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Classical factorization algorithms

Factorization of a polynomial f

Find fq, ..., fy, irreducible, s.t. f =17 x --- x f.
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Factorization of a polynomial f

Find fq, ..., ft, irreducible, s.t. f =17 x --- x fy.

Many algorithms

over Z, Q, Q(x), Q, Qp. F. R, C, ...;
in 1, 2, ..., n variables.

Complexity: polynomial in deg(f)
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Lacunary factorization algorithms

Definition

k
(X1, Xn) =) X7 X
j=1

> size(f) ~ k<maxj (size(cj)) + nlog(deg f))
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Lacunary factorization algorithms

Definition

k
(X1, Xn) =) X7 X
j=1

> size(f) ~ k<maxj (size(cj)) + nlog(deg f))

Theorems

There exist deterministic polynomial-time algorithms computing
> linear factors (integer roots) of f € Z[X|;  [Cucker-Koiran-Smale’98]
» low-degree factors of f € Q(o)[X]; [H. Lenstra’99]
> low-degree factors of f € Q(a)[X1,...,Xu] [Kaltofen-Koiran'06]
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Definition

k
(X1, Xn) = ) X7 XQY
j=1

> size(f) ~ k(maxj(size(cj)) + nlog(deg f))

There exist deterministic polynomial-time algorithms computing

factors (integer roots) of f € i [Cucker-Koiran-Smale’98]
factors of f € ; [H. Lenstra’99]
factors of f € . [Kaltofen-Koiran'06]

It is to compute . [Bi-Cheng-Rojas'13]




Let K be any field of characteristic 0.

Theorem

The computation of the degree-d factors of f € K[Xy,...,Xn]
reduces to

» univariate lacunary factorizations plus post-processing, and
» multivariate low-degree factorization,

in poly(size(f), d) bit operations.
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Let K be any field of characteristic 0.
Theorem

The computation of the degree-d factors of f € K[Xy,...,Xn]
reduces to

» univariate lacunary factorizations plus post-processing, and
» multivariate low-degree factorization,

in poly(size(f), d) bit operations.

New algorithm for K = Q(ct); some factors for K = Q, R, C, Qp

Case d =1 [G.-Chattopadhyay-Koiran-Portier-Strozecki'13]




Two kinds of factors

Definition

A polynomial g = 3 ; b;XYiY® is (p, q)-homogeneous of order

w if py; +q6; = w for all j.
Otherwise, g is said inhomogeneous.
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Definition

A polynomial g = } ; b;XYiY® is (p, q)-homogeneous of order
w if py; +q8; = w for all j.
Otherwise, g is said inhomogeneous.
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Definition

A polynomial g = } ; b;XYiY® is (p, q)-homogeneous of order
w if py; +q8; = w for all j.
Otherwise, g is said inhomogeneous.
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Reduction to the univariate case

If f, g are (p, q)-homogeneous,
g divides f <—
g(X'/4,1) divides f(X'/9,1)




Reduction to the univariate case
\\ If f, g are (p, q)-homogeneous,
g divides f <=
g(X'/4,1) divides f(X'/9,1)

o 12354567 X
For all possible pairs (p, q):
Write f = f1 + --- + f5 as a sum of (p, q)-hom. polynomials;

Compute the common degree-d factors of the fi(X1/9,1)’s;
~~ univariate lacunary factorization
(number fields)

Return YP4a(9)g(X9/YP) for each factor g.



Weighted-homogeneous factors ~» Unidimensional factors:

3§ € K[Z] st. g(X1,...,Xn) = XYg(X?®)



Weighted-homogeneous factors ~» Unidimensional factors:

3§ € K[Z] st. g(X1,...,Xn) = X¥g(X?®)

For all pairs of monomials (X%, X%2):
Write f = f1 + .-+ f5 as a sum of unidimensional polynomials;

Compute the degree-d factors of the ﬂ's;
~ univariate lacunary factorization

Return XY g(X?) for each factor g.
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[Chattopadhyay-G.-Koiran-Portier-Strozecki’rs |

Observation

(Y —uX —v) divides f(X,Y) <— f(X,uX+v)=0

Theorem

0
val chX"Cj (WX +v)P | <oy + <

8) if nonzero and uv # 0.
j=1

2

Gap Theorem

Suppose that f = f1+f, with valx(f2) > valx(f1)+ (1’,(;1 )). Then
for all uv # 0, (Y —uX —v) divides f iff it divides both f; and f5.
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Observation for low-degree factors

g(X,Y) divides f(X,Y) <= f(X,;$(X)) =0

degy(g)
gX, ) =go(X) J] (Y= (X)) € KXLY]

i=1
go € K[X]
$1, ..., da € K(X) c K{(X)) are Puiseux series:

