Semidefinite Approximations of Projections and Polynomial Images of Semialgebraic Sets

Victor Magron¹ Didier Henrion² Jean-Bernard Lasserre²

¹Imperial College

²LAAS-CNRS

5 Novembre 2014

JNCF CIRM

- Semialgebraic set $\mathbf{S} := \{\mathbf{x} \in \mathbb{R}^n : g_1(\mathbf{x}) \geqslant 0, \dots, g_l(\mathbf{x}) \geqslant 0\}$
- A polynomial map $f : \mathbb{R}^n \to \mathbb{R}^m$, $\mathbf{x} \mapsto f(\mathbf{x}) := (f_1(\mathbf{x}), \dots, f_m(\mathbf{x}))$
- $deg f = d := \max\{ deg f_1, \dots, deg f_m \}$
- $\mathbf{F} := f(\mathbf{S}) \subseteq \mathbf{B}$, with $\mathbf{B} \subset \mathbb{R}^m$ a box or a ball
- Tractable approximations of **F**?

- Includes important special cases:
 - **11** m = 1: polynomial optimization

$$\mathbf{F} \subseteq [\inf_{\mathbf{x} \in \mathbf{S}} f(\mathbf{x}), \sup_{\mathbf{x} \in \mathbf{S}} f(\mathbf{x})]$$

- **2** Approximate **projections** of **S** when $f(\mathbf{x}) := (x_1, \dots, x_m)$
- 3 Pareto curve approximations

For
$$f_1, f_2$$
 two conflicting criteria: (**P**) $\left\{ \min_{\mathbf{x} \in \mathbf{S}} (f_1(\mathbf{x}) f_2(\mathbf{x}))^{\top} \right\}$

3 Pareto curve: set of weakly Edgeworth-Pareto optimal points

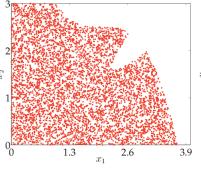
$$(\mathbf{P}) \left\{ \min_{\mathbf{x} \in \mathbf{S}} (f_1(\mathbf{x}) f_2(\mathbf{x}))^\top \right\}$$

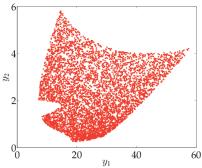
Definition

A point $\bar{\mathbf{x}} \in \mathbf{S}$ is called a *weakly Edgeworth-Pareto (EP) optimal* point of Problem **P**, when there is no $\mathbf{x} \in \mathbf{S}$ such that $f_j(\mathbf{x}) < f_j(\bar{\mathbf{x}})$, j = 1, 2.

$$\begin{split} g_1 &:= -(x_1-2)^3/2 - x_2 + 2.5 \ , \\ g_2 &:= -x_1 - x_2 + 8(-x_1 + x_2 + 0.65)^2 + 3.85 \ , \\ \mathbf{S} &:= \{\mathbf{x} \in \mathbb{R}^2 : g_1(\mathbf{x}) \geqslant 0, g_2(\mathbf{x}) \geqslant 0\} \ . \end{split}$$

$$\begin{split} f_1 &:= (x_1 + x_2 - 7.5)^2 / 4 + (-x_1 + x_2 + 3)^2 \ , \\ f_2 &:= (x_1 - 1)^2 / 4 + (x_2 - 4)^2 / 4 \ . \end{split}$$





Previous work

- Exact description of projections with computer algebra
 - Real quantifier elimination (QE) [Tarski 51, Collins 74, Bochnak-Coste-Roy 98]
 - CAD: computational complexity $(sd)^{2^{O(n)}}$ for a finite set of s polynomials
 - Variant QE under radicality, equidimensionality [Hong-Safey 12]

Previous work

- Scalarization methods for computing Pareto curve
 - Numerical discretization schemes: modified Polak method [Pol 76]
 - Iterative Eichfelder-Polak algorithm [Eich 09]
 - Normal-boundary intersection method to find uniform spread of points [Das Dennis 98]

- A unifying framework to handle projections, Pareto curve approximations and other applications
- No discretization is required

- A unifying framework to handle projections, Pareto curve approximations and other applications
- No discretization is required
- Two different methods:
 - **1** Existential QE: $\mathbf{F} \subseteq \mathbf{F}_k^1 := \{ \mathbf{y} \in \mathbf{B} : q_k(\mathbf{y}) \ge 0 \}$
 - 2 Image measure supports: $\mathbf{F} \subseteq \mathbf{F}_k^2 := \{ \mathbf{y} \in \mathbf{B} : w_k(\mathbf{y}) \geqslant 1 \}$

