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Cryptographic context

Don’t tell me you want yet another crypto introduction with Alice
and Bob?

Who has never heard about RSA ?

Who has never heard about Diffie-Hellman ?

Who has never seen an elliptic curve in the wild ?

Who has never clicked on the small lock in the https:// ?
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What’s in the lock?

When clicking on the lock in Firefox or Chromium:
Information about certificates: almost all are RSA-based;
Information about the connection: wide choice of algorithms.

Thanks to Heartbleed, many web-servers have been upgraded
recently; and now they support elliptic curves!

Problem: Certificates must be understand by all the clients, so

RSA is here to stay.
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Basic definitions

Def. The integer factorization problem is: given N, compute its
decomposition in prime factors N =

∏
pei

i .

Def. The primality testing problem is: given N, decide if N is a
prime or a composite number.

Def. The smoothness testing problem is: given N and B,
decide if N is B-smooth, i.e. if all its prime factor are less than B.
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Primality is easy!

Fact: Proving that a number is composite is very easy.

Use Miller-Rabin (some kind of Fermat’s little theorem: if there
exists a such that aN−1 6≡ 1 mod N, the N is not prime).

This is difficult to turn that into an algorithm proving primality.

Two approaches:
With elliptic curves: Las Vegas algorithm that works in
polynomial time (needs genus 2 curves as well to get a
rigorous proof of the expected runtime);
With AKS: polynomial deterministic.

In practice: be happy with a Monte Carlo algorithm, or use elliptic
curves.
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Listing primes is also easy

Prime Number Theorem
Let π(x) be the number of primes less than or equal to x . Then

π(x) ∼ x/ ln(x).

Fact: Listing all primes up to B can be done in quasi-linear time
in B.
Rem. The size of the ouput has ≈ B bits.

Algorithm: sieve of Erathostenes.

There has been advances in the past decades: save log log factors,
save memory, improve practicality (on-line algorithm).
Exercise: implement a quasi-linear Erathostenes on a Turing machine.
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Factorization by trial division

Trial division algorithm:
Try to divide N by all the primes in increasing order, until the
quotient is itself a prime.
Complexity: quasi-linear in the second largest prime factor
of N.
Worst case: Õ(

√
N).

Numbers easy to factor
Fact. Integers for which the second largest prime divisor is
polynomial can be factored in polynomial-time.

Counting them, we realize that they are plenty of those (this
includes all the primes!)
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Smooth numbers

Smooth numbers play a crucial role in many modern algorithms
for factorization and discrete log.

Def. We let ψ(x , y) be the number of y -smooth integers that are
less than or equal to x .

Theorem (Canfield – Erdős – Pomerance)
For any ε > 0. Uniformly in y ≥ (log x)1+ε, as x →∞,

ψ(x , y)/x = u−u(1+o(1)),

where u = log x/ log y .

In all our algorithms, y is much larger than this bound: it is usually
subexponential in log x .
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The L notation

Definition: subexponential L-function
Let N be the main parameter (usually the input of the algorithm).
For parameters α ∈ [0, 1] and c > 0, we define the
subexponential L-function by

LN(α, c) = exp
(
c(logN)α(log logN)1−α

)
.

Rem: α is the main parameter. α = 0 means polynomial-time;
α = 1 means purely exponential.
Rem: Sometimes, we drop the c parameter. Algorithms in this
lecture will have complexity in LN(1

2), LN(1
3) or LN(1

4).
Crude approximation. The input N has n = log2 N bits,
LN(α) ≈ 2nα .
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Smooth integers: theorem with L

Easy corollary of CEP:

Smoothness probabilities with L notation
Let α, β, c, d , with 0 < β < α ≤ 1. The probability that a
number less than or equal to LN(α, c) is LN(β, d)-smooth is

LN

(
α− β, (α− β)

c
d

)−1+o(1)
.

Main application: α = 1, β = 1/2.
Then an integer less than N is LN(1/2)-smooth with probability in
1/LN(1/2).
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Solving the smoothness test problem

Def. The smoothness testing problem is: given N and B,
decide if N is B-smooth, i.e. if all its prime factor are less than B.

