficients of a function a(z) ∈ L∞(T)

a(z) =
+∞∑

n=−∞
anz

n, an =
1

2π

∫ 2π

0
a(e iθ)e−inθdθ

In this case

‖T‖ = ess supz∈T|a(z)|, where ‖T‖ := sup
‖x‖=1

‖Tx‖

The function a(z) is called symbol associated with T∞

Example
If a(z) =

∑k
i=−k aiz

i is a Laurent polynomial, then T∞ is a banded
Toeplitz matrix which defines a bounded linear operator



Block Toeplitz matrices
Let F be a field (F ∈ {R,C})
Given a bi-infinite sequence {Ai}i∈Z, Ai ∈ Fm×m and an integer n, the
mn ×mn matrix Tn = (ti ,j)i ,j=1,n such that ti ,j = Aj−i is called block
Toeplitz matrix

T5 =


A0 A1 A2 A3 A4

A−1 A0 A1 A2 A3

A−2 A−1 A0 A1 A2

A−3 A−2 A−1 A0 A1

A−4 A−3 A−2 A−1 A0


Tn is a leading principal submatrix of the (semi) infinite block Toeplitz
matrix T∞ = (ti ,j)i ,j∈N, ti ,j = Aj−i

T∞ =


A0 A1 A2 . . .

A−1 A0 A1
. . .

A−2 A−1
. . .

. . .
...

. . .
. . .

. . .





Block Toeplitz matrices with Toeplitz blocks

The infinite block Toeplitz matrix T∞ defines a bounded linear operator in

`2(N) iff the blocks Ak = (a
(k)
i ,j ) are the Fourier coefficients of a

matrix-valued function A(z) : T→ Cm×m,
A(z) =

∑+∞
k=−∞ xkAk = (ai ,j(z))i ,j=1,m such that ai ,j(x) ∈ L∞(T)

If the blocks Ai are Toeplitz themselves we have a block Toeplitz matrix
with Toeplitz blocks

A function a(z ,w) : T× T→ C having the Fourier series
a(z ,w) =

∑+∞
i ,j=−∞ ai ,jz

iw j defines an infinite block Toeplitz matrix
T∞ = (Aj−i ) with infinite Toeplitz blocks Ak = (ak,j−i ).
T∞ defines a bounded operator iff a(z ,w) ∈ L∞

For any pair of integers n,m we may construct an n × n Toeplitz matrix
Tm,n = (Aj−i )i ,j=1,n with m ×m Toeplitz blocks Aj−i = (ak,j−i )i ,j=1,m



Multilevel Toeplitz matrices

A function a : Td → C having the Fourier expansion

a(z1, z2, . . . , zd) =
+∞∑

i1,...,id=−∞
ai1,i2,...,id z

i1
i1
z i2i2 · · · z

id
id

defines a d-multilevel Toeplitz matrix: that is a block Toeplitz matrix with
blocks that are themselves (d − 1)-multilevel Toeplitz matrices



Generalization: Toeplitz-like matrices

Let Li and Ui be lower triangular and upper triangular n × n Toeplitz
matrices, respectively, where i = 1, . . . , k and k is independent of n

A =
k∑

i=1

LiUi

is called a Toeplitz-like matrix

If k = 2, L1 = U2 = I then A is a Toeplitz matrix.

If A is an invertible Toeplitz matrix then there exist Li ,Ui , i = 1, 2 such
that

A−1 = L1U1 + L2U2

that is, A−1 is Toeplitz-like



Applications: polynomial arithmetic
Polynomial multiplication

a(x) =
∑n

i=0 aix
i , b(x) =

∑m
i=0 bix

i ,

c(x) := a(x)b(x), c(x) =
∑m+n

i=0 cix
i

c0 = a0b0
c1 = a0b1 + a1b0
. . . 

c0
c1
...
...
...
...

cm+n


=



a0
a1 a0
...

. . .
. . .

an
. . .

. . . a0
. . .

. . . a1

. . .
...
an




b0
b1
...
bm





Applications: polynomial arithmetic

Polynomial division

a(x) =
∑n

i=0 aix
i , b(x) =

∑m
i=0 bix

i , bm 6= 0

a(x) = b(x)q(x) + r(x), deg r(x) < m

q(x) quotient, r(x) remainder of the division of a(x) by b(x)



a0
a1
...
am
...
...
an


=



b0
b1 b0
...

. . .
. . .

bm
. . .

. . . b0
. . .

. . . b1

. . .
...
bm




q0
q1
...

qn−m

+



r0
...

rm−1
0
...
0


The last n −m + 1 equations form a triangular Toeplitz system



Applications: polynomial arithmetic

Polynomial division


bm bm−1 . . . b2m−n

bm
. . .

...
. . . bm−1

bm




q0
q1
...

qn−m

 =


am
am+1

...
an


Its solution provides the coefficients of the quotient.
The remainder can be computed as a difference. r0

...
rm−1

 =

 a0
...

am−1

−
 b0

...
. . .

bm−1 . . . b0


 q0

...
qn−m


(in the picture n −m = m − 1)



Applications: polynomial arithmetic
Polynomial gcd

If g(x) = gcd(a(x), b(x)), deg(g(x)) = k, deg(a(x)) = n, deg(b(x)) = m.
Then there exist polynomials r(x), s(x) of degree at most m − k − 1,
n − k − 1, respectively, such that (Bézout identity)

g(x) = a(x)r(x) + b(x)s(x)

In matrix form one has the (m + n − k)× (m + n − 2k) system

a0
a1 a0
...

. . .
. . .

an
. . .

. . . a0
. . .

. . . a1

. . .
...
an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b0
b1 b0
...

. . .
. . .

bm
. . .

. . . b0
. . .

. . . b1

. . .
...
bm





r0
r1
...

rm−k−1
s0
s1
...

sn−k−1


=



g0
...
gk
0
...
...
0


Sylvester matrix



Applications: polynomial arithmetic

Polynomial gcd

The last m + n − 2k equations provide a linear system of the kind

S

[
r
s

]
=


gk
0
...
0


where S is the (m + n − 2k)× (m + n − 2k) submatrix of the Sylvester
matrix in the previous slide formed by two Toeplitz matrices.



Applications: polynomial arithmetic
Infinite Toeplitz matrices

Let a(x), b(x) be polynomials of degree n,m with coefficients ai , bj , define
the Laurent polynomial

c(x) = a(x)b(x−1) =
n∑

i=−m
cix

i

Then the following infinite UL factorization holds
c0 . . . cn
... c0

. . .
. . .

c−m

. . .
. . .

. . .
. . .

. . .
. . .

. . .

 =


a0 . . . an

a0
. . . an
. . .

. . .
. . .





bm
bm−1 b0

...
. . .

. . .

b0
. . .

. . .
. . .

. . .
. . .

. . .
. . .


If the zeros of a(x) and b(x) lie in the unit disk, this factorization is called
Wiener-Hopf factorization. This factorization is encountered in many
applications.



Applications: polynomial arithmetic

Infinite Toeplitz matrices

The Wiener-Hopf factorization can be defined for matrix-valued functions
C (x) =

∑+∞
i=−∞ Cix

i , Ci ∈ Cm×m, in the Wiener class, i.e, such that∑+∞
i=−∞ ‖Ci‖ <∞, provided that detC (x) 6= 0 for |x | = 1.

A canonical Wiener-Hopf factorization takes the form

C (x) = A(x)B(x−1), A(x) =
∞∑
i=0

x iAi , B(x) =
∞∑
i=0

Bix
i

where A(x) and B(x) have zeros in the open unit disk.

Its matrix representation provides a block UL factorization of the infinite
block Toeplitz matrix (Cj−i )



Applications: Polynomial arithmetic


C0 C1 . . .

C−1 C0 C1
. . .

...
. . .

. . .
. . .

 =


A0 A1 . . .

A0 A1
. . .

. . .
. . .
. . .


 B0

B−1 B0
...

. . .
. . .





Applications: Queueing models
The shortest queue problem

The problem: There are m gates at the highway:

at each instant k cars arrive with a known probability

each car follows the shortest line

at each instant a car leaves its gate

what is the probability that there are ` cars in the lines waiting to be
served?

Similar model: the wireless IEEE 802.11 protocol



Applications: Queueing models
The shortest queue problem

The problem: There are m gates at the highway:

at each instant k cars arrive with a known probability

each car follows the shortest line

at each instant a car leaves its gate

what is the probability that there are ` cars in the lines waiting to be
served?

