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The Problem

V. Magron

m Semialgebraicset S := {x € R" : g1(x) >0, ..

m A polynomial map f : R" — R",
x> f(x) = (filx), - fu (X))

m deg f = d := max{deg f1,...,deg f}
m F:=f(S) C B, with B C R" a box or a ball

m Tractable approximations of F ?
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The Problem

m Includes important special cases:

m = 1: polynomial optimization

F C [inf (), supf ()]

Approximate projections of S when f(x) := (x1,...,%n)

Pareto curve approximations

For f1, f> two conflicting criteria: (P) {migl(ﬁ (x) fz(x))T}
Xxe
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The Problem

Pareto curve: set of weakly Edgeworth-Pareto optimal points

(®) {imin (50 () }

xeS

Definition

A point X € S is called a weakly Edgeworth-Pareto (EP) optimal
point of Problem P, when there is no x € S such that fi(x) <

f(x), j=1,2.
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The Problem

g1=—(r1—2)3/2—x, +25, fii= (5143 —75)2/4+ (—x; + 12 +3)%,
g0 1= —x1 — X5 + 8(—x1 +x +0.65)% +3.85 , foi=(x1 —1)2/4+ (x, —4)2/4 .
S:={xeR?:g1(x) >0, g(x) >0} .

A

L
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Previous work

Exact description of projections with computer algebra

m Real quantifier elimination (QE) [Tarski 51, Collins 74,
Bochnak-Coste-Roy 98]

m CAD: computational complexity (sd)zo<”) for a finite set of s
polynomials

m Variant QE under radicality, equidimensionality
[Hong-Safey 12]
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Previous work

Scalarization methods for computing Pareto curve

m Numerical discretization schemes: modified Polak method
[Pol 76]

m Iterative Eichfelder-Polak algorithm [Eich 09]

m Normal-boundary intersection method to find uniform
spread of points [Das Dennis 98]
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Contribution

m A unifying framework to handle projections, Pareto curve
approximations and other applications

m No discretization is required
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Contribution

m A unifying framework to handle projections, Pareto curve
approximations and other applications

m No discretization is required

m Two different methods:
Existential QE: F C F} := {y € B : q,(y) > 0}

Image measure supports: F C F? := {y € B: w(y) > 1}
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Contribution

m A unifying framework to handle projections, Pareto curve
approximations and other applications

m No discretization is required

m Two different methods:
Existential QE: F C F} := {y € B : q,(y) > 0}

Image measure supports: F C F? := {y € B: w(y) > 1}
m Strong convergence guarantees

m Compute g; or w, with Semidefinite programming (SDP)
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m = 1: Polynomial Optimization



Polynomial Optimization

m Semialgebraicset S := {x € R": g1(x) > 0,...,g(x) > 0}

m p* := inf f(x): NP hard
x€S

m Sums of squares X[x]

2 2 _ 2
e.g. X7 —2x1Xy + x5 = (X1 — x2)

= Q(8) = { (%) + Xy 5(x)g;(x), witho; € T[] }

m REMEMBER: f € Q(S) = Vx € S,f(x) > 0

V. Magron SDP Approximations of Semialgebraic Set Projections 5/30



Problem reformulation

m Borel o-algebra B (generated by the open sets of IR")
m M (S): set of probability measures supported on S.
If u € M, (S) then
w:B—10,1], u(@)=0
1(U; Bi) = ¥ u(B;), for any countable (B;) C B
fs p(dx) =1

m supp () is the smallest set S such that #(R"\S) = 0

V. Magron SDP Approximations of Semialgebraic Set Projections 6/30



Problem reformulation

“—inff(x) = inf /d
p* = inff(x) Leinf S
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Primal-dual Moment-SOS [Lasserre 01]

m Let (x*)pene be the monomial basis

Definition

A sequence z has a representing measure on S if there exists a
finite measure i supported on S such that