With trial division, can be solved in time quasi-linear in B.

The Elliptic Curve Method by Lenstra (1987), is better:

Complexity of ECM smoothness test (heuristic)
Given an integer N and a bound B, ECM returns either the
factorization of N or fails.
If N is B-smooth, the success probability is at least 1/2.
The running time is in (logN)O(1)LB(1/2,

√
2 + o(1)).

Rem. ECM as a factoring algorithm gives a worst-case complexity
of LN(1/2, 1 + o(1)).

14/81



Summary

Primality: easy.
Factorization: hard.
Smoothness test: in between.
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Definition of the problem

Context: a cyclic group G of order N. Let G = 〈g〉.

Assumptions:
there exists a fast algo for the group law in G ;
elements are represented with logN bits;
N is known (and maybe its factorization).

Def. The discrete logarithm problem (DLP) in G is: given any
element h, compute x such that

h = gx .
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Easy remarks

The result x makes sense only modulo N (because gN = 1).

There is a group isomorphism:

G ∼= Z/NZ,

one of the map is easy (binary exponentiation);
the other is the DLP.

The naive algorithm can solve the DLP in less then N group
operations.
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Pohlig-Hellman reduction

Assume the factorization N =
∏
`ei

i is known.

For any j , raise g and h to the power N/`ej
j to obtain g ′ and h′.

Then x mod `ej
j is the discrete logarithm of h′ in the group of

order `ej
j generated by g ′.

By CRT, we have therefore reduced the original DLP to smaller
DLP in groups of prime powers orders.

Adding to this an Hensel trick, we obtained:

Theorem of Pohlig–Hellman
The DLP in G of order N =

∏
`ei

i can be reduced in polynomial
time to, for each i , solving ei DLP in subgroups of G of order `i .
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Baby-step giant-step algorithm

Start again from a DLP: find x s.t. h = gx .

Let us rewrite the (unknown) discrete logarithm x as

x = x0 + d
√

Nex1, where 0 ≤ x0, x1 < d
√

Ne.

First phase: compute all candidate values for hg−x0 ; store them in
an appropriate data structure.
Second phase: compute all the gx1d

√
Ne and check if there is a

match.
If yes: reconstruct x from x0 and x1.

Complexity: Õ(
√

N) in time and space.

Rem. In practice, there are low-memory and parallel variants of
this, (initially) due to Pollard.
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Summary of generic DL algorithms
Combining Pohlig–Hellman and Baby-step giant-step, we get:

Up to polynomial time factors, the DLP in any group
can be solved in

√
` operations, where ` is the largest

prime factor of the group order.

The converse is proven:

Theorem (Shoup): Lower bound on DLP
Let A be a probabilistic generic algorithm for solving the DLP. If A
succeeds with probability at least 1

2 on a group G , then A must
perform at least Ω(

√
#G) group operations in G .

But, of course, no group is generic, in the sense that the attacker
is free to use a DLP algorithm specific to the family used by the
designer.
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Two congruent squares

Let N an integer to be factored.
Assume that we have found X and Y such that

X 2 ≡ Y 2 mod N,

in a non-trivial manner: X 6≡ ±Y mod N. Then

GCD(X − Y , N) gives a proper factor of N .

For a fixed value of Y , how many X ’s such that X 2 − Y 2 ≡ 0 ?
If N is a prime, exactly 2 values: ±Y ;
If N = pq is an RSA key, 2 values mod p and 2 values mod q.
By CRT, any 2 can be combined: 4 choices;
In general, even more choices.

Fact. Computing a modular square root is as hard as factoring.
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Mixing squares and smoothness

Pick x a random element modulo N.
Compute x2 mod N as an integer in [0,N − 1], if we recognize a
square integer, then we win.

But this is highly unlikey.

Therefore, we test it for B-smoothness, and if it is smooth, keep
it for later use.

Let us do this many times, and collect many relations:

x2
i ≡

∏
p<B

pep,i .

