
Efficient algorithms for the design of finite impulse
response digital filters

Silviu Filip
under the supervision of N. Brisebarre and G. Hanrot

(AriC, LIP, ENS Lyon)

Journées Nationales de Calcul Formel (JNCF)
CIRM, Luminy, November 3-7, 2014

1 / 19

Digital Signal Processing

became increasingly relevant over the past 4 decades:

ANALOG→ DIGITAL

think of:
data communications (ex: Internet, HD TV and digital radio)
audio and video systems (ex: CD, DVD, BD players)
many more

What are the ’engines’ powering all these?

2 / 19

Digital Signal Processing

became increasingly relevant over the past 4 decades:

ANALOG→ DIGITAL

think of:
data communications (ex: Internet, HD TV and digital radio)
audio and video systems (ex: CD, DVD, BD players)
many more

What are the ’engines’ powering all these?

2 / 19

Digital Signal Processing

became increasingly relevant over the past 4 decades:

ANALOG→ DIGITAL

think of:
data communications (ex: Internet, HD TV and digital radio)
audio and video systems (ex: CD, DVD, BD players)
many more

What are the ’engines’ powering all these?

2 / 19

Digital filters

y[n] = x[n] ? h[n]

→ we get two categories of filters
finite impulse response (FIR) filters

H is a polynomial

infinite impulse response (IIR) filters

H is a rational fraction
→ natural to work in the frequency domain

H is the transfer function of the filter

3 / 19

Digital filters

y[n] = x[n] ? h[n]

→ we get two categories of filters
finite impulse response (FIR) filters

H is a polynomial

infinite impulse response (IIR) filters

H is a rational fraction

→ natural to work in the frequency domain

H is the transfer function of the filter

3 / 19

Digital filters

Y (ω) = X(ω)H(ω), ω ∈ [0, π]

→ we get two categories of filters
finite impulse response (FIR) filters

H is a polynomial

infinite impulse response (IIR) filters

H is a rational fraction

→ natural to work in the frequency domain
H is the transfer function of the filter

3 / 19

Digital filters

Y (ω) = X(ω)H(ω), ω ∈ [0, π]

→ we get two categories of filters
finite impulse response (FIR) filters
H is a polynomial
infinite impulse response (IIR) filters
H is a rational fraction

→ natural to work in the frequency domain
H is the transfer function of the filter

3 / 19

The filtering toolchain

Steps:
1. derive a concrete mathematical representation of the filter
→ use theory of minimax approximation

2. quantization of the filter coefficients using fixed-point or floating-point
formats
→ use tools from algorithmic number theory (euclidean lattices)

3. hardware synthesis of the filter

Today’s focus: first step for FIR filters

4 / 19

The filtering toolchain

Steps:
1. derive a concrete mathematical representation of the filter
→ use theory of minimax approximation

2. quantization of the filter coefficients using fixed-point or floating-point
formats
→ use tools from algorithmic number theory (euclidean lattices)

3. hardware synthesis of the filter

Today’s focus: first step for FIR filters

4 / 19

The filtering toolchain

Steps:
1. derive a concrete mathematical representation of the filter
→ use theory of minimax approximation

2. quantization of the filter coefficients using fixed-point or floating-point
formats
→ use tools from algorithmic number theory (euclidean lattices)

3. hardware synthesis of the filter

Today’s focus: first step for FIR filters

4 / 19

The filtering toolchain

Steps:
1. derive a concrete mathematical representation of the filter
→ use theory of minimax approximation

2. quantization of the filter coefficients using fixed-point or floating-point
formats
→ use tools from algorithmic number theory (euclidean lattices)

3. hardware synthesis of the filter

Today’s focus: first step for FIR filters

4 / 19

Finite Impulse Response (FIR) filters

large class of filters, with a lot of desirable properties

Usual representation: H(ω) =
∑L

k=0 ak cos(ωk)

=
∑L

k=0 akTk(cos(ω))