Zy :/x"‘y(dx), VaeIN".
s
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Primal-dual Moment-SOS [Lasserre 01]

m M (S): space of probability measures supported on S

m Q(S): quadratic module

Polynomial Optimization Problems (POP)

(Primal) (Dual)
inf d = A
in /S fdu sup
st. e My(S) st. LeR,
f=2reQ(s)
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Primal-dual Moment-SOS [Lasserre 01]

m Finite moment sequences z of measures in M (S)

m Truncated quadratic module Q(S) := Q(S) N Ry[x]

Polynomial Optimization Problems (POP)

(Moment) (SOS)
inf E fa2a = sup A
s.t. Mk,vj(g]-z) =0, 0<j<], st. AeR,
z1=1 f_/\EQk(S)

v
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Lasserre’s Hierarchy of SDP relaxations

0(9) 19 € R[X] = ) gaze

B Moment matrix
M(z) ey 1= L (X XP) = 2,1

m Localizing matrix M(g;jz) associated with g;
M(gj Z)x‘*,xf3 = EZ(gj x* Xﬁ) = Z'y 8y Za+Bty
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Lasserre’s Hierarchy of SDP relaxations

n+2k

+k
n ")

m M (z) contains ( .

) variables, has size (

m Truncated matrix of order k = 2 with variables x1, x»:

1 | x| x% X1X2 x%

1 1 | zi0 zo1 | 220 211 Zo2

X1 21,0 | 220 211 | 230 221 Z12
ORI
X% 22,0 | 230 221 | 240 Z31 222

X1X2 | 211 ! 221 21,2 | 231 4222 Z13

X% 20,2 ! 212 203 | 222 213 204
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Lasserre’s Hierarchy of SDP relaxations

m Consider g;(x) := 2 —x? — x3. Then v; = [degg1/2] = 1.

1 X1 X2

1 2—230—202 2210 —Z30 —Z12 2201 — 221 — 203
Mi(g1z) = x1 | 2210 — 230 —212 2220 — 240 —Z22 2211 — 231 — 21,3
X2 \2z01 — 221 — 203 2211 —231 — 213 2202 — 222 — Z04

Mi(g12)(3,3) = £(g1(x) - x2 - x2) = £(2x5 — x7x5 — x3)

= 2205 — 222 — 204
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Lasserre’s Hierarchy of SDP relaxations

m Truncation with moments of order at most 2k
m v = [degg;/2]

m Hierarchy of semidefinite relaxations:
inf, 0;(f) = Y. fsfzx X* p(dx) = Yo fu 2o
Mi(z) = O,
My (gi2) =
A

I
—_
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Semidefinite Optimization

m Fy, F, symmetric real matrices, cost vector c

Primal-dual pair of semidefinite programs:

P: inf, Y, cizy
st. Y, Fizy—Fo=0
(SDP)
D: supy, Trace (FpY)
s.t. Trace (FyY)=cy, Y3»=0.

m Freely available SDP solvers (CSDP, SDPA, SEDUMI)
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Method 1: existential quantifier elimination



Approximation of sets defined with “3”

Another point of view:

F={yeB:3IxeSstf(x)=y},
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Approximation of sets defined with “3”

Another point of view:

F={yecB:3IxeSst |y—f(x)|3 =0},
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Approximation of sets defined with “3”

Another point of view:
F={ye€B:3dxeSst I(xy) >0},

with
he(xy) = =lly =f(0ll3 -
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Approximation of sets defined with “3”

Existential QE: approximate F as closely as desired [Lasserre 14]

Fi:={y€B:q(y) >0},

for some polynomials g, € Ry|y].
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A hierarchy of outer approximations of F

m Let K = S x B, Ox(K) be the k-truncated quadratic module

s REMEMBER:
q—hr € Q(K) = V(x,y) €K q(y) —I(xy) =0
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m Let K = S x B, Ox(K) be the k-truncated quadratic module
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A hierarchy of outer approximations of F

