Efficient algorithms for the design of finite impulse response digital filters

Silviu Filip under the supervision of N. Brisebarre and G. Hanrot (AriC, LIP, ENS Lyon)

Journées Nationales de Calcul Formel (JNCF) CIRM, Luminy, November 3-7, 2014

• became increasingly relevant over the past 4 decades:

 $\mathsf{ANALOG} \to \mathsf{DIGITAL}$

• became increasingly relevant over the past 4 decades:

$\mathsf{ANALOG} \to \mathsf{DIGITAL}$

• think of:

- data communications (ex: Internet, HD TV and digital radio)
- audio and video systems (ex: CD, DVD, BD players)
- many more

• became increasingly relevant over the past 4 decades:

$\mathsf{ANALOG} \to \mathsf{DIGITAL}$

- think of:
 - data communications (ex: Internet, HD TV and digital radio)
 - audio and video systems (ex: CD, DVD, BD players)
 - many more

What are the 'engines' powering all these?

$$y[n] = x[n] \star h[n]$$

- \rightarrow we get two categories of filters
 - finite impulse response (FIR) filters
 - infinite impulse response (IIR) filters

$$y[n] = x[n] \star h[n]$$

- \rightarrow we get two categories of filters
 - finite impulse response (FIR) filters
 - infinite impulse response (IIR) filters

 \rightarrow natural to work in the frequency domain

$$Y(\omega) = X(\omega)H(\omega), \omega \in [0,\pi]$$

- \rightarrow we get two categories of filters
 - finite impulse response (FIR) filters
 - infinite impulse response (IIR) filters

 \rightarrow natural to work in the **frequency** domain H is the **transfer function** of the filter

$$Y(\omega)=X(\omega)H(\omega), \omega\in[0,\pi]$$

- \rightarrow we get two categories of filters
 - finite impulse response (**FIR**) filters *H* is a polynomial
 - infinite impulse response (IIR) filters *H* is a rational fraction

 \rightarrow natural to work in the frequency domain H is the transfer function of the filter

$1. \ \mbox{derive}$ a concrete mathematical representation of the filter

 \rightarrow use theory of minimax approximation

- 1. derive a concrete mathematical representation of the filter
 - \rightarrow use theory of minimax approximation
- 2. quantization of the filter coefficients using fixed-point or floating-point formats
 - ightarrow use tools from algorithmic number theory (euclidean lattices)

- 1. derive a concrete mathematical representation of the filter
 - \rightarrow use theory of minimax approximation
- 2. quantization of the filter coefficients using fixed-point or floating-point formats
 - \rightarrow use tools from algorithmic number theory (euclidean lattices)
- 3. hardware synthesis of the filter

- 1. derive a concrete mathematical representation of the filter
 - \rightarrow use theory of minimax approximation
- 2. quantization of the filter coefficients using fixed-point or floating-point formats
 - \rightarrow use tools from algorithmic number theory (euclidean lattices)

3. hardware synthesis of the filter

Today's focus: first step for FIR filters

• large class of filters, with a lot of desirable properties Usual representation: $H(\omega) = \sum_{k=0}^{L} a_k \cos(\omega k)$

• large class of filters, with a lot of desirable properties

Usual representation: $H(\omega) = \sum_{k=0}^{L} a_k \cos(\omega k) = \sum_{k=0}^{L} a_k T_k(\cos(\omega))$ \rightarrow if $x = \cos(\omega)$, view H in the basis of Chebyshev polynomials

• large class of filters, with a lot of desirable properties

Usual representation: $H(\omega) = \sum_{k=0}^{L} a_k \cos(\omega k) = \sum_{k=0}^{L} a_k T_k(\cos(\omega))$ \rightarrow if $x = \cos(\omega)$, view H in the basis of Chebyshev polynomials Specification:

• large class of filters, with a lot of desirable properties

Usual representation: $H(\omega) = \sum_{k=0}^{L} a_k \cos(\omega k) = \sum_{k=0}^{L} a_k T_k(\cos(\omega))$ \rightarrow if $x = \cos(\omega)$, view H in the basis of Chebyshev polynomials Specification:

$$H(\omega) = \sum_{k=0}^{8} a_k \cos(\omega k)$$

The problem: Given a closed real set F, find an approximation $H(\omega)=\sum_{k=0}^L a_k\cos(\omega k)$ of degree L for a continuous function $D(\omega), \omega \in F$ such that

$$\delta = \left\| E(\omega) \right\|_{\infty,F} = \max_{\omega \in F} \left| H(\omega) - D(\omega) \right|$$

is minimal.