Similar model: the wireless IEEE 802.11 protocol



Applications: Queueing models

The shortest queue problem

Denoting pi ,j the probability that after one instant of time the length of
the queue changes from i to j then pi ,j = aj−i , if i ≥ m, where ak ≥ 0 is
the probability that m + k cars arrive,

∑∞
k=−m ak = 1, ak = 0 for k < −m

The problem turns into an infinite eigenvalue problem of the kind

πTP = πT ,

π ∈ R is a probability vector, i.e.,
∑
πi = 1, πi ≥ 0, and P = (pi ,j) is

almost Toeplitz in generalized upper Hessenberg form



Applications: Queueing models

P =



b1,1 b1,2 . . . . . .
...

...
...

...
bm,1 bm,2 . . . . . .
a0 a1 a2 . . .

a0 a1
. . .

. . .
. . .


where bi ,j are suitable boundary probabilities. This matrix can be
partitioned into m ×m blocks as follows

P =


B0 B1 B2 . . .

A−1 A0 A1
. . .

. . .

0 A−1 A0
. . .

. . .
...

. . .
. . .

. . .
. . .





Applications: Queueing models

Removing the first block row and the first block column of the above
matrix yields the block Hessenberg block Toeplitz matrix

P̂ =


A0 A1 A2 . . .

A−1 A0 A1
. . .

. . .

0 A−1
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .


The Wiener-Hopf factorization of P̂ − I allows to solve easily the problem
π(P − I ) = 0



Applications: Queueing models
The Wiener-Hopf factorization of P̂ − I takes the following form

P̂ − I =


U0 U1 . . .

U0 U1
. . .

. . .
. . .




I
−G I

−G I
. . .

. . .


where G is the solution of the following matrix equation

X =
+∞∑
i=−1

AiX
i

having nonnegative entries and spectral radius ρ(X ) = 1.
A way for solving this equation is to reduce it to the following infinite
linear block Toeplitz system

A0 − I A1 A2 . . .
A−1 A0 − I A1 . . .

A−1 A0 − I . . .
. . .

. . .



X
X 2

X 3

...

 =


−A−1

0
0
...

 .



Applications: Image restoration
In the image restoration models, the blur of a single point of an image is
independent of the location of the point and is defined by the
Point-Spread Function (PSF)

→

The relation between the blurred and noisy image, stored as a vector b
and the real image, represented by a vector x has the form

Ax = b − noise

Shift invariance of the PSF ⇒ A is block Toeplitz with Toeplitz blocks

Due to the local effect of the blur, the PSF has compact support so that A
is block banded with banded blocks

Typically, A is ill-conditioned so that solving the system Ax = b obtained
by ignoring the noise provides a highly perturbed solution



For instance the PSF which transforms a unit point of light into the 3× 3

square 1
15

1 2 1
2 3 2
1 2 1

 leads to the following block Toeplitz matrix

T =
1

15


B A
A B A

. . .
. . .

. . .

A B A
A B


where

A =


2 1
1 2 1

. . .
. . .

. . .

1 2 1
1 2

 , B =


3 2
2 3 2

. . .
. . .

. . .

2 3 2
2 3


This way, restoring a blurred image is reduced to solving a block banded
block Toeplitz systems with banded Toeplitz blocks. According to the
boundary conditions assumed in the blurring model, the matrix can take
additional specific structures.



Applications: Differential equations
The numerical treatment of linear partial differential equations with
constant coefficients by means of the finite difference technique leads to
linear systems where the matrix is block Toeplitz with Toeplitz blocks

For instance the discretization of the Laplace operator ∆u(x , y) applied to
a function u(x , y) defined over [0, 1]× [0, 1]

−∆u(x , y) = −(
∂2u

∂x2
+
∂2u

∂y2
) =

1

h2
(4ui,j −ui+1,j −ui−1,j −ui,j+1,−ui,j−1) +O(h2)

for xi = ih, yj = jh, i , j = 1, n, h = 1/(n + 1), ui ,j = u(xi , yj) leads to the
matrix

L = − 1

h2


A −I

−I A
. . .

. . .
. . . −I
−I A

 , A =


4 −1

−1 4
. . .

. . .
. . . −1
−1 4

 .

The symbol associated with L is a(x , y) = 4− x − x−1 − y − y−1



Asymptotic spectral properties and preconditioning

Definition: Let f (x) : [0, 2π]→ R be a Lebesgue integrable function. A

sequence {λ(n)i }i=1,n, n ∈ N, λ
(n)
i ∈ R is distributed as f (x) if

lim
n→∞

1

n

n∑
i=1

F (λ
(n)
i ) =

1

2π

∫ 2π

0
F (f (x))dx

for any continuous F (x) with bounded support.

Example λ
(n)
i = f (2iπ/n), i = 1, . . . , n, n ∈ N is distributed as f (x).

With abuse of notation, given a(z) : T→ R we write a(θ) in place of
a(x(θ)), x(θ) = cos θ + i sin θ ∈ T



Asymptotic spectral properties and preconditioning

Assume that

the symbol a(θ) : [0 : 2π]→ R is a real valued function so that
a(θ) = a0 + 2

∑∞
k=1 ak cos kθ

Tn is the sequence of Toeplitz matrices associated with a(θ), i.e.,
Tn = (a|j−i |)i ,j=1,n; observe that T (n) is symmetric

ma = ess infθ∈[0,2π]a(θ), Ma = ess supθ∈[0,2π]a(θ) are the essential
infimum and the essential supremum

λ
(n)
1 ≤ λ

(n)
2 ≤ · · · ≤ λ

(n)
n are the eigenvalues of Tn sorted in

nondecreasing order (observe that Tn is real symmetric).

Then



Asymptotic spectral properties and preconditioning

1 if ma < Ma then λ
(n)
i ∈ (ma,Ma) for any n and i = 1, . . . , n; if

ma = Ma then a(θ) is constant and Tn(a) = maIn;

2 limn→∞ λ
(n)
1 = ma, limn→∞ λ

(n)
n = Ma;

3 the eigenvalues sequence {λ(n)1 , . . . , λ
(n)
n } are distributed as a(θ)

Moreover

if a(x) ≥ 0 the condition number µ(n) = ‖T (n)‖2‖(T (n))−1‖2 of T (n)

is such that limn→∞ µ
(n) = Ma/ma

a(θ) > 0 implies that T (n) is uniformly well conditioned

a(θ) = 0 for some θ implies that limn→∞ µn =∞



Asymptotic spectral properties and preconditioning

In red: eigenvalues of the Toeplitz matrix Tn associated with the symbol
f (θ) = 2− 2 cos θ − 1

2 cos(2θ) for n = 10, n = 20

In blue: graph of the symbol. As n grows, the values λ
(n)
i for i = 1, . . . , n tend to

be shaped as the graph of the symbol



Asymptotic spectral properties and preconditioning
The same asymptotic property holds true for

block Toeplitz matrices generated by a matrix valued symbol A(x)

block Toeplitz matrices with Toeplitz blocks generated by a bivariate
symbol a(x , y)

multilevel block Toeplitz matrices generated by a multivariate symbol
a(x1, x2, . . . , xd)

singular values of any of the above matrix classes

The same results hold for the product P−1n Tn where Tn and Pn are
associated with symbols a(θ), p(θ), respectively

eigenvalues are distributed as a(θ)/p(θ)

(preconditioning) given a(θ) ≥ 0 such that a(θ0) = 0 for some θ0; if
there exists a trigonometric polynomial p(θ) =

∑k
i=−k pk cos(kθ)

such that p(θ0) = 0, limθ→θ0 a(θ)/p(θ) 6= 0 then P−1n Tn has
condition number uniformly bounded by a constant



Trigonometric matrix algebras and Fast multiplication

Let ωn = cos 2π
n + i sin 2π

n be a primitive nth root of 1, that is, such that
ωn
n = 1 and {1, ωn, . . . , ω

n−1
n } has cardinality n.

Define the n × n matrix Ωn = (ωij
n )i ,j=0,n−1, Fn = 1√

n
Ωn.

One can easily verify that F ∗nFn = I that is, Fn is a unitary matrix.