- A unifying framework to handle projections, Pareto curve approximations and other applications
- No discretization is required
- Two different methods:
 - **1** Existential QE: $\mathbf{F} \subseteq \mathbf{F}_k^1 := \{ \mathbf{y} \in \mathbf{B} : q_k(\mathbf{y}) \ge 0 \}$
 - 2 Image measure supports: $\mathbf{F} \subseteq \mathbf{F}_k^2 := \{ \mathbf{y} \in \mathbf{B} : w_k(\mathbf{y}) \geqslant 1 \}$
- Strong convergence guarantees

- A unifying framework to handle projections, Pareto curve approximations and other applications
- No discretization is required
- Two different methods:
 - **1** Existential QE: $\mathbf{F} \subseteq \mathbf{F}_k^1 := \{ \mathbf{y} \in \mathbf{B} : q_k(\mathbf{y}) \ge 0 \}$
 - 2 Image measure supports: $\mathbf{F} \subseteq \mathbf{F}_k^2 := \{ \mathbf{y} \in \mathbf{B} : w_k(\mathbf{y}) \geqslant 1 \}$
- Strong convergence guarantees
- Compute q_k or w_k with **Semidefinite programming** (SDP)

m = 1: Polynomial Optimization

Method 1: existential quantifier elimination

Method 2: support of image measures

Application examples

Conclusion

Polynomial Optimization

- Semialgebraic set $\mathbf{S} := \{\mathbf{x} \in \mathbb{R}^n : g_1(\mathbf{x}) \geqslant 0, \dots, g_l(\mathbf{x}) \geqslant 0\}$
- $p^* := \inf_{\mathbf{x} \in \mathbf{S}} f(\mathbf{x})$: NP hard
- Sums of squares $\Sigma[\mathbf{x}]$ e.g. $x_1^2 - 2x_1x_2 + x_2^2 = (x_1 - x_2)^2$
- REMEMBER: $f \in \mathcal{Q}(\mathbf{S}) \Longrightarrow \forall \mathbf{x} \in \mathbf{S}, f(\mathbf{x}) \geqslant 0$

Problem reformulation

- Borel σ -algebra \mathcal{B} (generated by the open sets of \mathbb{R}^n)
- $\mathcal{M}_+(\mathbf{S})$: set of probability measures supported on \mathbf{S} . If $\mu \in \mathcal{M}_+(\mathbf{S})$ then

 - **2** $\mu(\bigcup_i B_i) = \sum_i \mu(B_i)$, for any countable $(B_i) \subset \mathcal{B}$
 - $\int_{\mathbf{S}} \mu(d\mathbf{x}) = 1$
- supp(μ) is the smallest set **S** such that $\mu(\mathbb{R}^n \backslash \mathbf{S}) = 0$

Problem reformulation

$$p^* = \inf_{\mathbf{x} \in \mathbf{S}} f(\mathbf{x}) = \inf_{\mu \in \mathcal{M}_+(\mathbf{S})} \int_{\mathbf{S}} f \, d\mu$$

Primal-dual Moment-SOS [Lasserre 01]

■ Let $(\mathbf{x}^{\alpha})_{\alpha \in \mathbb{N}^n}$ be the monomial basis

Definition

A sequence **z** has a representing measure on **S** if there exists a finite measure μ supported on **S** such that

$$\mathbf{z}_{\alpha} = \int_{\mathbf{S}} \mathbf{x}^{\alpha} \mu(d\mathbf{x}), \quad \forall \, \alpha \in \mathbb{N}^n.$$

Primal-dual Moment-SOS [Lasserre 01]

- $\mathcal{M}_+(\mathbf{S})$: space of probability measures supported on \mathbf{S}
- $\mathbb{Q}(S)$: quadratic module

Polynomial Optimization Problems (POP)

$$\begin{array}{lll} \text{(Primal)} & \text{(Dual)} \\ & \text{inf} & \int_{\mathbf{S}} f \, d\mu & = & \sup \ \lambda \\ & \text{s.t.} & \mu \in \mathcal{M}_+(\mathbf{S}) & \text{s.t.} & \lambda \in \mathbb{R} \ , \\ & & f - \lambda \in \mathcal{Q}(\mathbf{S}) \end{array}$$

Primal-dual Moment-SOS [Lasserre 01]

- Finite moment sequences **z** of measures in $\mathcal{M}_+(S)$
- Truncated quadratic module $Q_k(\mathbf{S}) := Q(\mathbf{S}) \cap \mathbb{R}_{2k}[\mathbf{x}]$

