Diagonals and Walks

${\sf Alin \ Bostan^1 \ \ Louis \ Dumont^1 \ \ Bruno \ Salvy^2}$

¹INRIA, SpecFun

²INRIA, AriC

November 4, 2014

Introduction

Motivations

Diagonals also appear in statistical physics, number theory,...

Motivations

Diagonals also appear in statistical physics, number theory,...

Diagonals

1-dimensional walks

Set of steps of the form $(1, a), \ a \in \mathbb{Z}$ Example : Dyck Paths

 $B(T) = \sum_{n \ge 0} b_n T^n, \ b_n : \text{ number of bridges of length } n$ B(T) can be expressed as a diagonal.

Questions

Question 1

How hard is it to compute a polynomial equation satisfied by the diagonal of a bivariate rational function ?

$$E(T) = \sum_{n \ge 0} e_n T^n$$
, e_n : number of excursions of length n

Question 2

How to compute $E(T) \mod T^N$ for a given N?

Answers

Theorem 1 (B., D., S.)

Generically:

- the minimal polynomial equation can be computed in time that is quasi-linear with respect to its size.
- the minimal polynomial equation is exponentially bigger than the initial rational function (16^d vs d², where d is the degree)

d	1	2	3	4
$\deg_T P, \deg_Y P$	(2, 2)	(16, 6)	(108, 20)	(640, 70)

Theorem 2 (B., D., S.)

 $E(T) \mod T^N$ can be computed in $\tilde{O}(N)$ arithmetic operations, with a fairly inexpensive pre-computation.

Diagonals

How to compute a polynomial equation satisfied by the diagonal of a bivariate rational function ?

Algebraic equation for the diagonal

Ingredients of the algorithm:

- Partial fraction decomposition: the diagonal is a sum of residues of a rational function
- Rothstein-Trager resultant (1976): algebraic equation that cancels all residues α₁(T), α₂(T),..., α_d(T)
- Main difficulty: if $P = \prod_{i=1}^{d} (Y \alpha_i)$ is known, efficiently compute the polynomial

$$P_k = \prod_{\{i_1, i_2, \dots, i_k\}} (Y - (\alpha_{i_1} + \alpha_{i_2} + \dots + \alpha_{i_k}))$$

for a given $k \leq d$

Most important part of our algorithm: a way around the main difficulty using **Newton sums**.

$$P = \prod_{i=1}^{d} (Y - \alpha_i) \iff \mathcal{N}(P) = \sum_{n \ge 0} (\alpha_1^n + \alpha_2^n + \ldots + \alpha_d^n) \frac{Y^n}{n!}$$

- $P \leftrightarrow \mathcal{N}(P)$ is well-known and effective
- $\mathcal{N}(P_k)$ can be computed from $\mathcal{N}(P)$
- P_k is then recovered from $\mathcal{N}(P_k)$

Walks

How to compute $E(T) \mod T^N$ for a given N?

Excursions: naive method

- w_{n,k} : number of walks that stay in the upper half plane, of length n and ending at height k
- $e_n = w_{n,0}$ (e_n : number of excursions of length n)
- *w_{n,k}* satisfies a linear recurrence relation with constant coefficients :

$$w_{n,k} = \sum_{(1,a)\in\mathcal{S}} w_{n-1,k-a},$$

where ${\cal S}$ is the set of available steps

• Algorithm with $O(N^2)$ arithmetic operations and no pre-computation

Excursions: more efficient algorithm

ldea

(Banderier, Flajolet, 2002) Use the fact that E(T) is algebraic to find a better recurrence relation.

- recurrence for e_n (1 index) instead of $w_{n,k}$ (2 indices) $\rightarrow O(N)$ operations
- But linear complexity at the cost of pre-computations:
 - the algebraic equation, which is exponentially big in d (Bousquet-Mélou, 2008)
 - algebraic eqn \rightarrow differential eqn (also exponentially big) (Bostan, Chyzak, Lecerf, Salvy, Schost, 2007)
 - initial conditions of the recurrence (exponentially many)

Algorithm with O(N) operations and pre-computation of an exponential size in d equation

Excursions: new algorithm

ldeas

- $E(T) = \exp \int_0^T \frac{B(t)-1}{t} dt$ (Banderier, Flajolet 2002). Recover E(T) from B(T) using this formula.
- Diagonals (including B(T)) satisfy small (polynomial size) differential equations (Bostan, Chen, Chyzak, Li, 2010)).

Method:

- Fast computation of a differential equation for *B* using Hermite reduction (loc. cit.)
- Calculate $B \mod T^N$ with this equation O(N)
- Apply the formula using Newton iteration

Algorithm with $\tilde{O}(N)$ operations and pre-computation of a polynomial size in d equation

 $\tilde{O}(N)$

Conclusion

