Computing low-degree factors of lacunary polynomials. a Newton-Puiseux Approach

Bruno Grenet

LIRMM — Université Montpellier 2

JNCF - November 3., 2014

Factorization of a polynomial f

Find f_1, \ldots, f_t , irreducible, s.t. $f = f_1 \times \cdots \times f_t$.

Factorization of a polynomial f

Find f_1, \ldots, f_t , irreducible, s.t. $f = f_1 \times \cdots \times f_t$.

- Many algorithms
 - over \mathbb{Z} , \mathbb{Q} , $\mathbb{Q}(\alpha)$, $\overline{\mathbb{Q}}$, \mathbb{Q}_p , \mathbb{F}_q , \mathbb{R} , \mathbb{C} , ...;
 - in 1, 2, ..., n variables.
- Complexity: polynomial in deg(f)

Factorization of a polynomial f

Find
$$f_1, \ldots, f_t$$
, irreducible, s.t. $f = f_1 \times \cdots \times f_t$.

- Many algorithms
 - over \mathbb{Z} , \mathbb{Q} , $\mathbb{Q}(\alpha)$, $\overline{\mathbb{Q}}$, \mathbb{Q}_p , \mathbb{F}_q , \mathbb{R} , \mathbb{C} , ...;
 - o in 1, 2, ..., n variables.
- Complexity: polynomial in deg(f)

$$\begin{split} X^{102}Y^{101} + X^{101}Y^{102} - X^{101}Y^{101} - X - Y + 1 \\ &= (X + Y - 1) \times (X^{101}Y^{101} - 1) \end{split}$$

Factorization of a polynomial f

Find
$$f_1, \ldots, f_t$$
, irreducible, s.t. $f = f_1 \times \cdots \times f_t$.

- ▶ Many algorithms
 - over \mathbb{Z} , \mathbb{Q} , $\mathbb{Q}(\alpha)$, $\overline{\mathbb{Q}}$, \mathbb{Q}_p , \mathbb{F}_q , \mathbb{R} , \mathbb{C} , ...;
 - in 1, 2, ..., n variables.
- ▶ Complexity: polynomial in deg(f)

$$\begin{split} X^{102}Y^{101} + X^{101}Y^{102} - X^{101}Y^{101} - X - Y + 1 \\ &= (X + Y - 1) \times (X^{101}Y^{101} - 1) \\ &= (X + Y - 1) \times (XY - 1) \times (1 + XY + \dots + X^{100}Y^{100}) \end{split}$$

Lacunary factorization algorithms

Definition

$$f(X_1,\ldots,X_n) = \sum_{j=1}^k c_j X_1^{\alpha_{1j}} \cdots X_n^{\alpha_{nj}}$$

► $size(f) \simeq k \left(max_j(size(c_j)) + nlog(deg f) \right)$

Lacunary factorization algorithms

Definition

$$f(X_1,...,X_n) = \sum_{j=1}^k c_j X_1^{\alpha_{1j}} \cdots X_n^{\alpha_{nj}}$$

 $\blacktriangleright \ \text{size}(f) \simeq k \bigg(\text{max}_j(\text{size}(c_j)) + \text{nlog}(\text{deg}\,f) \bigg)$

Theorems

There exist deterministic polynomial-time algorithms computing

- ▶ linear factors (integer roots) of $f \in \mathbb{Z}[X]$; [Cucker-Koiran-Smale'98]
- ▶ low-degree factors of $f \in \mathbb{Q}(\alpha)[X]$; [H. Lenstra'99]
- ▶ low-degree factors of $f \in \mathbb{Q}(\alpha)[X_1,...,X_n]$. [Kaltofen-Koiran'06]

Lacunary factorization algorithms

Definition

$$f(X_1,...,X_n) = \sum_{j=1}^k c_j X_1^{\alpha_{1j}} \cdots X_n^{\alpha_{nj}}$$

 $ightharpoonup ext{size}(f) \simeq k \bigg(max_j(size(c_j)) + nlog(deg f) \bigg)$

Theorems

There exist deterministic polynomial-time algorithms computing

- ▶ linear factors (integer roots) of $f \in \mathbb{Z}[X]$; [Cucker-Koiran-Smale'98]
- ▶ low-degree factors of $f \in \mathbb{Q}(\alpha)[X]$; [H. Lenstra'99]
- ▶ low-degree factors of $f \in \mathbb{Q}(\alpha)[X_1, ..., X_n]$. [Kaltofen-Koiran'06]

It is NP-hard to compute roots of $f \in \mathbb{F}_p[X]$. [Bi-Cheng-Rojas'13]

Let \mathbb{K} be any field of characteristic 0.