Polynomial Optimization Problems (POP)

$$\begin{array}{lll} \text{(Moment)} & \text{(SOS)} \\ \inf & \sum_{\alpha} f_{\alpha} \, \mathbf{z}_{\alpha} & = \sup \quad \lambda \\ \text{s.t.} & \mathbf{M}_{k-v_{j}}(g_{j} \, \mathbf{z}) \succcurlyeq 0 \,, \quad 0 \leqslant j \leqslant l, \qquad \text{s.t.} \quad \lambda \in \mathbb{R} \,\,, \\ & \mathbf{z}_{1} = 1 & f - \lambda \in \mathcal{Q}_{k}(\mathbf{S}) \end{array}$$

$$\ell_{\mathbf{z}}(q): q \in \mathbb{R}[\mathbf{x}] \mapsto \sum_{\alpha} q_{\alpha} \mathbf{z}_{\alpha}$$

■ Moment matrix

$$\mathbf{M}(\mathbf{z})_{\mathbf{x}^{\alpha},\mathbf{x}^{\beta}} := \ell_{\mathbf{z}}(\mathbf{x}^{\alpha}\,\mathbf{x}^{\beta}) = \mathbf{z}_{\alpha+\beta}$$

■ Localizing matrix $\mathbf{M}(g_j \mathbf{z})$ associated with g_j $\mathbf{M}(g_j \mathbf{z})_{\mathbf{x}^{\alpha}, \mathbf{x}^{\beta}} := \ell_{\mathbf{z}}(g_j \mathbf{x}^{\alpha} \mathbf{x}^{\beta}) = \sum_{\gamma} g_{j,\gamma} \mathbf{z}_{\alpha+\beta+\gamma}$

- $\mathbf{M}_k(\mathbf{z})$ contains $\binom{n+2k}{n}$ variables, has size $\binom{n+k}{n}$
- Truncated matrix of order k = 2 with variables x_1, x_2 :

• Consider $g_1(\mathbf{x}) := 2 - x_1^2 - x_2^2$. Then $v_1 = \lceil \deg g_1/2 \rceil = 1$.

$$\begin{aligned} \mathbf{M}_{1}(g_{1} \ \mathbf{z}) &= x_{1} \\ x_{2} & \begin{pmatrix} 2 - z_{2,0} - z_{0,2} & 2z_{1,0} - z_{3,0} - z_{1,2} & 2z_{0,1} - z_{2,1} - z_{0,3} \\ 2z_{1,0} - z_{3,0} - z_{1,2} & 2z_{2,0} - z_{4,0} - z_{2,2} & 2z_{1,1} - z_{3,1} - z_{1,3} \\ 2z_{0,1} - z_{2,1} - z_{0,3} & 2z_{1,1} - z_{3,1} - z_{1,3} & 2z_{0,2} - z_{2,2} - z_{0,4} \end{pmatrix} \end{aligned}$$

$$\mathbf{M}_{1}(g_{1} \mathbf{z})(3,3) = \ell(g_{1}(\mathbf{x}) \cdot x_{2} \cdot x_{2}) = \ell(2x_{2}^{2} - x_{1}^{2}x_{2}^{2} - x_{2}^{4})$$
$$= 2z_{0,2} - z_{2,2} - z_{0,4}$$

- Truncation with moments of order at most 2*k*
- $v_j := \lceil \deg g_j/2 \rceil$
- Hierarchy of semidefinite relaxations:

$$\begin{cases} \inf_{\mathbf{z}} \ell_{\mathbf{z}}(f) &= \sum_{\alpha} \int_{\mathbf{S}} f_{\alpha} \, \mathbf{x}^{\alpha} \, \mu(d\mathbf{x}) = \sum_{\alpha} f_{\alpha} \, \mathbf{z}_{\alpha} \\ \mathbf{M}_{k}(\mathbf{z}) & \geq 0, \\ \mathbf{M}_{k-v_{j}}(g_{j} \, \mathbf{z}) & \geq 0, \quad 1 \leq j \leq l, \\ \mathbf{z}_{1} &= 1. \end{cases}$$

Semidefinite Optimization

 \blacksquare F_0 , F_α symmetric real matrices, cost vector c

Primal-dual pair of semidefinite programs:

$$(SDP) \left\{ \begin{array}{ll} \mathcal{P}: & \inf_{\mathbf{z}} & \sum_{\alpha} c_{\alpha} \mathbf{z}_{\alpha} \\ & \mathrm{s.t.} & \sum_{\alpha} F_{\alpha} \, \mathbf{z}_{\alpha} - F_{0} \succcurlyeq 0 \end{array} \right.$$

$$\left\{ \begin{array}{ll} \mathcal{D}: & \sup_{\mathbf{Y}} & \mathrm{Trace} \left(F_{0} \, \mathbf{Y} \right) \\ & \mathrm{s.t.} & \mathrm{Trace} \left(F_{\alpha} \, \mathbf{Y} \right) = c_{\alpha} \end{array} \right., \quad \mathbf{Y} \succcurlyeq 0 \ .$$