→ if x = cos(ω), view H in the basis of Chebyshev polynomials
Specification:

H(ω) =

8∑
k=0

ak cos(ωk)

5 / 19

Finite Impulse Response (FIR) filters

large class of filters, with a lot of desirable properties

Usual representation: H(ω) =
∑L

k=0 ak cos(ωk) =
∑L

k=0 akTk(cos(ω))

→ if x = cos(ω), view H in the basis of Chebyshev polynomials

Specification:

H(ω) =

8∑
k=0

ak cos(ωk)

5 / 19

Finite Impulse Response (FIR) filters

large class of filters, with a lot of desirable properties

Usual representation: H(ω) =
∑L

k=0 ak cos(ωk) =
∑L

k=0 akTk(cos(ω))

→ if x = cos(ω), view H in the basis of Chebyshev polynomials
Specification:

H(ω) =

8∑
k=0

ak cos(ωk)

5 / 19

Finite Impulse Response (FIR) filters

large class of filters, with a lot of desirable properties

Usual representation: H(ω) =
∑L

k=0 ak cos(ωk) =
∑L

k=0 akTk(cos(ω))

→ if x = cos(ω), view H in the basis of Chebyshev polynomials
Specification:

H(ω) =

8∑
k=0

ak cos(ωk)

5 / 19

Optimal FIR design with real coefficients

The problem: Given a closed real set F , find an approximation
H(ω) =

∑L
k=0 ak cos(ωk) of degree L for a continuous function D(ω), ω ∈ F

such that
δ = ‖E(ω)‖∞,F = max

ω∈F
|H(ω)−D(ω)|

is minimal.

6 / 19

Optimal FIR design with real coefficients

The solution: characterized by the Alternation Theorem

Theorem
The unique solution H(ω) =

∑L
k=0 ak cos(ωk) has an error function E(ω), for

which there exist L+ 2 values ω0 < ω1 < · · · < ωL+1, belonging to F , such that

E(ωi) = −E(ωi+1) = ±δ,

for i = 0, . . . , L.

→ well studied in Digital Signal Processing literature
1972: Parks and McClellan
→ based on a powerful iterative approach from Approximation Theory:

1932: Remez

7 / 19

Optimal FIR design with real coefficients

The solution: characterized by the Alternation Theorem

Theorem
The unique solution H(ω) =

∑L
k=0 ak cos(ωk) has an error function E(ω), for

which there exist L+ 2 values ω0 < ω1 < · · · < ωL+1, belonging to F , such that

E(ωi) = −E(ωi+1) = ±δ,

for i = 0, . . . , L.

→ well studied in Digital Signal Processing literature
1972: Parks and McClellan
→ based on a powerful iterative approach from Approximation Theory:

1932: Remez

7 / 19

The Parks-McClellan design method: Example

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0

8 / 19

The Parks-McClellan design method: Example

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0

8 / 19

The Parks-McClellan design method: Example

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0

8 / 19

The Parks-McClellan design method: Example

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0

8 / 19

The Parks-McClellan design method: Example

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0

8 / 19

The Parks-McClellan design method: Example

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0

8 / 19

The Parks-McClellan design method: Example

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0

8 / 19

The Parks-McClellan design method: Example

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0

8 / 19

The Parks-McClellan design method: Steps

9 / 19

Step 1: Choosing the L+ 2 initial references

Traditional approach: take the L+ 2 references uniformly from F
→ can lead to convergence problems

→ want to start from better approximations
Existing approaches: not general enough and/or costly to execute

Our approach: extrema position extrapolation from smaller filters

→ although empirical, it is rather robust in practice

10 / 19

Step 1: Choosing the L+ 2 initial references

Traditional approach: take the L+ 2 references uniformly from F
→ can lead to convergence problems

→ want to start from better approximations
Existing approaches: not general enough and/or costly to execute

Our approach: extrema position extrapolation from smaller filters

→ although empirical, it is rather robust in practice

10 / 19

Step 1: Choosing the L+ 2 initial references

Traditional approach: take the L+ 2 references uniformly from F
→ can lead to convergence problems

→ want to start from better approximations
Existing approaches: not general enough and/or costly to execute

Our approach: extrema position extrapolation from smaller filters

→ although empirical, it is rather robust in practice

10 / 19

Step 2: Computing the current error function E(ω) and δ

Amounts to solving a linear system in a0, . . . , aL and δ.
1 cos(ω0) · · · cos(Lω0) 1
...