For x ∈ Cn define

y = DFT(x) = 1
nΩ∗nx the Discrete Fourier Transform (DFT) of x

x = IDFT(y) = Ωy the Inverse DFT (IDFT) of y

Remark: cond2(Fn) = ‖Fn‖2‖F−1n ‖2 = 1, cond2(Ωn) = 1

This shows that the DFT and IDFT are numerically well conditioned when
the perturbation errors are measured in the 2-norm.



Trigonometric matrix algebras and Fast multiplication
If n is an integer power of 2 then the IDFT of a vector can be computed
with the cost of 3

2n log2 n arithmetic operations by means of FFT

FFT is backward numerically stable in the 2-norm. That is, if x̃ is the
value computed in floating point arithmetic with precision µ in place of
x = IDFT(y) then

‖x − x̃‖2 ≤ µγ‖x‖2 log2 n

for a moderate constant γ

norm-wise well conditioning of DFT and the norm-wise stability of FFT
make this tool very effective for most numerical computations.

Unfortunately, the norm-wise stability of FFT does not imply the
component-wise stability. That is, the inequality

|xi − x̃i | ≤ µγ|xi | log2 n

is not generally true for all the components xi .



Trigonometric matrix algebras and Fast multiplication

This is a drawback of DFT and of FFT when numerically used for symbolic
computations since, in order to guarantee a sufficiently accurate relative
precision in the result, one has to choose a suitable value of the machine
precision of the floating point arithmetic whose value depends on the ratio
between the maximum and the minimum absolute value of the output.

This fact implies that the complexity bounds are depending on this ratio.
When using FFT in this framework one should be aware of this fact.

There are algorithms for computing the DFT in O(n log n) ops whatever is
the value of n.

DFT and FFT can be defined over finite fields where there exists a
primitive root of 1. For instance, Z17 is a finite field and 3 is a primitive
16th root of 1. DFT and FFT can be defined over certain rings.



An example: Graeffe iteration
Let p(x) =

∑n
i=0 pix

i be a polynomial of degree n such that p(x) has
zeros xi , i = 1, . . . , n such that

|x1| < · · · < |xm| < 1 < |xm+1| < · · · < |xn|

With p0(x) := p(x) define the sequence (Graeffe iteration)

q(x2) = pk(x)pk(−x), pk+1(x) = q(x)/qm, for k = 0, 1, 2, , . . .

The zeros of pk(x) are x2
k

i , so that limk→∞ pk(x) = xm

If pk(x) =
∑n

i=0 p
(k)
i x i then

lim
k→∞

|p(k)n−1/p
(k)
n |1/2

k
= |xn|

moreover, convergence is very fast. Similar equations hold for |xi |



An example: Graeffe iteration

lim
k→∞

|p(k)n−1/p
(k)
n |1/2

k
= |xn|

On the other hand (if m < n − 1)

lim
k→∞

|p(k)n−1| = lim
k→∞

|p(k)n | = 0

with double exponential convergence
Computing pk(x) given pk−1(x) by using FFT (evaluation interpolation at
the roots of unity) costs O(n log n) ops.

But as soon as |p(k)n | and |p(k)n−1| are below the machine precision the
relative error in these two coefficients is greater than 1. That is no digit is
correct in the computed estimate of |xn|.



An example: Graeffe iteration

Figure: The values of log10 |p
(6)
i | for i = 0, . . . , n for the polynomial obtained

after 6 Graeffe steps starting from a random polynomial of degree 100. In red the
case where the coefficients are computed with FFT, in blue the coefficients
computed with the customary algorithm



An example: Graeffe iteration

step custom FFT

1 1.40235695 1.40235695
2 2.07798429 2.07798429
3 2.01615072 2.01615072
4 2.01971626 2.01857621
5 2.01971854 1.00375471
6 2.01971854 0.99877589



An example: Graeffe iteration

A specific analysis shows that in order to have d correct digits in the
computed approximation, one must use a floating point arithmetic with c
digits, where

c = d ∗
(

1 + γ
log(|xn|/|x1|)

log(|xn|/|xn−1|)

)
, γ > 1

Problems are encountered if |xn| ≈ |xn−1| or |xn/x1| is large.

In the situation where the separation from two consecutive zeros is
uniform, i.e., |xi+1/xi | = |xn/x1|1/n then the number of digits is

c = d ∗ (1 + γn)

O(n log n) ops with O(nd) digits more expensive than O(n2) ops with d digits



Trigonometric matrix algebras and Fast multiplication

There are many other useful trigonometric transforms that can be
computed fast

1 Sine transforms (8 different types), example: S = (
√

2
n+1 sin πij

n+1)

2 Cosine transforms (8 different types), example

C = (
√

2
n cos π(2i+1)(2j+1)

4n )

3 Hartley transform H =
√

1
n (cos 2πij

n + sin 2πij
n )



Trigonometric matrix algebras and Fast multiplication
Given the row vector [a0, a1, . . . , an−1], the n × n matrix

A = (aj−i mod n)i,j=1,n =


a0 a1 . . . an−1

an−1 a0
. . .

...
...

. . .
. . . a1

a1 . . . an−1 a0


is called the circulant matrix associated with [a0, a1, . . . , an−1] and is

denoted by Circ(a0, a1, . . . , an−1).

If ai = Ai are m ×m matrices we have a block circulant matrix

Any circulant matrix A can be viewed as a polynomial with coefficients ai
in the unit circulant matrix S defined by its first row (0, 1, 0, . . . , 0)

A =
n−1∑
i=0

aiS
i , S =


0 1

.

.

.
. . .

. . .

0
. . . 1

1 0 . . . 0


Clearly, Sn − I = 0 so that circulant matrices form a matrix algebra
isomorphic to the algebra of polynomials with the product modulo xn − 1



Trigonometric matrix algebras and Fast multiplication

If A is a circulant matrix with first row rT and first column c , then

A =
1

n
Ω∗n Diag(w)Ωn = F ∗Diag(w)F

where w = Ωnc = Ω∗nr .

Consequences

Ax = DFTn(IDFTn(c) ∗ IDFTn(x))

where “∗” denotes the Hadamard, or component-wise product of vectors.

The product Ax of an n × n circulant matrix A and a vector x , as well as
the product of two circulant matrices can be computed by means of two
IDFTs and a DFT of length n in O(n log n) ops

A−1 =
1

n
Ω∗n Diag(w−1)Ωn,

The inverse of a circulant matrix can be computed in O(n log n) ops



Trigonometric matrix algebras and Fast multiplication

The definition of circulant matrix is naturally extended to block matrices
where ai = Ai are m ×m matrices.

The inverse of a block circulant matrix can be computed by means of 2m2

IDFTs of length n and n inversions of m ×m matrices for the cost of
O(m2n log n + nm3)

The product of two block circulant matrices can be computed by means of
2m2 IDFTs, m2 DFT of length n and n multiplications of m ×m matrices
for the cost of O(m2n log n + nm3).



z-circulant matrices
A generalization of circulant matrices is provided by the class of
z-circulant matrices.

Given a scalar z 6= 0 and the row vector [a0, a1, . . . , an−1], the n× n matrix

A =


a0 a1 . . . an−1

zan−1 a0
. . .

...
...

. . .
. . . a1

za1 . . . zan−1 a0


is called the z-circulant matrix associated with [a0, a1, . . . , an−1].

Denote by Sz the z-circulant matrix whose first row is [0, 1, 0, . . . , 0], i.e.,

Sz =



0 1 0 . . . 0

0 0 1
. . .

...
...

. . .
. . .

. . . 0

0
. . .

. . . 0 1
z 0 . . . 0 0


,



z-circulant matrices

Any z-circulant matrix can be viewed as a polynomial in Sz .

A =
n−1∑
i=0

aiS
i
z .

Szn = zDzSD
−1
z , Dz = Diag(1, z , z2, . . . , zn−1),

where S is the unit circulant matrix.

If A is the zn-circulant matrix with first row rT and first column c
then

A =
1

n
DzΩ∗n Diag(w)ΩnD

−1
z ,

with w = Ω∗nDz r = ΩnD
−1
z c.

Multiplication of z-circulants costs 2 IDFTs, 1 DFT and a scaling

Inversion of a z-circulant costs 1 IDFT, 1 DFT, n inversions and a
scaling

The extension to block matrices trivially applies to z-circulant
matrices.



Embedding Toeplitz matrices into circulants

An n × n Toeplitz matrix A = (ti ,j), ti ,j = aj−i , can be embedded into the
2n × 2n circulant matrix B whose first row is
[a0, a1, . . . , an−1, ∗, a−n+1, . . . , a−1], where ∗ denotes any number.