Theorem

The computation of the degree-d factors of $f \in \mathbb{K}[X_1,\dots,X_n]$ reduces to

- univariate lacunary factorizations plus post-processing, and
- multivariate low-degree factorization,

in poly(size(f), d) bit operations.

Let \mathbb{K} be any field of characteristic 0.

Theorem

The computation of the degree-d factors of $f \in \mathbb{K}[X_1,\dots,X_n]$ reduces to

- univariate lacunary factorizations plus post-processing, and
- multivariate low-degree factorization,

in poly(size(f), d) bit operations.

New algorithm for $\mathbb{K}=\mathbb{Q}(\alpha)$; some factors for $\mathbb{K}=\overline{\mathbb{Q}},\mathbb{R},\mathbb{C},\mathbb{Q}_p$

Let \mathbb{K} be any field of characteristic 0.

Theorem

The computation of the degree-d factors of $f \in \mathbb{K}[X_1,\ldots,X_n]$ reduces to

- univariate lacunary factorizations plus post-processing, and
- multivariate low-degree factorization,

in poly(size(f), d) bit operations.

- New algorithm for $\mathbb{K}=\mathbb{Q}(\alpha)$; some factors for $\mathbb{K}=\overline{\mathbb{Q}},\mathbb{R},\mathbb{C},\mathbb{Q}_p$
- Case d = 1 [G.-Chattopadhyay-Koiran-Portier-Strozecki'13]

Two kinds of factors

Definition

A polynomial $g=\sum_j b_j X^{\gamma_j} Y^{\delta_j}$ is $(\mathfrak{p},\mathfrak{q})$ -homogeneous of order ω if $\mathfrak{p}\gamma_j+\mathfrak{q}\delta_j=\omega$ for all j.

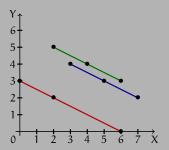
Otherwise, g is said inhomogeneous.

Two kinds of factors

Definition

A polynomial $g=\sum_j b_j X^{\gamma_j} Y^{\delta_j}$ is $(\mathfrak{p},\mathfrak{q})$ -homogeneous of order ω if $\mathfrak{p}\gamma_j+\mathfrak{q}\delta_j=\omega$ for all j.

Otherwise, g is said inhomogeneous.



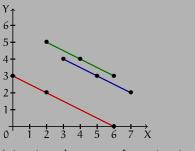
Univariate lacunary factorization

Two kinds of factors

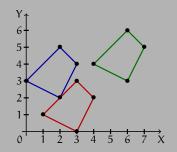
Definition

A polynomial $g=\sum_j b_j X^{\gamma_j} Y^{\delta_j}$ is $(\mathfrak{p},\mathfrak{q})$ -homogeneous of order ω if $\mathfrak{p}\gamma_j+\mathfrak{q}\delta_j=\omega$ for all j.

Otherwise, g is said inhomogeneous.

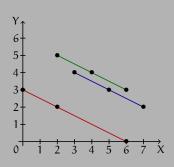


Univariate lacunary factorization

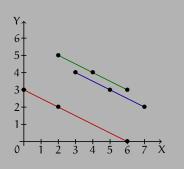


Multivariate low-degree factorization

Weighted-homogeneous factors



Weighted-homogeneous factors



Reduction to the univariate case

If f, g are (p,q)-homogeneous, g divides f \iff $g(X^{1/q},1)$ divides $f(X^{1/q},1)$



Reduction to the univariate case

If f, g are (p,q)-homogeneous, g divides f \iff $q(X^{1/q}, 1)$ divides $f(X^{1/q}, 1)$

- - Write $f = f_1 + \cdots + f_s$ as a sum of (p, q)-hom. polynomials;
 - Compute the common degree-d factors of the $f_t(X^{1/q}, 1)$'s; → univariate lacunary factorization (number fields)
 - Return $Y^{p \operatorname{deg}(g)} q(X^q/Y^p)$ for each factor g.