25/81



Combining relations to make a square
Example: B = 11.
If we have

x2
1 ≡ 22 × 30 × 52 × 71 mod N

x2
2 ≡ 20 × 32 × 51 × 70 mod N

x2
3 ≡ 21 × 31 × 51 × 70 mod N

x2
4 ≡ 22 × 33 × 51 × 71 mod N

x2
5 ≡ 23 × 31 × 50 × 71 mod N

Then, we can try to select a subset of relations whose product is
a square on the RHS.
Rem. Only the parity of the exponent is important.
On this example:

(x1x2x3x5)2 ≡ 26 × 34 × 54 × 72 mod N.
And we can try to factor N with:

GCD(x1x2x3x5 − 23 × 32 × 52 × 71,N)
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Combining relations with linear algebra

Let us form the relation matrix M:
each row encodes a relation;
each column is labelled by a prime < B;

Finding the appropriate combination is a left-kernel computation of
M, seen over F2 (only parity is important).

Rem. The matrix is sparse, even if B is large: at most logN
non-zero entries.

Example: The matrix for the RSA-768 computation was with 64G rows
and 40G cols.
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An LN(1/2) factoring algorithm
Tuning smoothness bound B:

Too large: will need many relations to get a matrix with a
non-zero kernel vector;
Too small: very unlikely to get a B-smooth element.

The optimal value is B = LN(1/2,
√
2/2).

Probability of being smooth:
According to CEP, it is in LN(1/2,

√
2/2 + o(1))−1.

Total cost of getting enough relations:
Need more relations than unknowns, say B. Testing smoothness is
done in time Bo(1) with ECM.
Therefore, total cost of constructing M is LN(1/2,

√
2 + o(1)).

Cost of linear algebra:
With Wiedemann or Lanczos, quasi-quadratic time:
LN(1/2,

√
2 + o(1)) as well.
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An LN(1/2) factoring algorithm

Global complexity:

LN(1/2,
√
2 + o(1)).

Trick to reduce the complexity: don’t take random x ’s when
looking for relations, but take x = d

√
Ne+ ε.

Therefore, x2 − N ≈
√

N instead of N before, and the probability
of being smooth is higher.
Exercise: re-tune N and show that this gives a heuristic
complexity of LN(1/2, 1 + o(1)).

Rem. Proving those complexity is hard (don’t try this at home...),
but feasible (Lenstra, Pomerance, ...)
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Factoring: going further

The Number Field Sieve algorithm (NFS) is another way to
create relations.

Invented in the 90’s by Pollard, Lenstra, and others...
Uses number fields (!)
Complexity is (heursitic):

LN(1/3, 3
√
64/9 + o(1)).

Faster than other algorithms for integers with more than
≈ 100 decimal digits.

Rem. Will discuss this algorithm in the context of DLP in prime
fields at the end of this lecture.

30/81



Plan

Presentation of the problems

Combining congruences
Basic subexponential factoring algorithm
Combining congruences for DLP

DLP in finite fields of small characteristic

The linear algebra step of the number field sieve

31/81



Generalities for DL in Fp

Let G be the multiplicative group of Fp, with p prime.

G is cyclic, of order p − 1.
With Pohlig-Hellman + BSGS, we consider a subgroup of large
prime order

` | p − 1.

Rem. ` is large enough so that any event with proba 1/` is
unlikely to occur.

Notation. g is a generator of the subgroup of order `, and h is the
target element in 〈g〉: we look for logg (h).
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A three-step strategy

Algorithm with three phases:
1. Collect relations between “small” elements;
2. With sparse linear algebra, deduce the logarithms of those;
3. Find a relation between the target h and small elements.

Rem. The first two phases depend only on Fp. If we want the logs
of many targets, these can be seen as a precomputation.

Terminology. The first phase is often called sieve.
Indeed, in most cases, a processus à la Erathostenes is used instead or in
combination of ECM.
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Collecting relations
[Very similar to integer factorization.]
Pick a random a, and compute ga in Fp.
Interpret ga as an integer in [1, p − 1], and test its B-smoothness.
If yes, we obtain a relation; let us collect many of them:

gai ≡
∏

q<B
qeq,i mod p.