B =


a0 a1 a2 ∗ a−2 a−1
a−1 a0 a1 a2 ∗ a−2
a−2 a−1 a0 a1 a2 ∗
∗ a−2 a−1 a0 a1 a2
a2 ∗ a−2 a−1 a0 a1
a1 a2 ∗ a−2 a−1 a0

 .

More generally, an n × n Toeplitz matrix can be embedded into a q × q
circulant matrix for any q ≥ 2n − 1.

Consequence: the product y = Ax of an n × n Toeplitz matrix A and a
vector x can be computed in O(n log n) ops.



Embedding Toeplitz matrices into circulants

y = Ax , [
y
w

]
= B

[
x
0

]
=

[
A H
H A

] [
x
0

]
=

[
Ax
Hx

]

embed the Toeplitz matrix A into the circulant matrix B

embed the vector x into the vector v = [ x0 ]

compute the product u = Bv

set y = (u1, . . . , un)T

Cost: 3 FFTs of order 2n, that is O(n log n) ops medskip
Similarly, the product y = Ax of an n × n block Toeplitz matrix with
m×m blocks and a vector x ∈ Cmn can be computed in O(m2n log n) ops.



Triangular Toeplitz matrices
Let Z = (zi ,j)i ,j=1,n be the n × n matrix

Z =


0 0

1
. . .
. . .

. . .

0 1 0

 ,

Clearly Zn = 0, moreover, given the polynomial a(x) =
∑n−1

i=0 aix
i , the

matrix a(Z ) =
∑n−1

i=0 aiZ
i is a lower triangular Toeplitz matrix defined by

its first column (a0, a1, . . . , an−1)T

a(Z ) =


a0 0
a1 a0
...

. . .
. . .

an−1 . . . a1 a0

 .

The set of lower triangular Toeplitz matrices forms an algebra isomorphic
to the algebra of polynomials with the product modulo xn.



Inverting a triangular Toeplitz matrix
The inverse matrix T−1n is still a lower triangular Toeplitz matrix defined by
its first column vn. It can be computed by solving the system Tnvn = e1

Let n = 2h, h a positive integer, and partition Tn into h × h blocks

Tn =

[
Th 0

Wh Th

]
,

where Th, Wh are h × h Toeplitz matrices and Th is lower triangular.

T−1n =

[
T−1h 0

−T−1h WhT
−1
h T−1h

]
.

The first column vn of T−1n is given by

vn = T−1n e1 =

[
vh

−T−1h Whvh

]
=

[
vh

−L(vh)Whvh

]
,

where L(vh) = T−1h is the lower triangular Toeplitz matrix whose first
column is vh.



Inverting a triangular Toeplitz matrix
The same relation holds if Tn is block triangular Toeplitz. In this case, the
elements a0, . . . , an−1 are replaced with the m ×m blocks A0, . . . ,An−1
and vn denotes the first block column of T−1n .

Recursive algorithm for computing vn (block case)

Input: n = 2k , A0, . . . ,An−1

Output: vn

Computation:
1 Set v1 = A−10
2 For i = 0, . . . , k − 1, given vh, h = 2i :

1 Compute the block Toeplitz matrix-vector products w = Whvh and
u = −L(vh)w .

2 Set

v2h =

[
vh
u

]
.

Cost: O(n log n) ops



z-circulant and triangular Toeplitz matrices

If ε = |z | is “small” then a z-circulant approximates a triangular Toeplitz


a0 a1 . . . an−1

zan−1 a0
. . .

...
...

. . .
. . . a1

za1 . . . zan−1 a0

 ≈

a0 a1 . . . an−1

a0
. . .

...
. . . a1

a0


Inverting a z-circulant is less expensive than inverting a triangular Toeplitz
(roughly by a factor of 10/3)

The advantage is appreciated in a parallel model of computation, over
multithreading architectures



z-circulant and triangular Toeplitz matrices

Numerical algorithms for approximating the inverse of (block) triangular
Toeplitz matrices. Main features:

Total error=approximation error + rounding errors

Rounding errors grow as µε−1, approximation errors are polynomials
in z

the smaller ε the better the approximation, but the larger the
rounding errors

good compromise: choose ε such that ε = µε−1. This implies that the
total error is O(µ1/2): half digits are lost

Different strategies have been designed to overcome this drawback



z-circulant and triangular Toeplitz matrices

Assume to work over R
(interpolation) The approximation error is a polynomial in z .
Approximating twice the inverse with, say z = ε and z = −ε and
taking the arithmetic mean of the results the approximation error
becomes a polynomial in ε2.
⇒ total error= O(µ2/3)

(generalization) Approximate k times the inverse with values
z1 = εωi

k , i = 0, . . . , k − 1. Take the arithmetic mean of the results
and get the error O(εk).
⇒ total error= O(µk/(k+1)).
Remark: for k = n the approximation error is zero



z-circulant and triangular Toeplitz matrices

(Higham trick) Choose z = iε then the approximation error affecting
the real part of the computed approximation is O(ε2).
⇒ total error= O(µ2/3), i.e., only 1/3 of digits are lost

(combination) Choose z1 = ε(1 + i)/
√

2 and z2 = −z1; apply the
algorithm with z = z1 and z = z2; take the arithmetic mean of the
results. The approximation error on the real part turns out to be
O(ε4). The total error is O(µ4/5). Only 1/5 of digits are lost.

(replicating the computation) In general choosing as zj the kth roots
of i and performing k inversions the error becomes O(µ2k/(2k+1)),
i.e., only 1/2h of digits are lost



Other matrix algebras

With any trigonometric transform G we may associate the matrix algebra
{A = GDG−1, D diagonal}. These classes are closely related to Toeplitz
matrices

Sine transform G =
√

2
n+1(sin(ij π

n+1))

τ -algebra generated by S = tridiagn(1, 0, 1)

Sine transform G =
√

4
2n+1(sin(i(2j − 1) π

2n+1))

algebra generated by S = tridiagn(1, 0, 1) + e1e
T
1

There are 8 cosine transforms. For instance the DCT-IV is

G =
√

2
n (cos πn (i + 1/2)(j + 1/2))

The Hartley transform G =
√

1
n (cos(ij πn ) + sin(ij πn ))

⇒ Hartley algebra which contains symmetric circulants



Displacement operators

Recall that Sz =

 0 1

. . .
. . .
. . . 1

z 0

 and let T =

a b c d
e a b c
f e a b
g f e a


Then

Sz1T − TSz2 =

 ↑

−
 →



=


e a b c
f e a b
g f e a
z1a z1b z1c z1d

−

z2d a b c
z2c e a b
z2b f e a
z2a g f e



=

 ∗... 0
∗ . . . ∗

 = enu
T + veT1 (rank at most 2)



T → Sz1T − TSz2 displacement operator of Sylvester type

T → T − Sz1TS
T
z2 displacement operator of Stein type

If the eigenvalues of Sz1 are disjoint from those of Sz2 then the operator of
Sylvester type is invertible. Tis holds if z1 6= z2

If the eigenvalues of Sz1 are different from the reciprocal of those of Sz2
then the operator of Sylvester type is invertible. This holds if z1z2 6= 1



Displacement operators: Some properties

For simplicity, here we consider Z := ST
0 =


0

1
. . .
. . .

. . .
1 0


If A is Toeplitz then ∆(A) = AZ − ZA is such that

∆(A) =

 ←

−
 ↓

 =


a1 a2 . . . an−1 0

−an−1
0

...
−a2
−a1

 = VW T ,

V =


1 0
0 an−1
...

...
0 a1

 , W =


a1 0
...

...
an−1 0

0 −1


Any pair V ,W ∈ Fn×k such that ∆(A) = VW T is called displacement
generator of rank k .



Displacement operators: Some properties
Proposition.

If A ∈ Fn×n has first column a and ∆(A) = VW T , V ,W ∈ Fn×k then

A = L(a) +
k∑

i=1

L(vi )L
T (Zwi ), L(a) =

a1... . . .

an . . . a1


Proposition.