The multivariate case

▶ Weighted-homogeneous factors → Unidimensional factors:

$$\exists \tilde{g} \in \mathbb{K}[Z] \text{ s.t. } g(X_1, \dots, X_n) = X^{\gamma} g(X^{\delta})$$

The multivariate case

▶ Weighted-homogeneous factors → Unidimensional factors:

$$\exists \tilde{g} \in \mathbb{K}[Z] \text{ s.t. } g(X_1, \dots, X_n) = X^{\gamma} g(X^{\delta})$$

For all pairs of monomials $(X^{\alpha_1}, X^{\alpha_2})$:

- 1. Write $f = f_1 + \cdots + f_s$ as a sum of unidimensional polynomials;
- 2. Compute the degree-d factors of the \tilde{f}_t 's; \rightsquigarrow univariate lacunary factorization
- 3. Return $X^{\gamma}g(X^{\delta})$ for each factor g.

Linear factors of bivariate polynomials

[Chattopadhyay-G.-Koiran-Portier-Strozecki'13]

Observation

$$(Y - uX - v)$$
 divides $f(X, Y) \iff f(X, uX + v) \equiv 0$

Linear factors of bivariate polynomials

[Chattopadhyay-G.-Koiran-Portier-Strozecki'13]

Observation

$$(Y - uX - v)$$
 divides $f(X, Y) \iff f(X, uX + v) \equiv 0$

Theorem

$$\operatorname{val}\left(\sum_{j=1}^{\ell}c_{j}X^{\alpha_{j}}(uX+v)^{\beta_{j}}\right)\leqslant\alpha_{1}+\binom{\ell}{2}\ \text{if nonzero and}\ uv\neq0.$$

Linear factors of bivariate polynomials

[Chattopadhyay-G.-Koiran-Portier-Strozecki'13]

Observation

$$(Y - uX - v)$$
 divides $f(X, Y) \iff f(X, uX + v) \equiv 0$

Theorem

$$\operatorname{val}\left(\sum_{j=1}^{\ell}c_{j}X^{\alpha_{j}}(uX+\nu)^{\beta_{j}}\right)\leqslant\alpha_{1}+\binom{\ell}{2}\text{ if nonzero and }u\nu\neq0.$$

Gap Theorem

Suppose that $f = f_1 + f_2$ with $val_X(f_2) > val_X(f_1) + \binom{\ell(f_1)}{2}$. Then for all $uv \neq 0$, (Y - uX - v) divides f iff it divides both f_1 and f_2 .

Puiseux series

Observation for low-degree factors

$$g(X,Y) \text{ divides } f(X,Y) \iff f(X,\varphi(X)) \equiv 0$$

Puiseux series

Observation for low-degree factors

$$g(X,Y)$$
 divides $f(X,Y) \iff f(X,\varphi(X)) \equiv 0$

$$g(X,Y) = g_0(X) \prod_{i=1}^{\deg_Y(g)} (Y - \varphi_i(X)) \in \overline{\mathbb{K}(X)}[Y]$$

Observation for low-degree factors

$$g(X,Y)$$
 divides $f(X,Y) \iff f(X,\varphi(X)) \equiv 0$

$$g(X,Y) = g_0(X) \prod_{i=1}^{\deg_Y(g)} (Y - \phi_i(X)) \in \overline{\mathbb{K}(X)}[Y]$$

- $ightharpoonup g_0 \in \mathbb{K}[X]$
- $> \varphi_1, \ldots, \varphi_d \in \overline{\mathbb{K}(X)} \subset \overline{\mathbb{K}}\langle\!\langle X \rangle\!\rangle$ are Puiseux series:

$$\varphi(X) = \sum_{t\geqslant t_0} \alpha_t X^{t/n} \text{ with } \alpha_t \in \overline{\mathbb{K}} \text{, } \alpha_{t_0} \neq 0. \tag{val}(\varphi) = t_0/n)$$

Observation for low-degree factors

$$g(X,Y) \text{ divides } f(X,Y) \iff f(X,\varphi(X)) \equiv 0$$

$$g(X,Y) = g_0(X) \prod_{i=1}^{\deg_Y(g)} (Y - \phi_i(X)) \in \overline{\mathbb{K}(X)}[Y]$$

- $g_0 \in \mathbb{K}[X]$
- $ho \ \phi_1, \ldots, \phi_d \in \overline{\mathbb{K}(X)} \subset \overline{\mathbb{K}}\langle\!\langle X \rangle\!\rangle$ are Puiseux series:

$$\varphi(X) = \sum_{t\geqslant t_0} \alpha_t X^{t/n} \text{ with } \alpha_t \in \overline{\mathbb{K}} \text{, } \alpha_{t_0} \neq 0. \qquad \text{(val}(\varphi) = t_0/n\text{)}$$

