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Digital Signal Processing

became increasingly relevant over the past 4 decades:

ANALOG→ DIGITAL

think of:
data communications (ex: Internet, HD TV and digital radio)
audio and video systems (ex: CD, DVD, BD players)
many more

What are the ’engines’ powering all these?
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Digital filters

y[n] = x[n] ? h[n]

→ we get two categories of filters
finite impulse response (FIR) filters

H is a polynomial

infinite impulse response (IIR) filters

H is a rational fraction
→ natural to work in the frequency domain

H is the transfer function of the filter
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The filtering toolchain

Steps:
1. derive a concrete mathematical representation of the filter
→ use theory of minimax approximation

2. quantization of the filter coefficients using fixed-point or floating-point
formats
→ use tools from algorithmic number theory (euclidean lattices)

3. hardware synthesis of the filter

Today’s focus: first step for FIR filters
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Finite Impulse Response (FIR) filters

large class of filters, with a lot of desirable properties

Usual representation: H(ω) =
∑L

k=0 ak cos(ωk)

=
∑L

k=0 akTk(cos(ω))

→ if x = cos(ω), view H in the basis of Chebyshev polynomials
Specification:

H(ω) =

8∑
k=0

ak cos(ωk)
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Optimal FIR design with real coefficients

The problem: Given a closed real set F , find an approximation
H(ω) =

∑L
k=0 ak cos(ωk) of degree L for a continuous function D(ω), ω ∈ F

such that
δ = ‖E(ω)‖∞,F = max

ω∈F
|H(ω)−D(ω)|

is minimal.
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Optimal FIR design with real coefficients

The solution: characterized by the Alternation Theorem

Theorem
The unique solution H(ω) =

∑L
k=0 ak cos(ωk) has an error function E(ω), for

which there exist L+ 2 values ω0 < ω1 < · · · < ωL+1, belonging to F , such that

E(ωi) = −E(ωi+1) = ±δ,

for i = 0, . . . , L.

→ well studied in Digital Signal Processing literature
1972: Parks and McClellan
→ based on a powerful iterative approach from Approximation Theory:

1932: Remez
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The Parks-McClellan design method: Example
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The Parks-McClellan design method: Steps
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Step 1: Choosing the L+ 2 initial references

Traditional approach: take the L+ 2 references uniformly from F
→ can lead to convergence problems

→ want to start from better approximations
Existing approaches: not general enough and/or costly to execute

Our approach: extrema position extrapolation from smaller filters

→ although empirical, it is rather robust in practice
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Step 2: Computing the current error function E(ω) and δ

Amounts to solving a linear system in a0, . . . , aL and δ.
1 cos(ω0) · · · cos(Lω0) 1
...

...
...

...
1 cos(ωL) · · · cos(LωL) (−1)L
1 cos(ωL+1) · · · cos(LωL+1) (−1)L+1



a0
...
aL
δ

 =


D(ω0)

...
D(ωL)
D(ωL+1)


→ solving system directly: can be numerically unstable

→ use barycentric form of Lagrange interpolation [Berrut&Trefethen2004]
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Barycentric Lagrange interpolation

Problem: p polynomial with deg p 6 L interpolates f at points xj , i.e.,

p(xj) = fj , j = 0, . . . , L

→ the barycentric form of p is:

p(x) =

L∑
j=0

wj

x− xj
fj

L∑
j=0

wj

x− xj

,

where wj =
1∏

k 6=j(xj − xk)
.

Cost: O(L2) for computing all wj , O(L) for evaluating p(x).
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Barycentric Lagrange interpolation

→ numerically stable if the family of interpolation nodes used has a small
Lebesgue constant [Mascarenhas&Camargo2014]

The Lebesgue constant: specific to each grid of points; quantifies the
convergence/divergence properties of polynomial interpolants using those nodes

→ from empirical observation, the families of points used inside the
Parks-McClellan algorithm (Step 1 + Step 3) usually converge to sets of points
with small Lebesgue constant
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Step 3: Finding the local extrema of E(ω)

Traditional approach: evaluate E(ω) on a dense grid of uniformly distributed
points (in practice it is usually 16L)
→ works well for degree L < 100, tends to fail in some cases for larger L

Our approach:
→ Chebyshev-proxy rootfinder(CPR) [Boyd2002,Boyd2013]

→ [Pachon&Trefethen2009] use it to implement the Remez algorithm
→ apply a similar idea for FIR approximations
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Step 3: Finding the local extrema of E(ω)

-0.2
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Idea:

split F into appropriate subintervals
F =

⋃N
i=0 Fi

interpolate E(ω) on each Fi with small
degree Chebyshev interpolants Ci

compute roots of the derivative of Ci

using a Chebyshev-proxy rootfinder

Advantages:
→ robust, numerically stable root finding approach
→ easy to parallelize
Cost: if N = O(L), overall O(L2) arithmetic operations
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Step 4: Recover coefficients of H(ω) upon convergence

→ can use the Inverse Discrete Fourier Transform

→ implement it using Clenshaw’s algorithm for computing
linear combinations of Chebyshev polynomials (numerically
robust approach)

Cost: O(L2) arithmetic operations
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Our implementation: Examples & Results

Comparison with MATLAB & demo
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Our implementation: Examples & Results

→ design of channelizers for software radio systems
Specification: degree 53248 filter with stopband

[
0, 1

8192π
]
and passband[

3
8192π, π

]
.

Figure: error function on
[0.99π, 0.9905π]

Convergence: required 5 iterations
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Perspectives

Conclusion:
improved the practical behavior of a well known polynomial approximation
algorithm for filter design
→ use numerically stable barycentric Lagrange interpolation + rootfinders
without sacrifices in efficiency
this new approach can take huge advantage of parallel architectures

Future work:
release the code for our implementation as an open source library
provide a complete toolchain for constructing FIR filters (approximation +
quantification + hardware synthesis)
tackle the IIR filter setting (rational fraction)

non-linear problem
constraints: poles located inside the unit circle
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