For ∆(A) = AZ − ZA it holds that ∆(AB) = A∆(B) + ∆(A)B and

∆(A−1) = −A−1∆(A)A−1

Therefore

A−1 = L(A−1e1)−
k∑

i=1

L(A−1vi )L
T (ZA−Twi )

In particular, the inverse of a Toeplitz matrix is Toeplitz-like



Displacement operators: Some properties

The Gohberg-Semencul-Trench formula

T−1 =
1

x1

(
L(x)LT (Jy)− L(Zy)LT (ZJx)

)
,

x = T−1e1, y = T−1en, J =
[

1
..
.

1

]
The first and the last column of the inverse define all the entries

Multiplying a vector by the inverse costs O(n log n)



Other operators

Define ∆(X ) = D1X − XD2, D1 = diag(d
(1)
1 , . . . , d

(1)
n ),

D2 = diag(d
(2)
1 , . . . , d

(2)
n ), where d

(1)
i 6= d

(2)
j for i 6= j .

It holds that

∆(A) = uvT ⇔ ai ,j =
uivj

d
(1)
i − d

(2)
j

Similarly, given n × k matrices U,V , one finds that

∆(B) = UV T ⇔ bi ,j =

∑k
r=1 ui ,rvj ,r

d
(1)
i − d

(2)
j

A is said Cauchy matrix, B is said Cauchy-like matrix



Other operators: Some properties
A nice feature of Cauchy-like matrices is that their Schur complement is
still a Cauchy-like matrix
Consider the case k = 1: partition the Cauchy-like matrix C as

C =


u1v1

d
(1)
1 −d

(2)
1

u1v2
d
(1)
1 −d

(2)
2

. . . u1vn

d
(1)
1 −d

(2)
n

u2v1
d
(1)
2 −d

(2)
1

... Ĉ
unv1

d
(1)
n −d

(2)
1


where Ĉ is still a Cauchy-like matrix. The Schur complement is given by

Ĉ −


u2v1

d
(1)
2 −d

(2)
1

...
unv1

d
(1)
n −d

(2)
1

 d
(1)
1 − d

(2)
1

u1v1

[
u1v2

d
(1)
1 −d

(2)
2

. . . u1vn

d
(1)
1 −d

(2)
n

]



Other operators: Some properties

The entries of the Schur complement can be written in the form

ûi v̂j

d
(1)
i − d

(2)
j

, ûi = ui
d
(1)
1 − d

(1)
i

d
(1)
i − d

(2)
1

, v̂j = vj
d
(2)
j − d

(2)
1

d
(1)
1 − d

(2)
j

.

The values ûi and v̂j can be computed in O(n) ops.

The computation can be repeated until the LU decomposition of C is
obtained

The algorithm is known as Gohberg-Kailath-Olshevsky (GKO) algorithm

Its overall cost is O(n2) ops

There are variants which allow pivoting



Algorithms for Toeplitz inversion
Consider ∆(A) = S1A− AS−1 where S1 is the unit circulant matrix and
S−1 is the unit (−1)-circulant matrix.

We have observed that the matrix ∆(A) has rank at most 2

Now, recall that S1 = F ∗D1F , S−1 = DF ∗D−1FD
−1, where

D1 = Diag(1, ω̄, ω̄2, . . . , ω̄n−1), D−1 = δD1, D = Diag(1, δ, δ2, . . . , δn−1),

δ = ω
1/2
n = ω2n so that

∆(A) = F ∗D1FA− ADF ∗D−1FD
−1

multiply to the left by F , and to the right by DF ∗ and discover that

D1B − BD−1 has rank at most 2, where B = FADF ∗

That is, B is Cauchy like of rank at most 2.

Toeplitz systems can be solved in O(n2) ops by means of the GKO
algorithm



Super fast Toeplitz solvers

The term “fast Toeplitz solvers” denotes algorithms for solving n × n
Toeplitz systems in O(n2) ops.

The term “super-fast Toeplitz solvers” denotes algorithms for solving
n × n Toeplitz systems in O(n log2 n) ops.

Idea of the Bitmead-Anderson superfast solver

Operator F (A) = A− ZAZT =

 −
 ↘

 =

∗ . . . ∗
...
∗

.

Partition the matrix as

A =

[
A1,1 A1,2

A2,1 A2,2

]



Super fast Toeplitz solver

A =

[
I 0

A2,1A
−1
1,1 I

] [
A1,1 A1,2

0 B

]
, B = A2,2 − A2,1A

−1
1,1A1,2

Fundamental property

The Schur complement B is such that rankF (A) = rankF (B); the other
blocks of the LU factorization have almost the same displacement rank of
the matrix A

Solving two systems with the matrix A (for computing the displacement
representation of A−1) is reduced to solving two systems with the matrix
A1,1 for computing A−11,1 and two systems with the matrix B which has
displacement rank 2, plus performing some Toeplitz-vector products

Cost: C (n) = 2C (n/2) + O(n log n) ⇒ C (n) = O(n log2 n)



Trigonometric matrix algebras and preconditioning
The solution of a positive definite n × n Toeplitz system Anx = b can be
approximated with the Preconditioned Conjugate Gradient (PCG) method

Some features of the Conjugate Gradient (CG) iteration:

it applies to positive definite systems Ax = b

CG generates a sequence of vectors {xk}k=0,1,2,... converging to the
solution in n steps

each step requires a matrix-vector product plus some scalar products.
Cost for Toeplitz systems O(n log n)

residual error: ‖Axk − b‖ ≤ γθk , where θ = (
√
µ− 1)/(

√
µ+ 1),

µ = λmax/λmin is the condition number of A

convergence is fast for well-conditioned systems, slow otherwise.
However:

(Axelsson-Lindskog) Informal statement: if A has all the eigenvalues
in the interval [α, β] where 0 < α < 1 < β except for q outliers which

stay outside, then the residual error is bounded by γ1θ
k−q
1 for

θ1 = (
√
µ1 − 1)/(

√
µ1 + 1), where µ1 = β/α.



Trigonometric matrix algebras and preconditioning

Features of the Preconditioned Conjugate Gradient (PCG) iteration:

it consists of the Conjugate Gradient method applied to the system
P−1Anx = P−1b, the matrix P is the preconditioner

The preconditioner P must be choosen so that:
I solving the system with matrix P is cheap
I P mimics the matrix A so that P−1A has either condition number close

to 1, or has eigenvalues in a narrow interval [α, β] containing 1, except
for few outliers

For Toeplitz matrices P can be chosen in a trigonometric algebra. In this
case

each step of PCG costs O(n log n)

the spectrum of P−1A is clustered around 1



Example of preconditioners

If An is associated with the symbol a(θ) = a0 + 2
∑∞

i=1 ai and a(θ) ≥ 0,
then µ(An)→ max a(θ)/min a(θ)

Choosing Pn = Cn, where Cn is the symmetric circulant which minimizes
the Frobenius norm ‖An − Cn‖F , then the eigenvalues of Bn = P−1n Cn are
clustered around 1. That is, for any ε there exists n0 such that the
eigenvalues of P−1n A belong to [1− ε, 1 + ε] except for a few outliers.

Effective preconditioners can be found in the τ and in the Hartley
algebras, as well as in the class of banded Toeplitz matrices



Example of preconditioners
Consider the n × n matrix A associated with the symbol
a(θ) = 6 + 2(−4 cos(θ) + cos(2θ)), that is

A =


6 −4 1
−4 6 −4 1

1 −4
. . .

. . .
. . .

. . .
. . .

. . .
. . .


Its eigenvalues are distributed as the symbol a(θ) and its cond is O(n4)

The eigenvalues of the preconditioned matrix P−1A, where P is circulant,
are clustered around 1 with very few outliers.



Example of preconditioners
The following figure reports the log of the eigenvalues of A (in red) and of
the log of the eigenvalues of P−1A in blue

Figure: Log of the eigenvalues of A (in red) and of P−1A in blue



Wiener-Hopf factorization and matrix equations

Consider the equations

BX 2 + AX + C = 0, CY 2 + AY + B = 0, (1)

where we assume that A,B,C are n × n matrices and that there exist
solutions X ,Y with spectral radius ρ(X ) = η < 1, ρ(Y ) = ν < 1.

The two equations can be rewritten in terms of infinite block Toeplitz
systems. For instance, the first equation takes the form

A B
C A B

C A B
. . .

. . .
. . .



X
X 2

X 3

...

 =


−C

0
0
...

 .

Similarly we can do for the second equation.