▶ If g is irreducible, g divides $f \iff \exists i, \ f(X, \varphi_i) = 0 \iff \forall i, \ f(X, \varphi_i) = 0$

Valuation bound

Theorem

Let $\varphi \in \overline{\mathbb{K}}\langle\!\langle X \rangle\!\rangle$ of valuation ν , g of degree d s.t. $g(X, \varphi(X)) = 0$, and $f_1 = \sum_{j=1}^\ell c_j X^{\alpha_j} Y^{\beta_j}$.

If the family $(X^{\alpha_j}\varphi^{\beta_j})_j$ is linearly independent,

$$\mathsf{val}(\mathsf{f}_1(\mathsf{X},\varphi)) \leqslant \min_{\mathsf{j}}(\alpha_{\mathsf{j}} + \nu\beta_{\mathsf{j}}) + (8\mathsf{d}^2 - \nu)\binom{\ell}{2}.$$

Valuation bound

Theorem

Let $\varphi \in \overline{\mathbb{K}}\langle\!\langle X \rangle\!\rangle$ of valuation ν , g of degree d s.t. $g(X, \varphi(X)) = 0$, and $f_1 = \sum_{j=1}^\ell c_j X^{\alpha_j} Y^{\beta_j}$.

If the family $(X^{\alpha_j}\varphi^{\beta_j})_j$ is linearly independent,

$$\mathsf{val}(\mathsf{f}_1(\mathsf{X},\varphi)) \leqslant \min_{\mathsf{j}}(\alpha_{\mathsf{j}} + \nu\beta_{\mathsf{j}}) + (8\mathsf{d}^2 - \nu)\binom{\ell}{2}.$$

- Proof based on the *Wronskian* of the family $(X^{\alpha_j} \phi^{\beta_j})_j$.
- Optimality?

Gap Theorem

Let

$$f = \underbrace{\sum_{j=1}^{\ell} c_j X^{\alpha_j} Y^{\beta_j}}_{f_1} + \underbrace{\sum_{j=\ell+1}^{k} c_j X^{\alpha_j} Y^{\beta_j}}_{f_2}$$

with $\alpha_1 + \nu \beta_1 \leqslant \cdots \leqslant \alpha_k + \nu \beta_k$. Let g a degree-d irreducible polynomial, with a root of valuation ν .

If ℓ is the smallest index s.t.

$$\alpha_{\ell+1} + \nu \beta_{\ell+1} > (\alpha_1 + \nu \beta_1) + (8d^2 - \nu) \binom{\ell}{2},$$

then g divides f iff it divides both f_1 and f_2 .

Gap Theorem

Let

$$f = \underbrace{\sum_{j=1}^{\ell} c_j X^{\alpha_j} Y^{\beta_j}}_{f_1} + \underbrace{\sum_{j=\ell+1}^{k} c_j X^{\alpha_j} Y^{\beta_j}}_{f_2}$$

with $\alpha_1 + \nu \beta_1 \leqslant \cdots \leqslant \alpha_k + \nu \beta_k$. Let g a degree-d irreducible polynomial, with a root of valuation ν .

If ℓ is the smallest index s.t.

$$\alpha_{\ell+1} + \nu \beta_{\ell+1} > (\alpha_1 + \nu \beta_1) + (8d^2 - \nu) {\ell \choose 2},$$

then g divides f iff it divides both f_1 and f_2 .

- \triangleright Depends (only) on ν .
- Bounds the growth of $\alpha_i + \nu \beta_i$ in f_1 (neither α_i nor β_i)

Combining two valuations

Gap Theorem for inhomogeneous factors

Let

$$f = \underbrace{\sum_{j=1}^{\ell} c_j X^{\alpha_j} Y^{\beta_j}}_{f_1} + \underbrace{\sum_{j=\ell+1}^{k} c_j X^{\alpha_j} Y^{\beta_j}}_{f_2}$$

where ℓ is the largest index s.t. for $1 \leqslant i, j \leqslant \ell$,

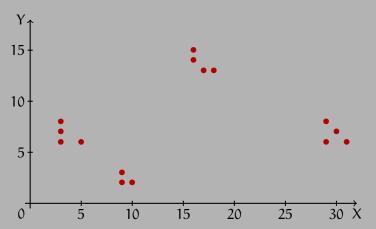
$$|\alpha_{\mathfrak{i}} - \alpha_{\mathfrak{j}}|, |\beta_{\mathfrak{i}} - \beta_{\mathfrak{j}}| \leq (4d^4 + 2d^2) \binom{\ell - 1}{2}.$$