V. Magron

m Let K = S x B, Ox(K) be the k-truncated quadratic module

m REMEMBER:
q—hr € Q(K) = V(x,y) €K q(y) —I(xy) =0

m Define h(y) := sup, g hs(x,y)

m Hierarchy of Semidefinite programs:

inf{/B(q—h)dy:q—hf € Qk(K))} :

q
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A hierarchy of outer approximations of F

Assuming the existence of solution g, the sublevel sets

Fo:={yeB:q(y) >0} 2F,

provide a sequence of certified outer approximations of F.
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A hierarchy of outer approximations of F

Assuming the existence of solution g, the sublevel sets
Fo:={yeB:q(y) >0} 2F,

provide a sequence of certified outer approximations of F.

It comes from the following:

m g feasible solution, g; — h € Qk(K)

m V(xy) € K grly) = he(xy) < Vy, q(y) = h(y) .
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Strong convergence property

Theorem

Assuming that S # @ and Qk(K) is Archimedean,

The sequence of optimal solutions (i) converges to i w.r.t
the L1 (B)-norm:

lim/ lge — hldy =0, (qx =1, h)
k—o JB
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Strong convergence property

Theorem

Assuming that S # @ and Qk(K) is Archimedean,

The sequence of optimal solutions (i) converges to i w.r.t
the L1 (B)-norm:

lim/ lge — hldy =0, (qx =1, h)
k—o JB

lim vol(F{\F) =0 .
k—o00
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Strong convergence property

Proof of existence

Existence of optimal g; by Slater’s condition
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Strong convergence property

Proof of existence

Existence of optimal g; by Slater’s condition
m Dual SDP:

o :=sup Ly (hy)
s.t. Mk(Z) =0,
Mk_z,].(gjz) =0, ] =1,...,],
6(yP) =28, VB e Ny
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Strong convergence property

Proof of existence

Existence of optimal g; by Slater’s condition
m Dual SDP:

px = sup £z (hy)
st. Mi(z) =0,
Mo (82) =0, j=1,...,1
6(yP) =28, VB e Ny

m Strictly feasible z: moments of Lebesgue measure Ak

V. Magron SDP Approximations of Semialgebraic Set Projections 14 /30



Strong convergence property

Proof of existence

Existence of optimal g; by Slater’s condition
m Dual SDP:

px = sup £, (hy)
st. Mi(z) =0,
Mo (82) =0, j=1,...,1
6(yP) =28, VB e Ny

m Strictly feasible z: moments of Lebesgue measure Ak

m g = 0 feasible for Primal SDP:

pi=inf{ [ (9 =mdy: g1y € QUK)} -
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Strong convergence property

Proof of convergence

Approximate i with polynomials:
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Strong convergence property

Proof of convergence

Approximate i with polynomials:

m /1 lower semi-continuous, existence of (f;) C C(B) s.t. fy L h

m By Monotone Convergence Theorem, fi —, h.
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Strong convergence property

Proof of convergence

Approximate i with polynomials:

m /1 lower semi-continuous, existence of (f;) C C(B) s.t. fy L h
m By Monotone Convergence Theorem, fi —, h.

m By Stone-Weierstrass Theorem existence of py s.t. p —, h
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Strong convergence property

Proof of convergence

Approximate i with polynomials:

m /1 lower semi-continuous, existence of (f;) C C(B) s.t. fy L h
m By Monotone Convergence Theorem, fi —, h.
m By Stone-Weierstrass Theorem existence of py s.t. p —, h

m Apply Putinar’s Positivstellensatz to py — his + €/ vol(B):

pk—hf—i—e/vol EtT]g]
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Strong convergence property

Proof of volume convergence

Define F(r) := {y € B: h(y) > —1/r}
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Strong convergence property

Proof of volume convergence

Define F(r) := {y € B: h(y) > —1/r}
m volF(r) — vol F

m limy_,o, vol F} < volF(r)
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Strong convergence property

Proof of volume convergence

Define F(r) := {y € B: h(y) > —1/r}
m volF(r) — vol F
m limy_,o, vol F} < volF(r)

m volF < limy_, vol F} < volF(r)
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Method 2: support of image measures



Infinite dimensional LP formulation

m Pushforward f4 : M(S) — M(B):

feno(A) == po({x € S: f(x) € A}), VA € B(B),Vio € M(S)

® fu1 is the image measure of j under f
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Infinite dimensional LP formulation

p = sup / 2
Hosp,fh B
st. 1+ = AB,
11 = fao,
Mo € M+(S), U1, € M+(B).