This infinite system can be solved by means of the Cyclic Reduction (CR)
method introduced by Gene Golub for the numerical solution of the
discrete Poisson equation over a rectangle and here adjusted to the infinite
block Toeplitz case. The CR technique works this way:

permute block rows and block columns in the above equation by
writing the even numbered ones first, followed by the odd numbered
ones and get the system

A C B

A C
. . .

. . .
. . .

B A
C B A

. . .
. . .

. . .





X 2

X 4

...

X
X 3

...


=



0
0
...

−C
0
...





eliminate the unknowns X 2,X 4, . . . by taking a Schur complement
and arrive at the system

Â1 B1

C1 A1 B1

C1 A1 B1

. . .
. . .

. . .



X
X 3

X 5

...

 =


−C

0
0
...


where

A1 = A0 − B0A
−1
0 C0 − C0A

−1
0 B0

B1 = −B0A
−1
0 B0

C1 = −C0A
−1
0 C0

Â1 = Â0 − B0A
−1
0 C0

with A0 = A,B0 = B,C0 = C , Â0 = A.

where we assume that A is nonsingular.



This latter system has almost the block Toeplitz structure of the original
one except for the (1, 1) block. Therefore we can repeat the same
procedure by generating the sequence of block triangular systems with
blocks Ci ,Ai ,Bi and Âi such that


Âi Bi

Ci Ai Bi

Ci Ai Bi

. . .
. . .

. . .




X

X 2i+1

X 2∗2i+1

X 3∗2i+1

...

 =


−C

0
0
...


where

Ai+1 = Ai − BiA
−1
i Ci − CiA

−1
i Bi

Bi+1 = −BiA
−1
i Bi

Ci+1 = −CiA
−1
i Ci

Âi+1 = Âi − BiA
−1
i Ci

Here, we assume that all the blocks Ai generated this way are nonsingular.



The first equation of this system takes the form

ÂiX + BiX
2i+1 = −C

Moreover, ‖Bi‖ = O(ν2
i
) so that Xi = −Â−1i C provides an approximation

to the solution X with error O((νη)2
i
)

This makes CR one of the fastest algorithms for this kind of problems

Besides this formulation given in terms of Toeplitz matrices, there is a
more elegant formulation given in functional form which provides a
generalization of the Graeffe iteration. More precisely, define
ϕi (z) = z−1Ci + Ai + zBi and find that

ϕi+1(z2) = ϕi (z)A−1i ϕi (−z),

that is a generalization to the case of matrix polynomials of the celebrated
Graeffe-Lobachewsky-Dandelin iteration (Ostrowski 1940)



Another nice interpretation of CR can be given in terms of the matrix
functions ψi (z) = ϕi (z)−1 defined for all the z ∈ C where ϕi (z) is
nonsingular. In fact, one can easily verify that

ψi+1(z2) =
ψi (z) + ψi (−z)

2
ψ0(z) = (z−1C + A + zB)−1

This formulation enables one to provide the proof of convergence
properties just by using the analyticity of the involved functions.

Moreover, the same formulation allows to define the functions ψi (z) in the
cases where there is a break-down in the construction of the sequence
ϕi (z) due to the singularity of some Ai .



The solutions G and R of the matrix equations in (1) provide the
Wiener-Hopf factorization of ϕ(z)

ϕ(z) = (I − zR)W (I − z−1G ), W = B + AG

which in matrix form takes the following expression

A B
C A B

. . .
. . .

. . .

 =

I −R
I −R

. . .
. . .


W W

. . .




I
−G I

−G
. . .
. . .


The same technique can be extended to matrix equations of the kind

∞∑
i=−1

AiX
i = 0

and to the computation of the Wiener-Hopf factorization of the function
A(z) =

∑∞
i=−1 z

iAi , that is, the block UL factorization of the infinite
block Toeplitz matrix in block Hessenberg form associated with A(z).



A recent application
In the Erlangian approximation of Markovian fluid queues, one has to
compute

Y = eX =
∞∑
i=0

1

i !
X i

where

X =


X0 X1 . . . X`

. . .
. . .

...
X0 X1

X0

 , m ×m blocks X0, . . . ,X`,

X has negative diagonal entries, nonnegative off-diagonal entries, the sum
of the entries in each row is nonpositive

Clearly, since block triangular Toeplitz matrices form a matrix algebra then
Y is still block triangular Toeplitz

What is the most convenient way to compute Y in terms of CPU time and
error?



A recent application
Embed X into an infinite block triangular block Toeplitz matrix X∞
obtained by completing the sequence X0,X1, . . . ,X` with zeros

X∞ =


X0 . . . X` 0 . . . . . .

X0
. . . X` 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .


Denote Y0,Y1, . . . the blocks defining Y∞ = eX∞

Then Y is the (`+ 1)× (`+ 1) principal submatrix of Y∞

We can prove the following decay property

‖Yi‖∞ ≤ eα(σ
`−1−1)σ−i , ∀σ > 1

where α = maxj(−(X0)j ,j).
This property is fundamental to prove error bounds of the following
different algorithms



A recent application
Using ε-circulant matrices
Approximate X with an ε-circulant matrix X (ε) and approximate Y with
Y (ε) = eX

(ε)
. We can prove that if, β = ‖[X1, . . . ,X`]‖∞ then

‖Y − Y (ε)‖∞ ≤ e |ε|β − 1 = |ε|β + O(|ε|2)

and, if ε is purely imaginary then

‖Y − Y (ε)‖∞ ≤ e |ε|
2β − 1 = |ε|2β + O(|ε|4)

Using circulant matrices
Embed X into a K × K block circulant matrix X (K) for K > ` large, and
approximate Y with the K × K submatrix Y (K) of eX

(K)
.

We can prove the following bound

‖[Y0 − Y
(K)
0 , . . . ,Y` − Y

(K)
` ]‖∞ ≤ (eβ − 1)eα(σ

`−1−1) σ
−K+`

1− σ−1
, σ > 1



A recent application
Method based on Taylor expansion
The matrix Y is approximated by truncating the series expansion to r
terms

Y (r) =
r∑

i=0

1

i !
X i
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Figure: Norm-wise error, component-wise relative and absolute errors for the solution
obtained with the algorithm based on ε-circulant matrices with ε = iθ.



A recent application
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Figure: Norm-wise error, component-wise relative and absolute errors for the solution
obtained with the algorithm based on circulant embedding for different values of the
embedding size K .



A recent application

128 256 512 1024 2048 4096
10

−1

10
0

10
1

10
2

10
3

10
4

Block size n

C
P

U
 t
im

e
 (

s
e
c
)

 

 

emb

epc

taylor

expm

Figure: CPU time of the Matlab function expm, and of the algorithms based on
ε-circulant, circulant embedding, power series expansion.



A recent application
Open issues

Can we prove that the exponential of a general block Toeplitz matrix does
not differ much from a block Toeplitz matrix? Numerical experiments
confirm this fact but a proof is missing.
Can we design effective ad hoc algorithms for the case of general block
Toeplitz matrices?
Can we apply the decay properties of Benzi, Boito 2014 ?

,

Figure: Graph of a Toeplitz matrix subgenerator, and of its matrix exponential



Rank structured matrices
Informally speaking, a rank-structured matrix is a matrix where its
submatrices located in some part of its support have low rank

Example of quasi-separable matrices: the submatrices strictly contained in
the upper or in the lower triangular part have rank at most 1.

Tridiagonal matrices are quasi-separable

The inverse B = A−1 of an irreducible tridiagonal matrix A is
quasi-separable

bi ,j =

{
uivj for i > j
wizj for i < j

that is, triu(B) = triu(wzT ), tril(B) = tril(uvT )
The vectors u, v ,w , z are called generators



Rank structured matrices

In general, we say that A is (h, k) quasi-separable if the submatrices strictly
contained in the lower triangular part have rank at most h, the submatrices
strictly contained in the upper triangular part have rank at most k

If h = k we say that A is k quasi-separable

Band matrices are an example of (h, k) quasi-separable matrices and it can
be proved that their inverses still share this property

Rank structured matrices are investigated in different fields like integral
equations, statistics, vibrational analysis

There is a very wide literature on this subject, and recent books by Van

Barel, Vandebril and Mastronardi; Eidelman



Basic properties of rank structured matrices

Let A be k quasi-separable

1 If A is invertible then A−1 is k quasi-separable.

2 If A = LU is the LU factorization of A then L and U are
quasi-separable of rank (k , 0) and (0, k), respectively

3 If A = QR is a QR factorization of A then Q is quasi-separable of
rank k and and U is quasi-separable of rank (0, 2k).

4 The matrices Li , Ui , Ai defined by the LR iteration Ai =: LiUi ,
Ai+1 = UiLi are quasi-separable of rank (k , 0), (0, k), k , respectively

Moreover, there are algorithms for

1 computing A−1 in O(nk2) ops;

2 solving the system Ax = b in O(nk2) ops;

3 computing the LU and the QR factorization of A in O(nk2) ops;



Companion matrices

Let a(x) =
∑n

i=0 aix
i be a monic polynomial, i.e., such that an = 1. A

companion matrix associated with a(x) is a matrix A such that
det(xI − A) = a(x)

Among the most popular companion matrices we recall the first and
second Frobenius forms

F1 =


−an−1 −an−2 . . . −a0

1 0
. . .