Then every **degree-d** inhomogeneous $g \in \mathbb{K}[X, Y]$,

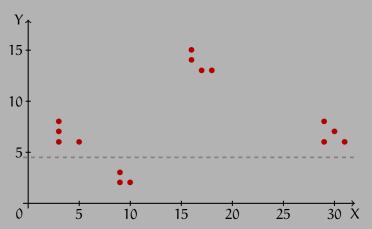
$$mult_g(f) = min(mult_g(f_1), mult_g(f_2)).$$

$$f = X^{31}Y^{6} - 2X^{30}Y^{7} + X^{29}Y^{8} - X^{29}Y^{6} + X^{18}Y^{13}$$
$$-X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^{2} - X^{9}Y^{3}$$
$$+X^{9}Y^{2} - X^{5}Y^{6} + X^{3}Y^{8} - 2X^{3}Y^{7} + X^{3}Y^{6}$$

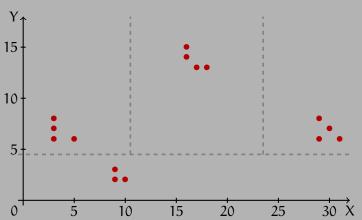
$$\begin{split} f &= X^{31}Y^6 - 2\,X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \\ &- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \\ &+ X^9Y^2 - X^5Y^6 + X^3Y^8 - 2\,X^3Y^7 + X^3Y^6 \end{split}$$



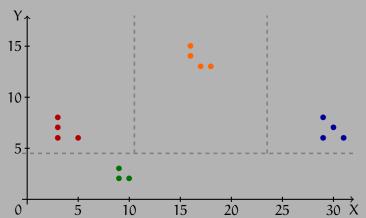
$$\begin{split} f &= X^{31}Y^6 - 2\,X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \\ &- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \\ &+ X^9Y^2 - X^5Y^6 + X^3Y^8 - 2\,X^3Y^7 + X^3Y^6 \end{split}$$



$$\begin{split} f &= X^{31}Y^6 - 2\,X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \\ &- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \\ &+ X^9Y^2 - X^5Y^6 + X^3Y^8 - 2\,X^3Y^7 + X^3Y^6 \end{split}$$



$$\begin{split} f = X^{31}Y^6 - 2\,X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \\ - \,X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \\ + \,X^9Y^2 - X^5Y^6 + X^3Y^8 - 2\,X^3Y^7 + X^3Y^6 \end{split}$$



$$\begin{split} f &= X^{31}Y^6 - 2\,X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \\ &- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \\ &+ X^9Y^2 - X^5Y^6 + X^3Y^8 - 2\,X^3Y^7 + X^3Y^6 \end{split}$$

$$f_1 = X^3 Y^6 (-X^2 + Y^2 - 2Y + 1)$$

$$f = X^{31}Y^{6} - 2X^{30}Y^{7} + X^{29}Y^{8} - X^{29}Y^{6} + X^{18}Y^{13}$$
$$-X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^{2} - X^{9}Y^{3}$$
$$+X^{9}Y^{2} - X^{5}Y^{6} + X^{3}Y^{8} - 2X^{3}Y^{7} + X^{3}Y^{6}$$

$$f_1 = X^3 Y^6 (X - Y + 1)(1 - X - Y)$$

$$\begin{split} f &= X^{31}Y^6 - 2\,X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \\ &- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \\ &+ X^9Y^2 - X^5Y^6 + X^3Y^8 - 2\,X^3Y^7 + X^3Y^6 \end{split}$$

$$f_1 = X^3 Y^6 (X - Y + 1)(1 - X - Y)$$

$$f_2 = X^9 Y^2 (X - Y + 1)$$

$$f_3 = X^{16} Y^{13} (X + Y)(X - Y + 1)$$

$$f_4 = X^{29} Y^6 (X + Y - 1)(X - Y + 1)$$

An example with $\mathrm{d}=1$

$$\begin{split} f &= X^{31}Y^6 - 2\,X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \\ &- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \\ &+ X^9Y^2 - X^5Y^6 + X^3Y^8 - 2\,X^3Y^7 + X^3Y^6 \end{split}$$