¢(X) = ) aX"™ with a; €K, ag, #0. (val($p) = to/n)

t>tp

If g is irreducible,
g divides f <= i, f(X,di) =0 <= Wi, f(X;di) =0



Theorem

Let ¢ € K((X)) of valuation v, g of degree d s.t. g(X, d(X)) =0,
and f1 = Y §_; ;X% YPi,

If the family (X"‘icbﬁi)j is linearly independent,

val(f1(X,d)) < mjln(ocj +VvB;5) + (8d%2 —v) (ﬁ)




Theorem

Let ¢ € K((X)) of valuation v, g of degree d s.t. g(X, d(X)) =0,
and f1 = Y §_; ;X% YPi,

If the family (X"‘icbﬁi)j is linearly independent,

val(f1(X,d)) < mjln(ocj +VvB;5) + (8d%2 —v) (ﬁ)

Proof based on the Wronskian of the family (X% ¢P e
Optimality?




Gap Theorem

Let : e
f=) X9YPi4 3 Xx0YP
j=1 j=t+1

fy f2

with a1 +vfB7 < -+ - < ax +vPBk. Let g a degree-d irreducible
polynomial, with a root of valuation v.
If £ is the smallest index s.t.

&1 +VBer1 > (a1 +vB1) + (8d% —v) (i)

then g divides f iff it divides both f; and f,.




Gap Theorem

Let : e
f=) X9YPi4 3 Xx0YP
j=1 j=t+1

fy f2

with a1 +vfB7 < -+ - < ax +vPBk. Let g a degree-d irreducible
polynomial, with a root of valuation v.
If £ is the smallest index s.t.

&1 +VBer1 > (a1 +vB1) + (8d% —v) (ﬁ)

then g divides f iff it divides both f; and f,.

Depends (only) on v.

Bounds the growth of o +vf3; in f7 (neither oy nor (3;)




Gap Theorem for inhomogeneous factors

Let : ¢
f=) X9YPi+ Y oXxoYP
j=1 j=0+1

fq f2

where £ is the largest index s.t. for 1 <1,j < ¢,

£—1
loci — o5, 1B — Bjl < (4d4+2d2)< ) >

Then every degree-d inhomogeneous g € K[X, Y],

multg (f) = min(multg(f7), multg(f2)).




f = X3]Y6 _ 2X30Y7 4+ X29Y8 _ X29Y6 + X]3Y13
. X16Y15 + X17Y13 + X16Y14 + X]OYZ . X9Y3
+X7Y2 = XY + X3Y8 —2X3Y7 4+ X3Y°
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f = X3]Y6 _ 2X30Y7 4+ X29Y8 _ X29Y6 + X]3Y13
. X16Y15 + X17Y13 + X16Y14 + X]OYZ . X9Y3
+X7Y2 = XY + X3Y8 —2X3Y7 4+ X3Y°
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f=X31Y0 —2X30Y7 4 X27Y8 — X27Y6

1571

1071

+ X]OYZ - X9Y3
+X7Y2 —XOY® + X3Y8 —2X3Y7 + x3Y®

10 15 20 25 30 X



f=X3TY® —2X30Y7 4 X27Y8 —X27Y6
+X10V2 —X7y?
+X7Y2 = XPYe £ X3Y8 —2X3Y7 + X3Y°

f1 =X3YO(=X2 + Y2 —2Y +1)



f=X3TY® —2X30Y7 4 X27Y8 —X27Y6
+X10V2 —X7y?
+X7Y2 = XPYe £ X3Y8 —2X3Y7 + X3Y°

f1=X3Ye(X—=Y+1)(1=X—-Y)
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f=X3TY® —2X30Y7 4 X27Y8 —X27Y6
+X10V2 —X7y?
+X7Y?2 - XYe - X3Y8 —2X3Y7 + X3Y®

f1=X3Ye(X=Y+1)(1=X—-Y)
f=XY2(X=Y+1)

= XY (X + V)X =Y +1)
f2 =XV (X+Y—-1)(X=Y+1)

— linear factors of f: (X—Y +1,1), (X,3), (V,2)



Theorem

Given f € K[X, Y] in lacunary representation, one can compute in
time poly(size(f), d) a degree-O(d*k?) polynomial fiq s.t. for all
inhomogeneous degree-d polynomial g,

multg(f) = multg(fld).