Taking the logarithm in base g , we get:

ai ≡
∑
q<B

eq,i log q mod `.

In these, the only unknown part are the log q, for q < B: the
“small” elements!

Terminology. The set of “small” elements in these algorithms is often
called the Factor base.

34/81



Wait! Modulo ` or modulo p − 1 ?

The equation for a relation:

ai ≡
∑
q<B

eq,i log q mod `.

is written as if elements were all in the subgroup of order `.

But they are not! Each q < B has probability `/(p − 1) to be in
the subgroup 〈g〉.

Fact. The equation is still valid: raise the equation to (p − 1)/`,
take the logarithms, and divide out the result by (p − 1)/` (which
is assumed to be coprime to `).
Rem. Important drawback of the algorithm: even though we
work in a subgroup of F∗p, the collection of relations can not really
take advantage of that. Complexity will depend on p, not on `.
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Final analysis
Set B = Lp(1/2,

√
2/2).

Cost of finding a relation: by CEP, we get Lp(1/2,
√
2/2+ o(1)).

Cost of building the whole matrix: Lp(1/2,
√
2 + o(1)).

Cost of linear algebra: this is sparse, over F`, so again
Lp(1/2,

√
2 + o(1)).

Once we know the values of the log q’s, we can find a single
relation involving the target: hga ≡

∏
q<B(log q)eq , in time

Lp(1/2,
√
2/2 + o(1)).

Hence, the total time is

Lp(1/2,
√
2 + o(1)).
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Combining congruences for DL in F2n.
Representation of the finite field:

F2n ∼= F2[t]ϕ(t),

where ϕ(t) is irreducible of degree n.
Exactly the same algorithm, based on the smoothness of
polynomials:
Def. A polynomial in F2[t] is b-smooth if all its irreducible factors
have degree at most b.

Analogies with integers:
Size: logarithm ↔ degree;
Number of irreducible polynomials ≈ number of prime
numbers;
Test of smoothness can be done in polynomial-time (don’t
need complicated algorithms like ECM).
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Analysis of the algorithm

The probability of smoothness is very similar to the integer case:

Theorem (Panario – Gourdon – Flajolet)
Let Nq(n,m) be the number of monic polynomials over Fq, of
degree n that are m-smooth.
Then we have

Nq(n,m)/qn = u−u(1+o(1)),

where u = n/m.

Setting a smoothness bound of b = log2 L2n (1/2,
√
2/2), we get a

total complexity of

L2n (1/2,
√
2 + o(1)).
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DLP: going further

The basic combining of congruences in L(1/2) works for any finite
field.

It can be proven.

With the NFS/FFS algorithms, we can get an (heuristic) L(1/3)
algorithm for any finite field.
(Latest hard case, in Fpn when n ≈ log p, was solved in 2007).
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Setting

The BaGaJoTh algorithm applies to finite field of a specific form:

Definition
A finite field admits a sparse medium subfield representation if
it can be written Fq2k , with

k ≤ q + 2;
There exist h0 and h1 of degree 2 in Fq2 [X ] such that
h1(X )Xq − h0(X ) has an irreducible factor ϕ(X ) of degree k.

All finite fields of small characteristic have “more or less” a sparse
medium subfield representation:

Might need to embed into a larger field (more on that later);
Might need to use polynomials h0 and h1 of (constant?)
degree larger than 2.
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Sizes – complexities

The algorithm behaves well if q ≈ k.

In that case:
The field has cardinality q2k ≈ qq;
The input bit-size is ≈ q log q;
Any step with a time-complexity in qO(1) is polynomial;
In the end, we won’t reach a polynomial-time complexity, so
no need to keep track of the constants in the exponent.

Rem. Quasi-polynomial means here qO(log q).

Rem. Heuristic means we do not know how to prove the
complexity (see work of Granger, Kleinjung, Zumbrägel, though!)
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One descent step
Elements are represented by polynomials in Fq2 [X ] of degree < k.
Let P(X ) of degree D < k be an element whose log is wanted.
We are going to rewrite logP in terms of logarithms of elements of
degree at most D/2.

