Computing necessary integrability conditions for planar parametrized homogeneous potentials

Thierry Combot University of Burgundy, Dijon France

In collaboration with Alin Bostan, INRIA Mohab Safey El Din, UPMC INRIA CNRS IUF Motion of a point mass under a force field: potential V, equations

$$\ddot{q}_1 = -rac{\partial}{\partial q_1} V(q) \qquad \ddot{q}_2 = -rac{\partial}{\partial q_2} V(q)$$

Liouville Arnold Theorem (1980):

 ${\sf Integrability} \Leftrightarrow {\sf quasi-periodic\ motion} \Leftrightarrow {\sf exactly\ solvable\ system}$

Integrability analysis: Darboux search for integrable systems (1901), Hietarinta list of integrable systems (1987).

Thierry Combot University of Burgundy, Dijon France Integrability conditions

Problem

 $V \in \mathbb{Q}(\mathbf{a})(q_1, q_2)$ homogeneous in q_1, q_2 with parameters \mathbf{a} . Find all parameters values \mathbf{a} such that this potential is integrable.

Integrability \Leftrightarrow Regular motion \Rightarrow exceptional phenomenon!

Our goal

Algorithm

Input: $V \in \mathbb{Q}(\mathbf{a})(q_1, q_2)$ homogeneous in q_1, q_2 with parameters \mathbf{a} . Output: Non-trivial necessary conditions on \mathbf{a} for integrability of V.

What is already done?

- Ziglin (1983): Theoretical conditions for integrability
- Morales-Ramis (1997): Explicit conditions for integrability
- Maciejewski-Przybylska (2000): Universal relations allowing to test these conditions in the parametrized case

What remains to be done?

- handle automatically singular parameter's values
- handle multiplicity of roots/poles and degenerated asymptotics
- precise when and what happens when the universal relation does not hold

Our contributions

- Rewriting Morales-Ramis integrability conditions and Maciejewski-Przybylska relation under a simpler form
- Ability to deal with singular specializations of the parameters
- Complete automation of the computation of integrability conditions through Groebner bases
- Explicit application and discovery of new candidates for integrability

• Integrability conditions (Morales-Ramis): the eigenvalues of $\nabla^2 V(c)$ at Darboux points, i.e. solutions of

$$rac{\partial V}{\partial q_1}(c_1,c_2) = kc_1 \qquad rac{\partial V}{\partial q_2}(c_1,c_2) = kc_2$$

should belong to a (completely explicit) discrete set E_k

• Universal relation: there exists a relation *R* between eigenvalues independent of parameters (Maciejewski-Przybylska)

General strategy

- Compute the relation *R*.
- Solve R in E_k , get finitely many solutions.
- For each solution, rewrite the conditions on eigenvalues as polynomial conditions on **a**.

Step 1: Polar coordinates

$$V = (\mathbf{a}_1 + \mathbf{a}_2 + \mathbf{a}_3)q_1^3 + i(3\mathbf{a}_1 - \mathbf{a}_3 + \mathbf{a}_2)q_1^2q_2 + (-3\mathbf{a}_1 + \mathbf{a}_2 + \mathbf{a}_3)q_1q_2^2 - i(\mathbf{a}_1 - \mathbf{a}_2 + \mathbf{a}_3)q_2^3$$

Write V in polar coordinates

$$V = r^3 F(e^{i\theta}) \qquad F(z) = \mathbf{a}_1 z^3 + \mathbf{a}_2 z + \mathbf{a}_3 / z$$

For $c = (r \cos \theta, r \sin \theta)$ a Darboux point, we have

$$F'(e^{i\theta}) = 0, \quad F(e^{i\theta}) \neq 0$$
$$Sp(\nabla^2 V(c)) = \left\{ 6, 3 - \frac{(e^{i\theta})^2 F''(e^{i\theta})}{F(e^{i\theta})} \right\} = \{6, \lambda\}$$