■ Freely available SDP solvers (CSDP, SDPA, SEDUMI)

m=1: Polynomial Optimization

Method 1: existential quantifier elimination

Method 2: support of image measures

Application examples

Conclusion

Another point of view:

$$\mathbf{F} = \{ \mathbf{y} \in \mathbf{B} : \exists \mathbf{x} \in \mathbf{S} \text{ s.t. } f(\mathbf{x}) = \mathbf{y} \}$$
 ,

Another point of view:

$$\mathbf{F} = \{ \mathbf{y} \in \mathbf{B} : \exists \mathbf{x} \in \mathbf{S} \text{ s.t. } \|\mathbf{y} - f(\mathbf{x})\|_2^2 = 0 \}$$
,

Another point of view:

$$\textbf{F} = \{\textbf{y} \in \textbf{B}: \exists \textbf{x} \in \textbf{S} \text{ s.t. } \textit{h}_{\textit{f}}(\textbf{x},\textbf{y}) \geqslant 0 \}$$
 ,

with

$$h_f(\mathbf{x}, \mathbf{y}) := -\|\mathbf{y} - f(\mathbf{x})\|_2^2$$
.

Existential QE: approximate **F** as closely as desired [Lasserre 14]

$$\mathbf{F}_k^1 := \{ \mathbf{y} \in \mathbf{B} : q_k(\mathbf{y}) \geqslant 0 \}$$
,

for some polynomials $q_k \in \mathbb{R}_{2k}[\mathbf{y}]$.

- Let $\mathbf{K} = \mathbf{S} \times \mathbf{B}$, $Q_k(\mathbf{K})$ be the k-truncated quadratic module
- REMEMBER:

$$q - h_f \in \mathcal{Q}_k(\mathbf{K}) \Longrightarrow \forall (\mathbf{x}, \mathbf{y}) \in \mathbf{K}, q(\mathbf{y}) - h_f(\mathbf{x}, \mathbf{y}) \geqslant 0$$

- Let $\mathbf{K} = \mathbf{S} \times \mathbf{B}$, $\mathcal{Q}_k(\mathbf{K})$ be the *k*-truncated quadratic module
- REMEMBER:

$$q - h_f \in \mathcal{Q}_k(\mathbf{K}) \Longrightarrow \forall (\mathbf{x}, \mathbf{y}) \in \mathbf{K}, q(\mathbf{y}) - h_f(\mathbf{x}, \mathbf{y}) \geqslant 0$$

■ Define $h(\mathbf{y}) := \sup_{\mathbf{x} \in \mathbf{S}} h_f(\mathbf{x}, \mathbf{y})$

- Let $\mathbf{K} = \mathbf{S} \times \mathbf{B}$, $\mathcal{Q}_k(\mathbf{K})$ be the *k*-truncated quadratic module
- REMEMBER:

$$q - h_f \in \mathcal{Q}_k(\mathbf{K}) \Longrightarrow \forall (\mathbf{x}, \mathbf{y}) \in \mathbf{K}, q(\mathbf{y}) - h_f(\mathbf{x}, \mathbf{y}) \geqslant 0$$

- Define $h(\mathbf{y}) := \sup_{\mathbf{x} \in \mathbf{S}} h_f(\mathbf{x}, \mathbf{y})$
- Hierarchy of Semidefinite programs:

$$\inf_{q} \left\{ \int_{\mathbf{B}} (q - h) d\mathbf{y} : q - h_f \in \mathcal{Q}_k(\mathbf{K}) \right\} .$$

Assuming the existence of solution q_k , the sublevel sets

$$\mathbf{F}_k^1 := \{ \mathbf{y} \in \mathbf{B} : q_k(\mathbf{y}) \geqslant 0 \} \supseteq \mathbf{F}$$
 ,

provide a sequence of certified outer approximations of F.

Assuming the existence of solution q_k , the sublevel sets

$$\mathbf{F}_k^1 := \{ \mathbf{y} \in \mathbf{B} : q_k(\mathbf{y}) \geqslant 0 \} \supseteq \mathbf{F}$$
 ,

provide a sequence of certified outer approximations of F.