Key equation:
Xq − X =

∏
α∈Fq

X − α,

seen as a polynomial equation in Fq2 [X ].

Main idea: Replace X by (aP + b)/cP + d) in the key equation,
for a, b, c, d in Fq2 , and hope to get a relation.

(aP+b)q(cP+d)−(aP+b)(cP+d)q =
∏

(α:β)∈P1(Fq)

(−cα+aβ)P−(dα−bβ),

Let us study both sides.
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One descent step: LHS

LHS = (aP + b)q(cP + d)− (aP + b)(cP + d)q = · · ·

This has high degree, but can be rewritten modulo ϕ(X ):
For instance,

(aP + b)q ≡ aqP̃(h0/h1) + bq mod ϕ,

where P̃ is P with coefficients raised to the power q.

Need to clear denominators: multiply by hD
1 .

Then the degree is 2D for this block, and finally:

degLHS = 3D.

Hope: This splits into factors of degree D/2.
This occurs with a constant probability.
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One descent step: RHS

RHS =
∏

(α:β)∈P1(Fq)

(−cα + aβ)P − (dα− bβ)

Without transformation: this is already factored!

All factors (up to constant) belong to translates of P:{
P + γ : γ ∈ Fq2

}
.

Rem. Not small degree, but small number of elements.
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Let a, b, c , d vary. . .

Problem. Many quadruples give the same relation.
The appropriate structure is

P = PGL2(Fq2)/PGL2(Fq).

Fact. Taking for a, b, c, d , one rep. in each coset of P, we avoid
obvious duplicates.

Number of choices:
#P = q3 + q.

Probability that LHS is D
2 -smooth: heuristically, constant.

Number of survivors: Θ(q3) relations that involve
polynomials of degree at most D/2 on the LHS;
translates of P on the RHS.
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One descent step: conclusion

Assumption: the system of linear equations formed by the
surviving RHS’s has full rank.
With a linear algebra step, we can eliminate all the unknowns on
the RHS but P.

Result:

Proposition (heuristic)
Let P(X ) ∈ Fq2 of degree D < k. In time polynomial in D and q,
we can express logP as a linear combination

∑
ei logPi , where

degPi ≤ D/2, and the number of Pi is in O(q2D).
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The descent tree
Each node of the descent tree corresponds to one application of
the Proposition, hence its arity is in q2D.

level degPi width of tree
0 k 1
1 k/2 q2k
2 k/4 q2k · q2 k

2
3 k/8 q2k · q2 k

2 · q
2 k

4...
...

...
log k 1 ≤ q2 log kk log k

Total number of nodes = qO(log k).

Each node yields a cost that is polynomial in q.

Total cost: qO(log q).
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Embedding in larger fields

Let Fpn , with p < n, which is not of the appropriate shape.

If p ≈ n, then set q = p and k = n, and embed the DLP in
Fq2k .
The input size is twice as large: preserve the complexity.
If p = 2 (worst case), set q to the smallest power of 2 larger
than n, and set k = n.
We work in a field of order 22n log n.
The complexity w.r.t. to original size is also preserved!
If p � n, the complexity is no longer controlled.
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Quasi-polynomial algorithm

Main result (based on heuristics)
Let K be a finite field of the form Fqk . A discrete logarithm in K
can be computed in heuristic time

max(q, k)O(log k).

Cases:
K = F2n , with prime n. Complexity is nO(log n). Much better
than L2n (1/3 + o(1)) ≈ 2 3√n.
K = Fqk , with q ≈ k. Complexity is logQO(log log Q), where
Q = #K . Again, this is LQ(o(1)).
K = Fqk , with q ≈ Lqk (α). Complexity is Lqk (α + o(1)), i.e.
better than Joux-Lercier or FFS for α < 1/3.
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Limitation of BaGaJoTh

The main drawback of the quasi-polynomial is

The arity of the descent tree is ≈ q2.

Joux’s L(1/4) algorithm:
Arity only ≈ q;
Tree is deeper.

Let’s concentrate on the bottom of the tree, where polynomial
systems are involved.
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Setting

Same context as before:

Fq2k , with q ≈ k.