Lebesgue measure on B is Ag(dy) := 1g(y) dy
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Infinite dimensional LP formulation

p' = sup / 31
Ho.p1.i B

st. pp+i1 = A,

;/ll :f#]’l()r
1o € M4 (S), i € M. (B).

Let ;1] be an optimal solution of the above LP.
Then yj = Ap and p* = volF.
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LP Primal-dual conic formulation

The LP can be cast as follows:
pt=sup (x,c)1
X

st. Ax=0,
x € EF,
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LP Primal-dual conic formulation

The LP can be cast as follows:
p"=sup (x,c)1
X

st. Ax=0b,
x € Ef,

with
m E;:= M(S) x M(B)? F;:=C(S) xC(B)?

mx:= (o, pn, 1) c:=(0,1,0) €Fy b:=(0,Ap)

m the linear operator A : E; — E; given by

N — + 1
Ao, ) = | 0T
(o, w1, 111) [ 0+ iy
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LP Primal-dual conic formulation

Primal LP Dual LP
p* = sup <X, C>1 d* = inf <b,y>2
x Y
st. Ax=1, st. A'y—c eCy(B)>.
x € Ef.

with
my:= (v,w) € M(B)?

—vof
m A (v,w):=| v+w
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LP Primal-dual conic formulation

Primal LP

p* = sup Ui
Mot

st i+ = Ag,

w1 = fapo,
Ho € M (S),

H, i € My (B

Dual LP

d* = inf w(y) Ag(dy)

v,W

st. o(f(x)) >0, VxeS,

w(y) 21+0(y), Vy€B,
w(y) >0, VyeB,
). v,we C(B).
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Zero duality gap
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Strong convergence property

Strengthening of the dual LP:
di = inf /Se;Ng;( wpzp
st. vof € Qul(S),
w—1—ve QB),
w e 9Q(B),
v, w € Ryly].
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Strong convergence property

Theorem

|

Assuming that F # @ and Qk(S) is Archimedean,

The sequence (wy) converges to 1g w.r.t the L; (B)-norm:

hm / |wr — 1pldy =0 .
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Strong convergence property

Theorem

|

Assuming that F # @ and Qk(S) is Archimedean,

The sequence (wy) converges to 1g w.r.t the L; (B)-norm:

hm / |wr — 1pldy =0 .

Let F{ := {y € B: wy(y) > 1}. Then,

lim vol(F{\F) =0 .
k—yo00
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Application examples



Polynomial image of the unit ball

Image of the unitball S := {x € R?: ||x||3 < 1} by

f(x) = (x1 +x1x0, 0 — xi’)/Z

1

o0st 7
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Polynomial image of the unit ball

Image of the unitball S := {x € R?: ||x||3 < 1} by
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Polynomial image of the unit ball

Image of the unitball S := {x € R?: ||x||3 < 1} by

f(x) := (x1 +x1%0, %2 — x3) /2

1

05
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Polynomial image of the unit ball