It comes from the following:

- q_k feasible solution, $q_k h_f \in \mathcal{Q}_k(\mathbf{K})$
- $\forall (\mathbf{x}, \mathbf{y}) \in \mathbf{K}, q_k(\mathbf{y}) \geqslant h_f(\mathbf{x}, \mathbf{y}) \iff \forall \mathbf{y}, q_k(\mathbf{y}) \geqslant h(\mathbf{y}) .$

Strong convergence property

Theorem

Assuming that $\mathbf{S} \neq \emptyset$ and $\mathcal{Q}_k(\mathbf{K})$ is Archimedean,

1 The sequence of optimal solutions (q_k) converges to h w.r.t the $L_1(\mathbf{B})$ -norm:

$$\lim_{k\to\infty}\int_{\mathbf{B}}|q_k-h|d\mathbf{y}=0, (q_k\to_{L_1}h)$$

Strong convergence property

Theorem

Assuming that $\mathbf{S} \neq \emptyset$ and $\mathcal{Q}_k(\mathbf{K})$ is Archimedean,

1 The sequence of optimal solutions (q_k) converges to h w.r.t the $L_1(\mathbf{B})$ -norm:

$$\lim_{k\to\infty}\int_{\mathbf{B}}|q_k-h|d\mathbf{y}=0 \ , (q_k\to_{L_1}\mathbf{h})$$

2

$$\lim_{k\to\infty}\operatorname{vol}(\mathbf{F}_k^1\backslash\mathbf{F})=0.$$

Strong convergence property

Proof of existence

1 Existence of optimal q_k by **Slater's condition**

Proof of existence

- **1** Existence of optimal q_k by **Slater's condition**
 - Dual SDP:

$$\begin{split} \rho_k^* &:= \sup_{\mathbf{z}} & \ell_{\mathbf{z}}(h_f) \\ \text{s.t.} & \mathbf{M}_k(\mathbf{z}) \succcurlyeq 0, \\ & \mathbf{M}_{k-v_j}(g_j \mathbf{z}) \succcurlyeq 0, \quad j = 1, \dots, l, \\ & \ell_{\mathbf{z}}(\mathbf{y}^\beta) = z_\beta^{\mathbf{B}}, \quad \forall \beta \in \mathbb{N}_{2k}^m. \end{split}$$

Proof of existence

- **1** Existence of optimal q_k by **Slater's condition**
 - Dual SDP:

$$\begin{split} \rho_k^* &:= \sup_{\mathbf{z}} & \ell_{\mathbf{z}}(h_f) \\ \text{s.t.} & \mathbf{M}_k(\mathbf{z}) \succcurlyeq 0, \\ & \mathbf{M}_{k-v_j}(g_j \mathbf{z}) \succcurlyeq 0, \quad j = 1, \dots, l, \\ & \ell_{\mathbf{z}}(\mathbf{y}^{\beta}) = z_{\beta}^{\mathbf{B}}, \quad \forall \beta \in \mathbb{N}_{2k}^m. \end{split}$$

■ Strictly feasible z: moments of Lebesgue measure $\lambda_{\mathbf{K}}$

Proof of existence

- **1** Existence of optimal q_k by **Slater's condition**
 - Dual SDP:

$$\begin{split} \rho_k^* &:= \sup_{\mathbf{z}} & \ell_{\mathbf{z}}(\mathbf{h}_{\!f}) \\ \text{s.t.} & \mathbf{M}_k(\mathbf{z}) \succcurlyeq \mathbf{0}, \\ & \mathbf{M}_{k-v_j}(g_j\,\mathbf{z}) \succcurlyeq \mathbf{0}, \quad j = 1, \dots, l, \\ & \ell_{\mathbf{z}}(\mathbf{y}^\beta) = z_\beta^\mathbf{B}, \quad \forall \beta \in \mathbb{N}_{2k}^m. \end{split}$$

- Strictly feasible **z**: moments of Lebesgue measure $\lambda_{\mathbf{K}}$
- q = 0 feasible for Primal SDP:

$$\rho_k := \inf_{q} \left\{ \int_{\mathbf{B}} (q - h) d\mathbf{y} : q - h_f \in \mathcal{Q}_k(\mathbf{K}) \right\} .$$

Proof of convergence

1 Approximate h with polynomials:

- **11** Approximate h with polynomials:
 - *h* lower semi-continuous, existence of $(f_k) \subset C(\mathbf{B})$ s.t. $f_k \downarrow h$

- **11** Approximate h with polynomials:
 - *h* lower semi-continuous, existence of $(f_k) \subset C(\mathbf{B})$ s.t. $f_k \downarrow h$
 - By Monotone Convergence Theorem, $f_k \rightarrow_{L_1} h$.