Goal: for P of degree D <
√

k, rewrite logP in terms of logs of
polys of smaller degree.
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Using again the key equation

Let k1 and k2 be two polynomials; and plug k1/k2 in the field
equation Xq − X =

∏
(X − α):

k1(X )qk2(X )− k1(X )k2(X )q =
∏

(α:β)∈P1(Fq)

βk1(X )− αk2(X ).

Wishlist on k1 and k2 we are looking for:
k1 and k2 have small degree (hence RHS is smooth);
P divides the LHS;
the rest of the LHS is smooth;
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Modeling divisibility by a bilinear system
Idea: x 7→ xq is a high degree function, but is linear. Make this
q-linearity explicit.

Step 1: Write an explicit Fq-basis for Fq2 :

Fq2 = Fq[t]/(t2 + τ1t + τ0).

Step 2: Fix degrees for k1 and k2 and write Fq-indeterminates for
their coeffs:

k1(X ) = a0 + a1X + · · ·+ ad1Xd1

= (a′0 + a′′0t) + (a′1 + a′′1t)X + · · ·+ (a′d1
+ a′′d1

t)Xd1 ,

k2(X ) = b0 + b1X + · · ·+ bd2Xd2

= (b′0 + b′′0 t) + (b′1 + b′′1 t)X + · · ·+ (b′d2
+ b′′d2

t)Xd2 .

Step 3: Expand / collect expressions like k1(X )qk2(X ):
Get a polynomial in X and t with coefs that are bilinear.

56/81



Modeling divisibility by a bilinear system (2)

Step 4: Do this for the whole LHS and write the generic
remainder modulo P:
This is a polynomial of degree D − 1 in X , degree ≤ 1 in t, and
each coeff is a bilinear form in the Fq-indeterminates:

{ai , a′′i } and {b′j , b′′j }.

Step 5: Write that the remainder is zero:
This gives 2D bilinear equations over Fq.

Degrees of freedom: taking into account a few redundancies, we
need

d1 + d2 = D + 1.

Algorithm: Write the system, solve it, test smoothness of the
LHS.
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Complexity analysis

Naïve approach: take d1 ≈ d2 ≈ D/2, and use classical
complexity estimates for Gröbner basis computation.

FAIL: exponential cost.

Recent result of Faugère, Safey El Din, Spaenlehauer:

Theorem on general bilinear system solving
For a 0-dimensional affine bilinear system involving nx and ny
unknowns, the solutions can be found in time

O
((

nx + ny + min(nx + 1, ny + 1)

min(nx + 1, ny + 1)

)ω)
.

Conclusion: it is better to unbalance d1 and d2.
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Complexity analysis (2)

Small or large d1, d2?:
If the degrees are very unbalanced, the depth of the tree
becomes too large (one step make the degree of P diminish
slowly);
If the degree are not too much unbalanced, the cost of the
polynomial system resolution becomes too large.

Final complexity:
If we start with a polynomial P of degree D =

√q, then the best
choice is

d1 ≈ 4
√q.

The global cost of the bottom of the descent tree is then

Lq2k (1/4 + o(1)).
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Practical?
Record of Granger, Kleinjung, Zumbrägel (2014): DLP in

F29234 ≡ F218×513 .

Algorithms:
Top of the tree: used a “classical” descent (à la FFS).
From degree 9 to degree 2: descent with bilinear systems.
Logs of degree 1 and 2: same as in quasi-polynomial algo.

Costs of Gröbner basis computation with Magma:

degree time
≤ 7 seconds
8 45 minutes
9 5 hours

Only 1% of the total time (45 years on 1 core).
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Setting

Back to prime fields!

Let p be a (large) prime.
Goal: solve DLP in Fp.

Remarks:
By Pohlig-Hellman, work in a subgroup of prime order
` | p − 1.
p (and `) are multi-precision primes: if they fit in 64 bits,
then BSGS takes less than 232 operations (a few seconds on
one core).
Current record: p with 180 digits ≈ 600 bits.
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The magic diagram of NFS

Let f (x) be a polynomial and m an integer such that f (m) ≡ 0
mod p. We denote by α the algebraic number that is a root of f .