Optimal FIR design with real coefficients

The solution: characterized by the Alternation Theorem

Theorem

The unique solution $H(\omega) = \sum_{k=0}^{L} a_k \cos(\omega k)$ has an error function $E(\omega)$, for which there exist L + 2 values $\omega_0 < \omega_1 < \cdots < \omega_{L+1}$, belonging to F, such that

$$E(\omega_i) = -E(\omega_{i+1}) = \pm \delta_i$$

Optimal FIR design with real coefficients

The solution: characterized by the Alternation Theorem

Theorem

The unique solution $H(\omega) = \sum_{k=0}^{L} a_k \cos(\omega k)$ has an error function $E(\omega)$, for which there exist L + 2 values $\omega_0 < \omega_1 < \cdots < \omega_{L+1}$, belonging to F, such that

$$E(\omega_i) = -E(\omega_{i+1}) = \pm \delta_i$$

 \rightarrow well studied in Digital Signal Processing literature 1972: Parks and McClellan

 \rightarrow based on a powerful iterative approach from Approximation Theory: 1932: Remez

The Parks-McClellan design method: Example

The Parks-McClellan design method: Example

The Parks-McClellan design method: Example

The Parks-McClellan design method: Steps

Step 1: Choosing the L + 2 initial references

Traditional approach: take the L + 2 references uniformly from $F \rightarrow$ can lead to convergence problems

Step 1: Choosing the L + 2 initial references

Traditional approach: take the L+2 references uniformly from $F \rightarrow$ can lead to convergence problems

 \rightarrow want to start from better approximations Existing approaches: not general enough and/or costly to execute

Step 1: Choosing the L + 2 initial references

Traditional approach: take the L+2 references uniformly from F \rightarrow can lead to convergence problems

 \rightarrow want to start from better approximations Existing approaches: not general enough and/or costly to execute

Our approach: extrema position extrapolation from smaller filters

 \rightarrow although empirical, it is rather robust in practice

Amounts to solving a linear system in a_0, \ldots, a_L and δ .

 $\begin{bmatrix} 1 & \cos(\omega_0) & \cdots & \cos(L\omega_0) & 1 \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & \cos(\omega_L) & \cdots & \cos(L\omega_L) & (-1)^L \\ 1 & \cos(\omega_{L+1}) & \cdots & \cos(L\omega_{L+1}) & (-1)^{L+1} \end{bmatrix} \begin{bmatrix} a_0 \\ \vdots \\ a_L \\ \delta \end{bmatrix} = \begin{bmatrix} D(\omega_0) \\ \vdots \\ D(\omega_L) \\ D(\omega_{L+1}) \end{bmatrix}$

 \rightarrow solving system directly: can be numerically unstable

Amounts to solving a linear system in a_0, \ldots, a_L and δ .

 $\begin{bmatrix} 1 & \cos(\omega_0) & \cdots & \cos(L\omega_0) & 1 \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & \cos(\omega_L) & \cdots & \cos(L\omega_L) & (-1)^L \\ 1 & \cos(\omega_{L+1}) & \cdots & \cos(L\omega_{L+1}) & (-1)^{L+1} \end{bmatrix} \begin{bmatrix} a_0 \\ \vdots \\ a_L \\ \delta \end{bmatrix} = \begin{bmatrix} D(\omega_0) \\ \vdots \\ D(\omega_L) \\ D(\omega_{L+1}) \end{bmatrix}$

→ solving system directly: can be numerically unstable → use **barycentric** form of Lagrange interpolation [Berrut&Trefethen2004]