$$f_1 = X^3 Y^6 (X - Y + 1)(1 - X - Y)$$

$$f_2 = X^9 Y^2 (X - Y + 1)$$

$$f_3 = X^{16} Y^{13} (X + Y)(X - Y + 1)$$

$$f_4 = X^{29} Y^6 (X + Y - 1)(X - Y + 1)$$

$$\implies$$
 linear factors of f: $(X - Y + 1, 1)$

$$\begin{split} f &= X^{31}Y^6 - 2\,X^{30}Y^7 + X^{29}Y^8 - X^{29}Y^6 + X^{18}Y^{13} \\ &- X^{16}Y^{15} + X^{17}Y^{13} + X^{16}Y^{14} + X^{10}Y^2 - X^9Y^3 \\ &+ X^9Y^2 - X^5Y^6 + X^3Y^8 - 2\,X^3Y^7 + X^3Y^6 \end{split}$$

$$f_1 = X^3 Y^6 (X - Y + 1)(1 - X - Y)$$

$$f_2 = X^9 Y^2 (X - Y + 1)$$

$$f_3 = X^{16} Y^{13} (X + Y)(X - Y + 1)$$

$$f_4 = X^{29} Y^6 (X + Y - 1)(X - Y + 1)$$

$$\implies$$
 linear factors of f: $(X - Y + 1, 1)$, $(X, 3)$, $(Y, 2)$

Theorem

Given $f\in \mathbb{K}[X,Y]$ in lacunary representation, one can compute in time $\mathsf{poly}(\mathsf{size}(f),d)$ a degree- $O(d^4k^2)$ polynomial f_{ld} s.t. for all inhomogeneous degree-d polynomial g,

$$\text{mult}_g(f) = \text{mult}_g(f_{ld}).$$

Theorem

Given $f \in \mathbb{K}[X_1,\ldots,X_n]$ in lacunary representation, one can compute in time poly(size(f),d) a degree- $O(d^4k^2)$ polynomial f_{ld} s.t. for all inhomogeneous degree-d polynomial g,

$$\operatorname{mult}_g(f) = \operatorname{mult}_g(f_{ld}).$$

Theorem

Given $f \in \mathbb{K}[X_1,\ldots,X_n]$ in lacunary representation, one can compute in time poly(size(f),d) a degree- $O(d^4k^2)$ polynomial f_{ld} s.t. for all inhomogeneous degree-d polynomial g,

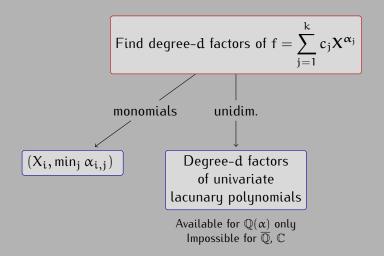
$$\operatorname{mult}_g(f) = \operatorname{mult}_g(f_{ld}).$$

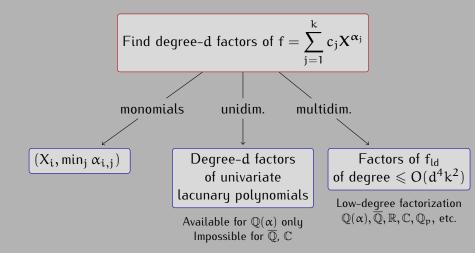
- 1. Write $f=f_1+\cdots+f_s$ where $\deg_{X_i}(f_t)-\operatorname{val}_{X_i}(f_t)\leqslant (4d^4-2d^2)\binom{\ell_t}{2}$ for all i;
- 2. Return $gcd(f_1, ..., f_t)$.
- 3. (Factor the gcd using a low-degree factorization algorithm.)