- **1** Approximate h with polynomials:
 - *h* lower semi-continuous, existence of $(f_k) \subset C(\mathbf{B})$ s.t. $f_k \downarrow h$
 - By Monotone Convergence Theorem, $f_k \rightarrow_{L_1} h$.
 - By Stone-Weierstrass Theorem existence of p_k s.t. $p_k \rightarrow_{L_1} h$

- **1** Approximate h with polynomials:
 - *h* lower semi-continuous, existence of $(f_k) \subset C(\mathbf{B})$ s.t. $f_k \downarrow h$
 - By Monotone Convergence Theorem, $f_k \rightarrow_{L_1} h$.
 - By Stone-Weierstrass Theorem existence of p_k s.t. $p_k \rightarrow_{L_1} h$
 - Apply Putinar's Positivstellensatz to $p_k h_f + \epsilon / \text{vol}(\mathbf{B})$:

$$p_k - h_f + \epsilon / \operatorname{vol}(\mathbf{B}) = \sum_{j=0}^l \sigma_j g_j$$

Proof of volume convergence

2 Define $F(r) := \{ y \in B : h(y) \ge -1/r \}$

Proof of volume convergence

- **2** Define $F(r) := \{ y \in B : h(y) \ge -1/r \}$
 - $\mathbf{vol}\,\mathbf{F}(r) \to \mathrm{vol}\,\mathbf{F}$

Proof of volume convergence

- **2** Define $F(r) := \{ y \in B : h(y) \ge -1/r \}$
 - $\operatorname{vol} \mathbf{F}(r) \to \operatorname{vol} \mathbf{F}$
 - $\blacksquare \lim_{k\to\infty} \operatorname{vol} \mathbf{F}_k^1 \leqslant \operatorname{vol} \mathbf{F}(r)$

Proof of volume convergence

- **2** Define $\mathbf{F}(r) := \{ \mathbf{y} \in \mathbf{B} : h(\mathbf{y}) \geqslant -1/r \}$
 - $\operatorname{vol} \mathbf{F}(r) \to \operatorname{vol} \mathbf{F}$
 - $\blacksquare \lim_{k\to\infty} \operatorname{vol} \mathbf{F}_k^1 \leqslant \operatorname{vol} \mathbf{F}(r)$
 - $\operatorname{vol} \mathbf{F} \leqslant \lim_{k \to \infty} \operatorname{vol} \mathbf{F}_k^1 \leqslant \operatorname{vol} \mathbf{F}(r)$

The Problem

m=1: Polynomial Optimization

Method 1: existential quantifier elimination

Method 2: support of image measures

Application examples

Conclusion

Infinite dimensional LP formulation

■ Pushforward $f_{\#}: \mathcal{M}(S) \to \mathcal{M}(B)$:

$$f_{\#}\mu_0(\mathbf{A}) := \mu_0(\{\mathbf{x} \in \mathbf{S} : f(\mathbf{x}) \in \mathbf{A}\}), \quad \forall \mathbf{A} \in \mathcal{B}(\mathbf{B}), \forall \mu_0 \in \mathcal{M}(\mathbf{S})$$

• $f_{\#}\mu_0$ is the **image measure** of μ_0 under f

Infinite dimensional LP formulation

$$p^* := \sup_{\mu_0, \mu_1, \hat{\mu}_1} \int_{\mathbf{B}} \mu_1$$
s.t. $\mu_1 + \hat{\mu}_1 = \lambda_{\mathbf{B}}$,
$$\mu_1 = f_{\#}\mu_0$$
,
$$\mu_0 \in \mathcal{M}_+(\mathbf{S}), \quad \mu_1, \hat{\mu}_1 \in \mathcal{M}_+(\mathbf{B})$$
.

Lebesgue measure on **B** is $\lambda_{\mathbf{B}}(d\mathbf{y}) := \mathbf{1}_{\mathbf{B}}(\mathbf{y}) d\mathbf{y}$

Infinite dimensional LP formulation

$$p^* := \sup_{\mu_0, \mu_1, \hat{\mu}_1} \int_{\mathbf{B}} \mu_1$$
s.t. $\mu_1 + \hat{\mu}_1 = \lambda_{\mathbf{B}}$,
$$\mu_1 = f_{\#}\mu_0$$
,
$$\mu_0 \in \mathcal{M}_+(\mathbf{S}), \quad \mu_1, \hat{\mu}_1 \in \mathcal{M}_+(\mathbf{B})$$
.

Lemma

Let μ_1^* be an optimal solution of the above LP.

Then $\mu_1^* = \lambda_{\mathbf{F}}$ and $p^* = \text{vol } \mathbf{F}$.