. . .

1 0

 , F2 = FT
1 ,



Companion matrices
Both matrices are quasi-separable, F1 has a generator concerning the
upper triangular part while F2 has a generator concerning the lower
triangular part.

Both matrices can be written as an orthogonal (permutation) matrix, that
is the unit circulant, plus a correction of rank 1, that is,

F1 =


0 . . . 0 1

1
. . . 0
. . .

. . .
...

1 0

−

an−1 . . . a1 1 + a0

0 . . . 0 0
... . . .

...
...

0 . . . 0 0

 =: C − uvT

The shifted QR iteration, i.e.,

Ai − αi I =: QiRi , Ai+1 := RiQi + αi I

generates quasiseparable matrices in the form unitary plus low-rank

There are algorithms of cost O(n) for performing the QR step (Gu, Xia, Zhu,

Chandrasekaran; Boito, Eidelman, Gemignani; Aurentz, Mach, Vandebril,

Watkins; Frederix, Delvaux, Van Barel, Van Dooren; Del Corso)



Comrade matrix
Define the sequence of orthogonal polynomials pi (x) satisfying the
following three-term recurrence

p0(x) = 1, p1(x) = x − b1,

pi+1(x) = (x − bi+1)pi (x)− cipi−1(x), i = 1, 2, . . . , n − 1,

where ci > 0. Consider a monic polynomial p(x) represented in this
orthogonal basis as p(x) =

∑n
i=0 dipi (x), dn = 1 Then

p(x) = det(xI − A), where A is the comrade matrix (Barnett 1975)

A =


b1 c1

1 b2
. . .

. . .
. . . cn−1
1 bn

− [0, . . . , 0, 1]


d0
...

dn−3
d̂n−2
d̂n−1


and d̂n−2 = −dn−2 + cn−1, d̂n−1 = −dn−1 + bn.

This matrix is (1, 2) quasi-separable



Colleague matrix

Another companion matrix is the colleague matrix (Good 1961, Werner

1983)

C =


x1 −a0
1 x2 −a1

1
. . .

...
. . . xn−1 −an−2

1 xn − an−1


This matrix provides the representation of a polynomial p(x) in the
Newton basis. More precisely, one can prove that

det(xI − C ) =a0 + a1(x − x1) + a2(x − x1)(x − x2) + · · ·

+an−1

n−1∏
i=1

(x − xi ) +
n∏

i=1

(x − xi ).



Arrowhead companion matrix
Similarly, given a monic polynomial p(x) of degree n, choose n pairwise
different values x0, x1, . . . , xn−1 and consider the arrowhead companion
pencil of size n + 1 defined by xC1 − C0 where

C0 =


x0 p0

x1 p1
. . .

...
xn−1 pn−1

−`0 −`1 . . . −`n−1 0

 ,
C1 = diag(1, 1, . . . , 1, 0),

`i = 1/
∏n−1

j=1, j 6=i (xi − xj)

pi = p(xi )

Computing det(xC1 − C0) by means of the Laplace rule along the last
column provides the following expression

det(xC1 − C0) =
n∑

i=0

piLi (x), Li (x) =
n−1∏

j=1, j 6=i

(x − xj),

that is, the Lagrange representation of the polynomial p(x). Also the
pencil xC1 − C0 is quasiseparable of rank 1.



Smith companion matrix

The Smith companion matrix given by Smith in 1970 and considered by
Golub in 1973, has the following form

S = diag(b1, . . . , bn)− ewT , e = (1, . . . , 1)T ,

w = (wi ), wi =
p(bi )∏n

j=1, j 6=i (bi − bj)

where p(x) is a monic polynomial of degree n, and b1, . . . , bn are pairwise
different numbers.

It is easy to show that det(xI −S) = p(x), that is, S is a companion matrix
for p(x). Also in this case, S is a quasiseparable matrix given in terms of a
generator. In fact S is expressed as a diagonal plus a rank 1 matrix.



Smith companion

Applications

locating the zeros of p(x): the set of disks of center xi and radius

ri = n
∣∣∣p(xi )/

∏n
j=1, j 6=i

∣∣∣ is a set of inclusion disks

The polynomial root-finding problem reduced to an eigenvalue
problem leads to the secular equation

n∑
i=1

wi

x − bi
− 1 = 0

the condition number of the zeros of p(x) as function of wi converges
to zero as bi converge to the polynomial zeros (B., Robol 2014)

These properties are used in the package MPSolve v.3.1.4 to
approximate polynomial zeros with any guaranteed precision.



On computing polynomial zeros

At the moment the fastest software for computing polynomial zeros is
MPSolve http://numpi.dm.unipi.it/mpsolve

It relies on Aberth iteration and on the Smith companion matrix

Its cost is O(n2) ops per step. In most cases, the number of iterations
is independent of n.

It can exploit multi-core architectures

On a 20 core computer it can solve the Mandelbrot polynomial of
degree 220 in a couple of days of CPU, about a week is needed for
degree 221 and about one month for degree 222

In principle the Aberth iteration, used for shrinking inclusion disks,
could be replaced by the QR iteration based on quasi-separable matrix
technology

At the moment, the Ehrlich-Aberth iteration still performs better than
the best available QR algorithms

http://numpi.dm.unipi.it/mpsolve




Extensions to matrix polynomials

Given m ×m matrices Ai , i = 0, . . . ,An, with An 6= 0, we call
A(x) =

∑n
i=0 x

iAi a matrix polynomial of degree n. The polynomial
eigenvalue problem consists in computing the solutions of the polynomial
equation detA(x) = 0, given the matrix coefficients of A(x). Throughout,
we assume that A(x) is regular, that is detA(x) is not constant.

the pencil

A(x) = x


I

. . .

I
An

−

−An−1 −An−2 . . . −A0

I 0
. . .

. . .

I 0

 .
is such that detA(x) = detA(x)



Extensions to matrix polynomials

Similarly, we can extend to matrix polynomials the colleague and the
comrade companion. In fact the pencil

A(x) =


(x − x1)I A0

−I (x − x2)I A1

−I . . .
...

. . . (x − xn−1)I An−2
−I (x − xn)An + An−1


is such that detA(x) = detA(x), thus provides an extension of the
colleague pencil to matrix polynomials.



Extensions to matrix polynomials

Similarly, representing A(x) in the basis formed by the orthogonal monic
polynomials pi (x), i = 0, . . . , n such that A(x) =

∑n
i=0Dipi (x), then the

extension of the comrade pencil is

A(x) = xdiag(I , . . . , I ,Dn)−


b1I c1I

I b2I
. . .

. . .
. . . cn−1I
I bnI

+[0, . . . , 0, I ]


D0
...

Dn−3
D̂n−2
D̂n−1


where D̂n−1 = Dn−1 + bnDn and D̂n−2 = Dn−2 + cn−1Dn

That is, one can prove that detA(x) = detA(x).



Extension to matrix polynomials: a recent result
A first generalization of the Smith companion matrix (B., Robol)

Let bi (x) be polynomials of degree di for i = 1, . . . , k such that∑k
i=1 di = n and gcd(bi (x), bj(x)) = 1 for i 6= j

Define b(x) =
∏k

i=1 bi (x), ci (x) =
∏n

j=1, j 6=i bj(x)

Then there exists unique the decomposition

p(x) = b(x) +
k∑

i=1

wi (x)ci (x)

wi (x) = p(x)/ci (x) mod bi (x)

Consequently,

p(x) = detP(x), P(x) =

b1(x)
. . .

bk(x)

+

1
...
1

 [w1(x), . . . ,wk(x)]

P(x) is an `-ification of p(x) where ` = maxi di



Extension to matrix polynomials: a recent result

Remarks:

If k = n, then di = 1, bi (x) = x − βi and we get the Smith
companion form

P(x) = xI −


β1 . . .