Image of the unitball S := {x € R?: ||x||3 < 1} by

f(x) = (x1 +x1x0, 0 — x%)/Z

1

05 S 05/
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Semialgebraic set projections

Simpler formulation:

dj = inf Y. wpzp inf Y wpzp
" BeENZ BENL
st. vof € Qul(S), st. w—1¢€ QS),
w—1—0ve QB), w € Qk(B),
w € Qk(B), w € Rog[x1, ..., Xm]-
v, w € Ryly].
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Semialgebraic set projections

f(x) = (x1,x): projection on IR? of the semialgebraic set

S:={xeR¥:|x|5<1,1/4— (x; +1/2)> —=x% >0,
1/9 — (x1 —1/2)* — x5 > 0}

1

0.5

-1 -0.5 0 05 1
LS

5
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Semialgebraic set projections

f(x) = (x1,x2): projection on IR? of the semialgebraic set

S:={xe R*:|x|3<1,1/4~ (1 +1/2)> =23 >0,
1/9 — (x1 —1/2)* — x5 > 0}

1

0.5
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Semialgebraic set projections

f(x) = (x1,x2): projection on IR? of the semialgebraic set

S:={xeR¥:|x|5<1,1/4— (x; +1/2)> —=x% >0,
1/9 — (x —1/2)* —x3 > 0}

1

0.5

F?
4
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Bicriteria Optimization Problems

g1=—(r1—2)3/2—x, +25, fii= (1 +x—75)2/4+ (—x; + 1, +3)2,
g0 1= —x1 — X5 + 8(—x1 +x +0.65)% +3.85 , foi=(x1 —1)2/4+ (x, —4)2/4 .
S:={xeR?:g1(x) >0, g(x) >0} .
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Previous Contributions

m Numerical schemes that avoid computing finitely many
points.

m Pareto curve approximation with polynomials,
convergence guarantees in L{-norm

@ V. Magron, D. Henrion, J.B. Lasserre. Approximating Pareto
Curves using Semidefinite Relaxations. Operations Research
Letters. arxiv:1404.4772, April 2014.
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http://arxiv-web3.library.cornell.edu/pdf/1404.4772v1.pdf
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Previous Contributions
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Approximating Pareto curves

Back on our previous nonconvex example:

8 10 12 14 16 18 20 8 10 12 14 16 18 20
¥ v

F| F
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Approximating Pareto curves

V. Magron

Back on our previous nonconvex example:
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Approximating Pareto curves

“Zoom” on the region which is hard to approximate:
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Approximating Pareto curves

“Zoom” on the region which is hard to approximate:
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Semialgebraic image of semialgebraic sets

Image of the unitball S := {x € R?: ||x||3 < 1} by

F(x) := (min(xq 4 x1x0,%3), %2 — x3) /3

1

0.5

—1 -0.5 0 0.5 1

F F}
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Semialgebraic image of semialgebraic sets

Image of the unitball S := {x € R?: ||x||3 < 1} by

f(x) := (min(x; + x1x2, x%),xz - x?)/B

L —— 1
’_.r"u )_.r"u
05} £ 05
=0 =0
-05 p -05
.-""J'
L -05 0 05 1 1 1
Y
Fl
2
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Semialgebraic image of semialgebraic sets

Image of the unitball S := {x € R?: ||x||3 < 1} by

F(x) := (min(xq 4+ x1x0,%3), %2 — x3) /3

05 / 05 /

= 0 = 0
05 05
) )
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
¥y ¥
1 2
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Semialgebraic image of semialgebraic sets

Image of the unitball S := {x € R?: ||x||3 < 1} by

f(x) := (min(x; + x1x2, x%),xz - x?)/3
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Conclusion

m Unifying framework:

m Projections of semialgebraic sets
m Approximation of Pareto curves

m Structure sparsity can be exploited
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Conclusion

Further research:

m Alternative positivity certificates LP/SDP
Less computationally demanding than SDP

More efficient than LP (as generic convergence cannot
occur)
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End

@ V. Magron, D. Henrion, ].B. Lasserre. Semidefinite
approximations of projections and polynomial images of
semialgebraic sets. 00:2014.10.4606, October 2014.

Thank you for your attention!

cas.ee.ic.ac.uk/people/vmagron


http://www.optimization-online.org/DB_HTML/2014/10/4606.html
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