The diagram commutes (the maps are ring homomorphisms).

Z[x ]

Z[x ]/(x −m) Z[x ]/f (x)

Z/pZ ∼= Fp

x 7→ m x 7→ α

mod p α 7→ m mod p

a + bx ∈

a + bm ∈ 3 a + bα

a + bm ∈

smooth? smooth?

If smooth on both sides, then we get a relation in Fp.
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What does it mean to be smooth?

On the rational side (left): smoothness of integers. OK.

On the algebraic side (right):
Smoothness in a number ring.
In general, this is not a Unique Factorization Domain.
Have to factor ideals.
An ideal is smooth iff its norm is smooth.
A lot of (theoretical and practical) technicalities to define the
“log of an ideal mapped to Fp.”
Work of Schirokauer.

Rem. Main mathematical structure: Dedekind domain.
Algorithms for manipulating ideals have been developped in the
late 80’s (see Cohen’s book).
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General algorithm

1. Select f and g appropriate for given p;
2. Try many candidates for a − bx and check whether they are

smooth on both sides;
3. Transform them into relations:

(a − bα) =
∏

N(q)<B qeq

a − bm =
∏

q<B qeq .

4. Add the Schirokauer maps to convert to linear equations
between logs.

5. Solve the linear algebra system modulo `.
6. Use a descent procedure to rewrite the target element into

small elements of known logs.
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A few words on Schirokauer maps (SM)

To the plain sparse matrix, we need to add SMs columns to take
into account units.
Theorem of Dirichlet
Let f be a polynomial over Z. Let r1 be the number of real roots
and 2r2 the number of complex roots.
The rank of the unit group of the number field of f is r1 + r2 − 1.

Facts:
The number of SMs columns to add is r1 + r2 − 1.
These columns are dense in both sense:

No zero entries;
Entries are random-looking elements modulo `.

Rem. The rest of the matrix is sparse in both sense: few entries,
most of them ±1.
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Complexity analysis (sketch)
Fix d = 3

√
3 log p/ log log p.

Let m ≈ p1/d , and f given by the base-m expansion of p:

p = f0 + f1m + · · ·+ fd−1md−1 + md = f (m),

where fi ≈ m ≈ p1/d = Lp(2/3).

Taking a and b of size ≈ Lp(1/3), we get objects to smooth of size:

Lp(2/3).

Setting a smoothness bound B = Lp(1/3), we get a probability
of smoothness on each side of Lp(1/3)−1.
Sparse linear algebra: Õ(B2) = Lp(1/3).

[ugly details skipped...] Overall complexity in

Lp(1/3, 3
√
64/9+ o(1)).
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Complexity analysis – comments

What gives the gain Lp(1/2) to Lp(1/3) ?
In basic combination of congruences: one object to smooth,
of size Lp(1).
In NFS: two objects to smooth of size Lp(2/3).
Splitting in two paths was the key.

Going further?
Would need to split in more than two pieces to test for
smoothness.
Drawing a diagram with objects of dimension more than 2
seems like a good idea (didn’t manage to make it work...)
Any idea, someone???
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A running example: p180

Computation finished in June 2014: Bouvier, G., Imbert, Jeljeli
and Thomé.
Input:

p of 180 digits, random-looking: p = RSA180 +625942;
p − 1 = 2`, with ` prime;
target: log of a random-looking element: RSA1024.

Data on the computation:
Polynomial selection: 60 days.
Relation collection: 253 M relations in 50 years.
Filtering: reduce to a matrix of size 7.2 M with 150 entries
per row.
SM: 1 year.
Linear algebra with Wiedemann: 80 years.
Individual logs: a few hours.
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A few words on the Wiedemann part

Iterative method: main workhorse is Sparse Matrix × Vector.

Usually, two levels of parallelism:
Use of block Wiedemann: several independant sequences in
parallel.
Each sequence run the SpMv on a set of interconnected,
multicore nodes:

maybe the matrix does not fit in a single node;
parallelism without overhead in the Berlekamp-Massey step.