Find degree-d factors of
$$\mathsf{f} = \sum_{j=1}^k c_j X^{\alpha_j}$$

Find degree-d factors of
$$\mathsf{f} = \sum_{j=1}^k c_j X^{\alpha_j}$$
 monomials

 $(X_i, \min_j \alpha_{i,j})$





Implementation in progress

http://www.mathemagix.org/ > Packages > Lacunaryx

Factorization-related algorithms for lacunary polynomials

- Integer roots of lacunary univariate polynomials
- Linear factors of lacunary univariate and bivariate polynomials
- Bounded-degree factors: in progress
- Very large degree polynomials (G. Lecerf)

```
Mmx] use "lacunarvx"; x : LPolynomial Integer == lpolynomial(1,1);
     p == x^3*(x-2)*(2*x+3)^2*(-x+3)*(2*x+7)*(x^2+x+1)*(3*x+5);
     a == x^3 - 6 - 2*x^4 + 12*x + x^5 - 6*x^2 + 3*x^1345 - 6*x^1346 + 3*x^1347 +
          8*x^432534 - 18*x^432535 + 12*x^432536 - 2*x^432537 + 1 - 2*x + x^2:
     e : Integer == 35154014504040115230143514;
     r == 1 + 3*x^1345 - 2*(x-4)*x^e + (x^3-6)*x^(2*e);
     par == p*q*r; (log deg par/log 2, #par)
   (85.861891823199, 149)
                                                                              49 msec
Mmx] roots par
   [[2,1],[3,1],[0,3],[1,2]]
                                                                              43 msec
Mmx] X == coordinate ('x); x : LMVPolynomial Integer == lmvpolynomial(1, X);
     Y == coordinate ('y); y : LMVPolynomial Integer == lmvpolynomial(1, Y);
     f == x^2*y*(x-2)*(2*y+3)^2*(y-x+3)*(2*x+7*y)*(x*y+x+1)*(3*x-6*y+5);
     g == x^3*y^54354165 - 6*y^54354165 - 2*x^4*y^54354164 + 12*x*y^54354164
     + x^5*y^54354163 - 6*x^2*y^54354163 + 3*x^1345*y^54336 - 6*x^1346*y^54335
     + 3*x^1347*y^54334 + 8*x^432534*y^5 - 18*x^432535*y^4 + 12*x^432536*y^3 -
     2*x^432537*y^2 + y^2 - 2*x*y + x^2;
     h == 1 + 3*x^1345*y^54334 - 2*(x-4*y)*x^e*y^2 + (x^3-6)*y^(2*e);
     fgh == f*g*h; (log deg fgh/log 2, #fgh)
   (85.861891823199, 1028)
                                                                              60 msec
Mmx] linear_factors fgh
  [[x, 2], [-x+2, 1], [y, 1], [2y+3, 2], [-y+x, 2], [-7y-2x, 1], [-y+x-3, 1], [-6y+3x+5, 1]]
                                                                             299 msec
```

- Computing low-degree factors of lacunary multivariate polynomials
 - \circ Reduction to $\left\{ egin{align*} \mbox{univariate lacunary polynomials} \ \mbox{low-degree multivariate polynomials} \end{array}
 ight.$

- Computing low-degree factors of lacunary multivariate polynomials
 - Reduction to low-degree multivariate polynomials
 - "Field-independent"
 - Simpler and more general than previous algorithms
 - Partial results in large positive characteristic
 - Implementation: work in progress

- Computing low-degree factors of lacunary multivariate polynomials
 - Reduction to $\begin{cases} \text{univariate lacunary polynomials} \\ \text{low-degree multivariate polynomials} \end{cases}$
 - "Field-independent"
 - Simpler and more general than previous algorithms
 - Partial results in large positive characteristic
 - Implementation: work in progress
- Open questions:
 - Lacunary factors in polynomial time?
 - More general settings: SLP/arithmetic circuits

- Computing low-degree factors of lacunary multivariate polynomials
 - Reduction to $\left\{ egin{aligned} & \text{univariate lacunary polynomials} \\ & \text{low-degree multivariate polynomials} \end{aligned}
 ight.$
 - "Field-independent"
 - Simpler and more general than previous algorithms
 - Partial results in large positive characteristic
 - Implementation: work in progress
- Open questions:
 - Lacunary factors in polynomial time?
 - More general settings: SLP/arithmetic circuits
 - Degree-d factors in positive characteristic?
 - Small positive characteristic?

- Computing low-degree factors of lacunary multivariate polynomials
 - Reduction to $\left\{ egin{aligned} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$
 - "Field-independent"
 - Simpler and more general than previous algorithms
 - Partial results in large positive characteristic
 - Implementation: work in progress
- Open questions:
 - Lacunary factors in polynomial time?
 - More general settings: SLP/arithmetic circuits
 - Degree-d factors in positive characteristic?
 - Small positive characteristic?

Thank you!