> < = > <</p>

Step 2: Computation of the relation

The relation R reads

$$\sum_{\substack{\lambda \\ \text{eigenvalue}}} \frac{1}{\lambda - 3} = \frac{1}{k_0} - \frac{1}{k_\infty}$$

where

$$F(z) \mathop{\sim}\limits_{z
ightarrow 0} a_0 z^{k_0} \ F(z) \mathop{\sim}\limits_{z
ightarrow \infty} a_0 z^{k_\infty}$$

3 important parameters:

number of eigenvalues p, asymptotic constants k_0, k_∞

Parity of *F* allows simplifications: *p* is even, eigenvalues λ come by pairs Depending on specialization of a_1, a_2, a_3 , 8 possibilities

・何・ ・ヨ・ ・ヨ・ ・ヨ

Step 3: Solving the relation

If p = 0, no integrability conditions.

If
$$p = 2$$
: $\frac{2}{\lambda_1 - 3} = -2$ or $-\frac{4}{3}$ or $\frac{2}{3}$
One solution in E_3 : $\lambda_1 = 6$

If p = 4: $\frac{2}{\lambda_1 - 3} + \frac{2}{\lambda_2 - 3} = -\frac{4}{3}$ To solve this equation in E_3 : bounding min (λ_1, λ_2)

$$\min(\lambda_1,\lambda_2) \leq 3 \Rightarrow \min(\lambda_1,\lambda_2) \in \{0,1\}$$

¬ > < **>** > < **>** >

Recursively solve the equation with one unknown less \Rightarrow $(\lambda_1, \lambda_2) = (0, 0)$

Step 4: Conditions on a

Rewriting these conditions as polynomial conditions on a

If
$$p = 2$$
, $k_{\infty} = 3$, $k_0 = 1$, then
• $\mathbf{a}_3 = 0$, $\mathbf{a}_1 \neq 0$, $\mathbf{a}_2 \neq 0$ (multiplicity & asymptotics)
• $3 - \frac{z^2 F''(z)}{F(z)} = 6$ for $F'(z) = 0$, $F(z) \neq 0$, $z \neq 0$ (integrability)

Second condition rewrites as polynomial divisibility

numer
$$\left(\frac{F'}{F}\right)$$
 | numer $\left(3 - \frac{z^2 F''(z)}{F(z)} - 6\right) \Rightarrow \mathbf{a}_3 = 0$

If
$$p = 4$$
, $k_{\infty} = 3$, $k_0 = -1$, then
• $\mathbf{a}_3 \neq 0$, $\mathbf{a}_1 \neq 0$, $\mathbf{a}_2 \neq 0$, $\mathbf{a}_2^2 - 4\mathbf{a}_1\mathbf{a}_3 \neq 0$ (multiplicity & asymptotics)
• $3 - \frac{z^2 F''(z)}{F(z)} = 0$ for $F'(z) = 0$, $F(z) \neq 0$, $z \neq 0$ (integrability)

Second condition rewrites as polynomial divisibility

numer
$$\left(\frac{F'}{F}\right)$$
 | numer $\left(3 - \frac{z^2 F''(z)}{F(z)}\right) \Rightarrow \mathbf{a}_2 = 0$

 \Rightarrow The output is $[\textbf{a}_1, \textbf{a}_2], [\textbf{a}_1, \textbf{a}_3], [\textbf{a}_2, \textbf{a}_3], [\textbf{a}_2], [\textbf{a}_3]$

Implementation in Maple 17.

Main tool: Elimination in polynomial ideals through Fgb

Testing the condition on eigenvalues \Leftrightarrow Euclidean division of univariate polynomials

The collinear three body problem:

Three bodies on the line interacting by gravity.

After reduction, potential of the form

$$V = rac{1}{f a_1 q_1 + f a_2 q_2} + rac{1}{f a_3 q_1 + a_4 q_2} + rac{1}{a_5 q_1 + a_6 q_2}$$

Thanks to the algorithm

Theorem

The collinear three body problem with non zero masses is non-integrable.

Conclusion

Other integrability conditions rely on eigenvalues and higher order derivatives of \boldsymbol{V}

 \Rightarrow these can be easily included in the algorithm

Most of the computation time on the elimination \Rightarrow search a better representation to improve times

Implementation of additional conditions \Rightarrow probably only zero dimensional ideal would appear \Rightarrow improved times