Main specific property: SM columns should be handled in a
different way.

Example of p180. Blocking factor: (12, 24). Each sequence on 4
nodes with 16 core each at 2.7 sec per iteration.
Berlekamp-Massey step took 15 hours on 144 cores.
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Filtering step: generalities
Remember the p180 example:

Matrix ouput by the relation collection: 253M rows, 82M
columns, 20 non-zero entries per row.
Matrix entering Wiedemann: 7.2M rows/cols, 150 non-zero
entries per row.

More precisely:
We look for a non-zero right-kernel vector (length = 82M).
From a non-zero kernel vector of the small matrix (length =
7.2M), we can deduce the others.

A B

0 C

A is in row echelon form.
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Properties of input matrix

Atypical properties: (non-SM part)
Very sparse: only a few non-zero entries per row (say 20).
Variance is reasonably low (no row with 3 or 100 entries).
Most entries are 1’s.
The column density goes from close to one (column labelled
by prime 2) to almost or completely empty.
No structural property.
There are rows that are equal (!)
This is due to the relation collection algorithm.
There are empty column.
A lot of redundancy: we collect much more rows than
required for having maximal rank.
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Trivial things are not trivial anymore
Memory issue:

On p180, the raw relations take 20 GB of (compressed) space
on disk.
If we add the SMs, this would add 50 GB: postpone their
computation as much as possible.

Duplicate removal:
Trivial mathematically; needs to be done on disk.
Example p180: keep 175M rows from the 253M initial ones.

Singleton removal:
Again trivial mathematically:

Detect and remove empty columns.
Pivot with column that have only 1 non-zero entry.

Strategy for “removing columns”: first renumbering of columns
after duplicate removal, second renumbering just before
Wiedemann.
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Using redundant rows
Entering this stage:

A2 B2

0 C2
A2 is almost Id .

On p180: C2 has 171M rows, 78M cols. All columns of C2 have at
least 2 non-zero entries.

Clique removal step: select rows of C2 to be deleted to transform
it into a square matrix.
Graph-theoretic point of view:

Each node is a row;
If a column has weight 2, put an edge between the two
corresponding rows.
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Using redundant rows (2)

Select a large connected component (was called “clique” by
factorization people!!!):

Remove one of the row of this CC;
This creates chained singleton columns, so that the whole CC
can be “removed”.

Number of CC that can be removed:

#rows(C2)−#cols(C2).

Heuristics:
Start with largest CC.
Can refine the quality of the CC by counting the weights of
the corresponding rows.

Example p180: reduce to a square matrix of size 21M.
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Let’s start real pivoting
Up to now, no real pivoting: rows have not been combined yet.

The final step of the filtering is usually called merge.
Goal: select pivots so that matrix remains as sparse as possible.

Strategy:
Select columns of smallest weight.
Eliminate the corresponding rows.
Repeat until the matrix is too dense.

Pivoting of a column is optimized with a minimum spanning tree
computation.
Stopping criterion: based on an estimate of the cost of the
Wiedemann step.

Example p180: final matrix size is 7.2 M with 150 non-zero entries
per row.
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Filtering, summary

Summary of the filtering steps:
Duplicate removal;
Singleton removal;
Clique removal;
Merge.

Rem. All of this takes more or less linear time, as opposed to
quadratic for Wiedemann.
In practice, can try several set of parameters, and choose the best
result for Wiedemann (based on bench, not estimates).

Recent idea of Kleinjung (for factorization): store the final matrix
as a product of larger matrices, so that the total weight is smaller.
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Conclusion

Integer factorization and discrete logarithm involve:
Analytic number theory (for the complexity estimates);
Algebraic number theory (ugly details of NFS);
Arithmetic geometry (elliptic curves for ECM);
Computer arithmetic (fast implementation at low-level);
Parallelism (fast implementation at high-level);
Computer algebra:

Asymptotically fast algorithms;
Exact linear algebra;
Polynomial systems;

In each domain, can take “off the shelf” tools; but looking under
the hood almost systematically helps.
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