...
...

...
1 cos(ωL) · · · cos(LωL) (−1)L
1 cos(ωL+1) · · · cos(LωL+1) (−1)L+1



a0
...
aL
δ

 =


D(ω0)

...
D(ωL)
D(ωL+1)


→ solving system directly: can be numerically unstable

→ use barycentric form of Lagrange interpolation [Berrut&Trefethen2004]

11 / 19

Step 2: Computing the current error function E(ω) and δ

Amounts to solving a linear system in a0, . . . , aL and δ.
1 cos(ω0) · · · cos(Lω0) 1
...

...
...

...
1 cos(ωL) · · · cos(LωL) (−1)L
1 cos(ωL+1) · · · cos(LωL+1) (−1)L+1



a0
...
aL
δ

 =


D(ω0)

...
D(ωL)
D(ωL+1)


→ solving system directly: can be numerically unstable
→ use barycentric form of Lagrange interpolation [Berrut&Trefethen2004]

11 / 19

Barycentric Lagrange interpolation

Problem: p polynomial with deg p 6 L interpolates f at points xj , i.e.,

p(xj) = fj , j = 0, . . . , L

→ the barycentric form of p is:

p(x) =

L∑
j=0

wj

x− xj
fj

L∑
j=0

wj

x− xj

,

where wj =
1∏

k 6=j(xj − xk)
.

Cost: O(L2) for computing all wj , O(L) for evaluating p(x).

12 / 19

Barycentric Lagrange interpolation

Problem: p polynomial with deg p 6 L interpolates f at points xj , i.e.,

p(xj) = fj , j = 0, . . . , L

→ the barycentric form of p is:

p(x) =

L∑
j=0

wj

x− xj
fj

L∑
j=0

wj

x− xj

,

where wj =
1∏

k 6=j(xj − xk)
.

Cost: O(L2) for computing all wj , O(L) for evaluating p(x).

12 / 19

Barycentric Lagrange interpolation

→ numerically stable if the family of interpolation nodes used has a small
Lebesgue constant [Mascarenhas&Camargo2014]

The Lebesgue constant: specific to each grid of points; quantifies the
convergence/divergence properties of polynomial interpolants using those nodes

→ from empirical observation, the families of points used inside the
Parks-McClellan algorithm (Step 1 + Step 3) usually converge to sets of points
with small Lebesgue constant

13 / 19

Barycentric Lagrange interpolation

→ numerically stable if the family of interpolation nodes used has a small
Lebesgue constant [Mascarenhas&Camargo2014]

The Lebesgue constant: specific to each grid of points; quantifies the
convergence/divergence properties of polynomial interpolants using those nodes

→ from empirical observation, the families of points used inside the
Parks-McClellan algorithm (Step 1 + Step 3) usually converge to sets of points
with small Lebesgue constant

13 / 19

Step 3: Finding the local extrema of E(ω)

Traditional approach: evaluate E(ω) on a dense grid of uniformly distributed
points (in practice it is usually 16L)
→ works well for degree L < 100, tends to fail in some cases for larger L

Our approach:
→ Chebyshev-proxy rootfinder(CPR) [Boyd2002,Boyd2013]

→ [Pachon&Trefethen2009] use it to implement the Remez algorithm
→ apply a similar idea for FIR approximations

14 / 19

Step 3: Finding the local extrema of E(ω)