Barycentric Lagrange interpolation

Problem: p polynomial with deg $p \leq L$ interpolates f at points x_j , i.e.,

$$p(x_j) = f_j, j = 0, \dots, L$$

Barycentric Lagrange interpolation

Problem: p polynomial with deg $p \leq L$ interpolates f at points x_j , i.e.,

$$p(x_j) = f_j, j = 0, \dots, L$$

 \rightarrow the barycentric form of p is:

$$p(x) = \frac{\sum_{j=0}^{L} \frac{w_j}{x - x_j} f_j}{\sum_{j=0}^{L} \frac{w_j}{x - x_j}},$$

where $w_j = \frac{1}{\prod_{k \neq j} (x_j - x_k)}$. **Cost:** $O(L^2)$ for computing all w_j , O(L) for evaluating p(x). \rightarrow numerically stable if the family of interpolation nodes used has a small Lebesgue constant [Mascarenhas&Camargo2014]

The Lebesgue constant: specific to each grid of points; quantifies the convergence/divergence properties of polynomial interpolants using those nodes

 \rightarrow numerically stable if the family of interpolation nodes used has a small Lebesgue constant [Mascarenhas&Camargo2014]

The Lebesgue constant: specific to each grid of points; quantifies the convergence/divergence properties of polynomial interpolants using those nodes

 \rightarrow from empirical observation, the families of points used inside the Parks-McClellan algorithm (Step 1 + Step 3) usually converge to sets of points with small Lebesgue constant

Traditional approach: evaluate $E(\omega)$ on a dense grid of uniformly distributed points (in practice it is usually 16L)

 \rightarrow works well for degree L < 100, tends to fail in some cases for larger L

Traditional approach: evaluate $E(\omega)$ on a dense grid of uniformly distributed points (in practice it is usually 16L)

 \rightarrow works well for degree L < 100, tends to fail in some cases for larger L Our approach:

→ Chebyshev-proxy rootfinder(CPR) [Boyd2002,Boyd2013]

Traditional approach: evaluate $E(\omega)$ on a dense grid of uniformly distributed points (in practice it is usually 16L)

 \rightarrow works well for degree L < 100, tends to fail in some cases for larger L Our approach:

→ Chebyshev-proxy rootfinder(CPR) [Boyd2002,Boyd2013]

ightarrow [Pachon&Trefethen2009] use it to implement the Remez algorithm

Traditional approach: evaluate $E(\omega)$ on a dense grid of uniformly distributed points (in practice it is usually 16L)

 \rightarrow works well for degree L < 100, tends to fail in some cases for larger L Our approach:

→ Chebyshev-proxy rootfinder(CPR) [Boyd2002,Boyd2013]

 \rightarrow [Pachon&Trefethen2009] use it to implement the Remez algorithm \rightarrow apply a similar idea for FIR approximations

Idea:

- split F into appropriate subintervals $F = \bigcup_{i=0}^N F_i$
- interpolate E(ω) on each F_i with small degree Chebyshev interpolants C_i
- compute roots of the derivative of C_i using a Chebyshev-proxy rootfinder

Idea:

- split F into appropriate subintervals $F = \bigcup_{i=0}^{N} F_i$
- interpolate $E(\omega)$ on each F_i with small degree Chebyshev interpolants C_i
- compute roots of the derivative of C_i using a Chebyshev-proxy rootfinder

Advantages:

 \rightarrow robust, numerically stable root finding approach

 \rightarrow easy to parallelize

Cost: if N = O(L), overall $O(L^2)$ arithmetic operations

Step 4: Recover coefficients of $H(\omega)$ upon convergence

 \rightarrow can use the Inverse Discrete Fourier Transform

 \rightarrow can use the Inverse Discrete Fourier Transform

 \rightarrow implement it using Clenshaw's algorithm for computing linear combinations of Chebyshev polynomials (numerically robust approach)

Cost: $O(L^2)$ arithmetic operations

Our implementation: Examples & Results

Comparison with MATLAB & demo

Our implementation: Examples & Results

Conclusion:

- improved the practical behavior of a well known polynomial approximation algorithm for filter design
 - \rightarrow use numerically stable barycentric Lagrange interpolation + rootfinders without sacrifices in efficiency
- this new approach can take huge advantage of parallel architectures

Future work:

- release the code for our implementation as an open source library
- provide a complete toolchain for constructing FIR filters (approximation + quantification + hardware synthesis)
- tackle the IIR filter setting (rational fraction)
 - non-linear problem
 - constraints: poles located inside the unit circle