βn

−
1

...
1

 [w1, . . . ,wn]


The left and right eigenvectors of the matrix polynomial P(x) can be
explicitly given in terms of the zeros ξ1, . . . , ξn of p(x)

For k = n, if βi are close to ξi then the eigenvalues of P(x) are well
conditioned. More precisely limβi→ξi cond(ξj) = 0 for any j .
In the case of multiple zeros, the property is true provided that all the
bi s converging to a multiple root do not collapse before convergence
(B., Robol, J.CAM 2014)



Extension to matrix polynomials: a recent result

Let A(x) =
∑n

i=0 Aix
i , Ai ∈ Cm×m be nondegenerate, An 6= 0

Let bi (x) be pairwise prime monic polynomials of degree di ,
i = 1, . . . , k such that

∑k
i=1 di = n

Define Bi (x) = bi (x)I , i = 1, . . . , k − 1, Bk(x) = bk(x)An + sI where
s ∈ C is such that detBk(x) 6= 0 for x zero of bi (x).

Then there exists unique the decomposition

A(x) = B(x) +
∑k

i=1Wi (x)Ci (x)

where B(x) =
∏k

i=1 Bi (x), Ci (x) =
∏k

j=1, j 6=i Bj(x) and

Wi (x) =
A(x)∏k−1

j=1, j 6=i bj(x)
Bk(x)−1 mod bi (x), i = 1, . . . , k − 1

Wk(x) =
A(x)∏k−1

j=1 bj(x)
− sI − s

k−1∑
j=1

Wj(x)

bj(x)
mod bk(x)



Extension to matrix polynomials: a recent result

Let A(x) =
∑n

i=0 Aix
i , Ai ∈ Cm×m be nondegenerate, An 6= 0

Let bi (x) be pairwise prime monic polynomials of degree di ,
i = 1, . . . , k such that

∑k
i=1 di = n

Define Bi (x) = bi (x)I , i = 1, . . . , k − 1, Bk(x) = bk(x)An + sI where
s ∈ C is such that detBk(x) 6= 0 for x zero of bi (x).

Then there exists unique the decomposition

A(x) = B(x) +
∑k

i=1Wi (x)Ci (x)

where B(x) =
∏k

i=1 Bi (x), Ci (x) =
∏k

j=1, j 6=i Bj(x) and

Wi (x) =
A(x)∏k−1

j=1, j 6=i bj(x)
Bk(x)−1 mod bi (x), i = 1, . . . , k − 1

Wk(x) =
A(x)∏k−1

j=1 bj(x)
− sI − s

k−1∑
j=1

Wj(x)

bj(x)
mod bk(x)



Moreover

detA(x) = detA(x), A(x) = D(x) +

I...
I

 [W1(x), . . . ,Wk(x)]

where

D(x) =


b1(x)I

. . .

bk−1(x)I
bk(x)An + sI





Remarks

For k = n, bi (x) = x − βi one has

Wi =
A(βi )∏n−1

j=1, j 6=i (βi − βj)
((βi − βn)An + sI )−1

Wn =
A(βn)∏n−1

j=1 (βn − βj)
− sI − s

n−1∑
j=1

Wj

(βn − βj)

Moreover,

A = x


I

. . .

I
An

−

β1I

. . .

βn−1I
βnAn + sI

+


I
I
...
I

 [W1, . . . ,Wn]

For An = I , one may choose s = 0 and get

Wi =
A(βi )∏n

j=1, j 6=i (βi − βj)
, i = 1, . . . , n



Remarks

Assume for simplicity An = I . Set k = n, βi = ωi
n, where ωn is a

primitive nth root of 1. Define Fn = 1√
n

(ωij
n )i ,j=1,n the Fourier matrix.

Then
(F ∗ ⊗ I )A(x)(F ⊗ I ) = xI − C

where C is the block Frobenius matrix associated with A(x)

If βi = αωi
n then

(F ∗ ⊗ I )A(x)(F ⊗ I ) = xI − D−1α CDα, Dα = diag(1, α, . . . , αn−1)

The condition number of the eigenvalues of the new pencil is not
worse than that of the scaled block companion

Choosing βi with different moduli leads to a dramatic reduction of
the condition number (experimental verification)



`-ification and strong `-ification

There exist unimodular mk ×mk matrix polynomial E (x), F (x) such that

E (x)A(x)F (x) = Imk−k ⊕ A(x)

If d1 = · · · = dk then there exist unimodular mk ×mk matrix polynomial
Ê (x), F̂ (x) such that

Ê (x)A#(x)F̂ (x) = Imk−k ⊕ A#(x)

where A#(x) =
∑n

i=0 An−ix
i denotes the “reversed polynomial”

That is, if the bi (x) have the same degree then A(x) is a strong `-ification
of A(x) in the sense of De Terán, Dopico, Mackey 2013



Eigenvectors

If A(λ)v = 0 then 
∏

j 6=1 Bj(λ)v
...∏

j 6=k Bj(λ)v


is a right eigenvector of A corresponding to λ

If uTA(λ) = 0 thenuTW1

∏
j 6=1

Bj(λ), . . . , uTWk

∏
j 6=k

Bj(λ)


is a left eigenvector of A corresponding to λ



Block companion form

Let L =


I

−I
. . .
. . .

. . .
−I I

 then

LA(x) =


B1(x) + W1(x) W2(x) . . . Wk−1(x) Wk(x)
−B1(x) B2(x)

−B2(x)
. . .
. . . Bk−1(x)

−Bk−1(x) Bk(x)





Numerical properties: scalar polynomials
Random scalar polynomial of degree 50 with unbalanced coefficients
Conditioning of the eigenvalues
a = exp(12*randn(1,n+1))

– Frobenius matrix (blue)
– secular linearization βi = λi + εi (red)
– secular linearization βi equal to the tropical roots multiplied by unit
complex numbers (green)



Numerical properties: matrix polynomials

Random matrix polynomial, m = 64, n = 5,
– Frobenius matrix (blue)
– secular linearization, βi derived from the eigenvalues (red)
– secular linearization, βi obtained from the tropical roots (green)





Orr Sommerfeld problem from the NLEVP collection n = 4, m = 64

Figure: On the left, the conditioning of the Frobenius and of the secular
linearization with the choices of βi as block mean of eigenvalues and as the
estimates given by the tropical roots. On the right, the tropical roots are coupled
with estimates given by the Pellet theorem.



Planar waveguide problem from the NLEVP collection n = 4, m = 129



Figure: The accuracy of the computed eigenvalues using polyeig and the secular
linerization with the bi obtained through the computation of the tropical roots.



Recent applications and work in place
Properties of quasi-separable matrices have been exploited to arrive at a
matrix polynomial rootfinder with the same feature of MPSolve

Algorithms to compute p(x) = detA(x) as well as p(x)/p′(x) have been
designed with cost O(nm2) ops, based on the following strategy

Preprocessing 1. Given A(x) generate a block Smith companion
linearization matrix S in O(n2m3) ops.

Preprocessing 2. Reduce S into upper Hessenberg form H in O(n2m3)
ops. The matrix H is quasi-separable with upper rank 2m − 1.

Compute detA(x) = det(xI −H) at x in O(nm2) ops by means of the
Hyman method, using the quasi-separability of H

Overall cost for applying MPSolve to detA(x): O(n2m3) ops instead of
O(n2m3 + nm4) ops

There are still some problems with the numerical stability of the reduction
to quasi-separable Hessenberg form which need further investigation



Conclusions
Toeplitz matrices are encountered in many applications
They can be associated with Fourier series (symbols)
Their spectral properties are related to the values of the symbol
Some matrix algebras, related to fast discrete transforms, can be used
for computational purposes: fast product and preconditioning
Toeplitz systems
Displacement operators and their properties can be used to design
fast and superfast Toeplitz solvers
Quadratic matrix equations can be solved by means of Toeplitz
computations through Cyclic Reduction, i.e., Graeffe iteration
The quasi-separable structure is preserved under many matrix
transformation
The considered companion matrices are quasi-separable
Companion matrices, extended to matrix polynomials, are
quasi-separable
New generalizations of the Smith companion have been given
Their role in the design of a matrix polynomial rootfinder has been
investigated
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