Traditional approach: evaluate E(ω) on a dense grid of uniformly distributed
points (in practice it is usually 16L)
→ works well for degree L < 100, tends to fail in some cases for larger L
Our approach:
→ Chebyshev-proxy rootfinder(CPR) [Boyd2002,Boyd2013]

→ [Pachon&Trefethen2009] use it to implement the Remez algorithm
→ apply a similar idea for FIR approximations

14 / 19

Step 3: Finding the local extrema of E(ω)

Traditional approach: evaluate E(ω) on a dense grid of uniformly distributed
points (in practice it is usually 16L)
→ works well for degree L < 100, tends to fail in some cases for larger L
Our approach:
→ Chebyshev-proxy rootfinder(CPR) [Boyd2002,Boyd2013]

→ [Pachon&Trefethen2009] use it to implement the Remez algorithm

→ apply a similar idea for FIR approximations

14 / 19

Step 3: Finding the local extrema of E(ω)

Traditional approach: evaluate E(ω) on a dense grid of uniformly distributed
points (in practice it is usually 16L)
→ works well for degree L < 100, tends to fail in some cases for larger L
Our approach:
→ Chebyshev-proxy rootfinder(CPR) [Boyd2002,Boyd2013]

→ [Pachon&Trefethen2009] use it to implement the Remez algorithm
→ apply a similar idea for FIR approximations

14 / 19

Step 3: Finding the local extrema of E(ω)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0

Idea:

split F into appropriate subintervals
F =

⋃N
i=0 Fi

interpolate E(ω) on each Fi with small
degree Chebyshev interpolants Ci

compute roots of the derivative of Ci

using a Chebyshev-proxy rootfinder

Advantages:
→ robust, numerically stable root finding approach
→ easy to parallelize
Cost: if N = O(L), overall O(L2) arithmetic operations

15 / 19

Step 3: Finding the local extrema of E(ω)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0

Idea:

split F into appropriate subintervals
F =

⋃N
i=0 Fi

interpolate E(ω) on each Fi with small
degree Chebyshev interpolants Ci

compute roots of the derivative of Ci

using a Chebyshev-proxy rootfinder

Advantages:
→ robust, numerically stable root finding approach
→ easy to parallelize
Cost: if N = O(L), overall O(L2) arithmetic operations

15 / 19

Step 4: Recover coefficients of H(ω) upon convergence

→ can use the Inverse Discrete Fourier Transform

→ implement it using Clenshaw’s algorithm for computing
linear combinations of Chebyshev polynomials (numerically
robust approach)

Cost: O(L2) arithmetic operations

16 / 19

Step 4: Recover coefficients of H(ω) upon convergence

→ can use the Inverse Discrete Fourier Transform

→ implement it using Clenshaw’s algorithm for computing
linear combinations of Chebyshev polynomials (numerically
robust approach)

Cost: O(L2) arithmetic operations

16 / 19

Our implementation: Examples & Results

Comparison with MATLAB & demo

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
a
g
n
it
u
d
e
(d
B
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−300

−200

−100

0

100

Normalized Frequency (×π rad/sample)

M
a
g
n
it
u
d
e
(d
B
)

17 / 19

Our implementation: Examples & Results

→ design of channelizers for software radio systems
Specification: degree 53248 filter with stopband

[
0, 1

8192π
]
and passband[

3
8192π, π

]
.

Figure: error function on
[0.99π, 0.9905π]

Convergence: required 5 iterations

18 / 19

Perspectives

Conclusion:
improved the practical behavior of a well known polynomial approximation
algorithm for filter design
→ use numerically stable barycentric Lagrange interpolation + rootfinders
without sacrifices in efficiency
this new approach can take huge advantage of parallel architectures

Future work:
release the code for our implementation as an open source library
provide a complete toolchain for constructing FIR filters (approximation +
quantification + hardware synthesis)
tackle the IIR filter setting (rational fraction)

non-linear problem
constraints: poles located inside the unit circle

19 / 19