Theorem

Given f € K[Xy,...,Xn] in lacunary representation, one can com-
pute in time poly(size(f), d) a degree-O(d*k?) polynomial fig s.t.
for all inhomogeneous degree-d polynomial g,

multg(f) = multg(fld).




Theorem

Given f € K[Xy,...,Xn] in lacunary representation, one can com-
pute in time poly(size(f), d) a degree-O(d*k?) polynomial fig s.t.
for all inhomogeneous degree-d polynomial g,

multg(f) = multg(fld).

Write f = f; + - - - + f5 where
degxi(ft) —valx, (f¢) < (4a* — Zdz)(zzt) for all 1i;

Return ged(fy, ..., ft).

(Factor the gcd using a low-degree factorization algorithm.)




Complete algorithm

K
Find degree-d factors of f = Z ;X%

j=1

Bruno Grenet — Computing low-degree factors of lacunary polynomials 15/ 18

A



K
Find degree-d factors of f = Z ;X%
j=1

monomials

e

{(Xi, min; o 5) }




K
Find degree-d factors of f = Z ;X%

j=1

monomials unidim.
{(Xi, minj o ;) } Degree-d factors

of univariate
lacunary polynomials

Available for Q() only
Impossible for Q, C



K
Find degree-d factors of f = Z ;X%
j=1

monomials unidim. multidim.
{(Xi, min; o 5) } Degree-d factors Factors of fiq

of univariate of degree < O(d*k?)

lacunary polynomials

Low-degree factorization

Available for Q(«) only Q(®),Q, R, C,Qy, etc.
Impossible for Q, C




http://www.mathemagix.org/ > Packages > Lacunaryx

Factorization-related algorithms for lacunary polynomials

Integer roots of lacunary univariate polynomials
Linear factors of lacunary univariate and bivariate polynomials
Bounded-degree factors: in progress

Very large degree polynomials (G. Lecerf)


http://www.mathemagix.org/www/lacunaryx/doc/html/index.en.html

Mmx] use "lacunaryx"; x : LPolynomial Integer == lpolynomial(1,1);
P == x"3%(x-2)*(2%x+3) ~2% (-x+3) * (2%x+7) * (x~2+x+1) * (3*x+5) ;
q ==x"3 - 6 - 2%x74 + 12%x + x5 - 6%x"2+ 3*%x~1345 - 6*x~1346 + 3*x"1347 +
8%x7432534 - 18%*x7432535 + 12%x7432536 - 2%x"432537 + 1 - 2*x + x72;
e : Integer == 35154014504040115230143514;
r == 1 + 3%x~1345 - 2*(x-4)*x"e + (x"3-6)*x"~(2*e);
par == p*qxr; (log deg pqr/log 2, #pqr)

(85.861891823199, 149)

49 msec

Mmx] roots pqr
((2,1], 3, 1], [0,3], [1,2]]

43 msec

Mmx] X == coordinate (’x); x : LMVPolynomial Integer == lmvpolynomial(1l, X);
== coordinate (’y); y : LMVPolynomial Integer == lmvpolynomial(l, Y);
== x"2kyk (x-2) % (2xy+3) “2% (y-x+3) * (2kx+7*y) * (x*y+x+1) * (3%x-6%y+5) ;
== x7"3%y~54354165 - 6%y~54354165 - 2*xx"4xy~54354164 + 12%x*xy~54354164
x~5*y~54354163 - 6xx"2%y~54354163 + 3*x~1345%y~54336 - 6%x~1346%y~54335
+ 3*%x71347*y~54334 + 8xx"432534*y~5 - 18%x7432535*xy~4 + 12%x7432536*y"3 -
2%x7432637*y"2 + y~2 - 2xx¥y + X"2;
h == 1 + 3*x~1345xy~54334 - 2% (x-4*y)*x~exy~2 + (x73-6)*y~(2%e);
fgh == fxg*h; (log deg fgh/log 2, #fgh)

(85.861891823199, 1028)

+ 0@ Hh <
|
I

60 msec
Mmx] linear_factors fgh

[z, 2], [~z +2,1], [y, 1], 2y +3,2], [~y +=,2], [Ty —22,1], [~y +2 - 3,1], [-6 y + 3z +5,1]]
299 msec
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Computing low-degree factors of lacunary multivariate polynomials

Reduction to {unlvarlate lacunz.:irg Polgnomlals .
low-degree multivariate polynomials

“Field-independent”

Simpler and more general than previous algorithms

Partial results in large positive characteristic

Implementation: work in progress

Open questions:

Lacunary factors in polynomial time?
More general settings: SLP/arithmetic circuits

Degree-d factors in positive characteristic?
Small positive characteristic?

Thank you!