The LP can be cast as follows:

$$p^* = \sup_{x} \langle x, c \rangle_1$$

s.t. $Ax = b$,
 $x \in E_1^+$,

The LP can be cast as follows:

$$p^* = \sup_{x} \langle x, c \rangle_1$$

s.t. $Ax = b$, $x \in E_1^+$,

with

$$\mathbf{E}_1 := \mathcal{M}(\mathbf{S}) \times \mathcal{M}(\mathbf{B})^2 \quad F_1 := \mathcal{C}(\mathbf{S}) \times \mathcal{C}(\mathbf{B})^2$$

$$\mathbf{z} := (\mu_0, \mu_1, \hat{\mu}_1) \quad c := (0, 1, 0) \in F_1 \quad b := (0, \lambda_{\mathbf{B}})$$

• the linear operator $A: E_1 \to E_2$ given by

$$A(\mu_0, \mu_1, \hat{\mu}_1) := \begin{bmatrix} -f_{\#}\mu_0 + \mu_1 \\ \mu_1 + \hat{\mu}_1 \end{bmatrix}.$$

Primal LP

$$p^* = \sup_{x} \langle x, c \rangle_1$$
 $d^* = \inf_{y} \langle b, y \rangle_2$
s.t. $A = b$, s.t. $A' y - c \in C_+(\mathbf{B})^2$.
 $x \in E_1^+$.

with

$$y := (v, w) \in \mathcal{M}(\mathbf{B})^2$$

Primal LP

$$\begin{split} p^* &:= \sup_{\mu_0, \mu_1, \hat{\mu}_1} \quad \int \mu_1 \qquad \qquad d^* := \inf_{v, w} \quad \int w(\mathbf{y}) \, \lambda_{\mathbf{B}}(d\mathbf{y}) \\ \text{s.t.} \quad \mu_1 + \hat{\mu}_1 &= \lambda_{\mathbf{B}}, \qquad \text{s.t.} \quad v(f(\mathbf{x})) \geqslant 0, \quad \forall \mathbf{x} \in \mathbf{S}, \\ \mu_1 &= f_\# \mu_0, \qquad \qquad w(\mathbf{y}) \geqslant 1 + v(\mathbf{y}), \quad \forall \mathbf{y} \in \mathbf{B}, \\ \mu_0 &\in \mathcal{M}_+(\mathbf{S}), \qquad \qquad w(\mathbf{y}) \geqslant 0, \quad \forall \mathbf{y} \in \mathbf{B}, \\ \mu_1, \hat{\mu}_1 &\in \mathcal{M}_+(\mathbf{B}). \qquad v, w \in \mathcal{C}(\mathbf{B}). \end{split}$$

Zero duality gap

Lemma

 $p^* = d^*$

Strengthening of the dual LP:

$$egin{aligned} d_k^* &:= \inf_{v,w} & \sum_{eta \in \mathbb{N}_{2k}^m} w_eta z_eta^\mathbf{B} \ & ext{s.t.} & v \circ f \in \mathcal{Q}_{kd}(\mathbf{S}), \ & w - 1 - v \in \mathcal{Q}_k(\mathbf{B}), \ & w \in \mathcal{Q}_k(\mathbf{B}), \ & v, w \in \mathbb{R}_{2k}[\mathbf{y}]. \end{aligned}$$

Theorem

Assuming that $\mathbf{F} \neq \emptyset$ and $\mathcal{Q}_k(\mathbf{S})$ is Archimedean,

1 The sequence (w_k) converges to $\mathbf{1}_{\mathbf{F}}$ w.r.t the $L_1(\mathbf{B})$ -norm:

$$\lim_{k\to\infty}\int_{\mathbf{B}}|w_k-\mathbf{1}_{\mathbf{F}}|d\mathbf{y}=0.$$

Theorem

Assuming that $\mathbf{F} \neq \emptyset$ and $\mathcal{Q}_k(\mathbf{S})$ is Archimedean,

1 The sequence (w_k) converges to $\mathbf{1}_{\mathbf{F}}$ w.r.t the $L_1(\mathbf{B})$ -norm:

$$\lim_{k\to\infty}\int_{\mathbf{B}}|w_k-\mathbf{1}_{\mathbf{F}}|d\mathbf{y}=0.$$

2 Let $\mathbf{F}_k^2 := \{ \mathbf{y} \in \mathbf{B} : w_k(\mathbf{y}) \ge 1 \}$. Then,

$$\lim_{k \to \infty} \operatorname{vol}(\mathbf{F}_k^2 \backslash \mathbf{F}) = 0 .$$

The Problem

m=1: Polynomial Optimization

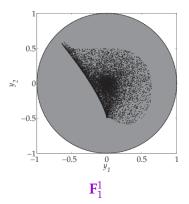
Method 1: existential quantifier elimination

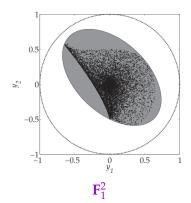
Method 2: support of image measures

Application examples

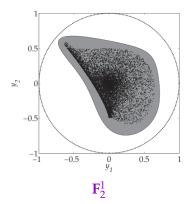
Conclusion

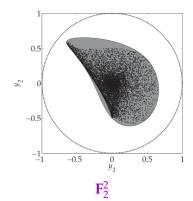
$$f(\mathbf{x}) := (x_1 + x_1 x_2, x_2 - x_1^3)/2$$



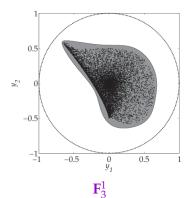


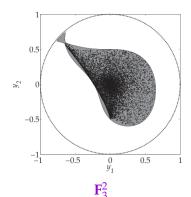
$$f(\mathbf{x}) := (x_1 + x_1 x_2, x_2 - x_1^3)/2$$



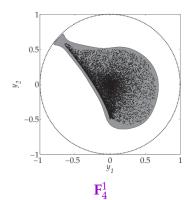


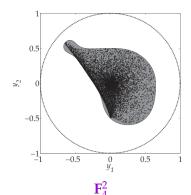
$$f(\mathbf{x}) := (x_1 + x_1 x_2, x_2 - x_1^3)/2$$





$$f(\mathbf{x}) := (x_1 + x_1 x_2, x_2 - x_1^3)/2$$



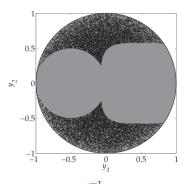


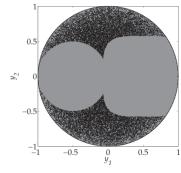
Simpler formulation:

$$d_{k}^{*} := \inf_{v,w} \quad \sum_{\beta \in \mathbb{N}_{2k}^{m}} w_{\beta} z_{\beta}^{\mathbf{B}} \qquad \inf_{w} \quad \sum_{\beta \in \mathbb{N}_{2k}^{m}} w_{\beta} z_{\beta}^{\mathbf{B}}$$
s.t. $v \circ f \in \mathcal{Q}_{kd}(\mathbf{S})$, s.t. $w - 1 \in \mathcal{Q}_{k}(\mathbf{S})$, $w - 1 - v \in \mathcal{Q}_{k}(\mathbf{B})$, $w \in \mathcal{Q}_{k}(\mathbf{B})$, $w \in \mathcal{Q}_{k}(\mathbf{S})$, $v, w \in \mathbb{R}_{2k}[\mathbf{y}]$.

 $f(\mathbf{x}) = (x_1, x_2)$: projection on \mathbb{R}^2 of the semialgebraic set

$$\mathbf{S} := \{ \mathbf{x} \in \mathbb{R}^3 : ||\mathbf{x}||_2^2 \leqslant 1, 1/4 - (x_1 + 1/2)^2 - x_2^2 \geqslant 0, \\ 1/9 - (x_1 - 1/2)^4 - x_2^4 \geqslant 0 \}$$



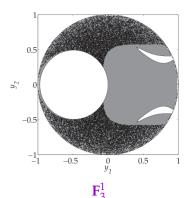


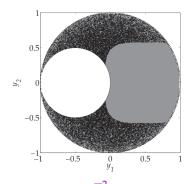
 \mathbf{F}_2^1

 \mathbf{F}_2^2

 $f(\mathbf{x}) = (x_1, x_2)$: projection on \mathbb{R}^2 of the semialgebraic set

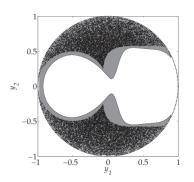
$$\mathbf{S} := \{ \mathbf{x} \in \mathbb{R}^3 : ||\mathbf{x}||_2^2 \leqslant 1, 1/4 - (x_1 + 1/2)^2 - x_2^2 \geqslant 0, \\ 1/9 - (x_1 - 1/2)^4 - x_2^4 \geqslant 0 \}$$



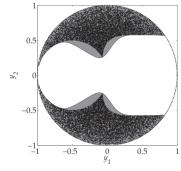


 $f(\mathbf{x}) = (x_1, x_2)$: projection on \mathbb{R}^2 of the semialgebraic set

$$\mathbf{S} := \{ \mathbf{x} \in \mathbb{R}^3 : ||\mathbf{x}||_2^2 \le 1, 1/4 - (x_1 + 1/2)^2 - x_2^2 \ge 0, \\ 1/9 - (x_1 - 1/2)^4 - x_2^4 \ge 0 \}$$



 \mathbf{F}_{4}^{1}

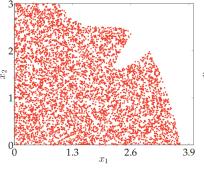


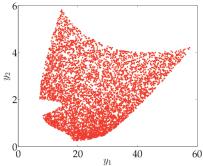
Bicriteria Optimization Problems

$$\begin{split} g_1 &:= -(x_1-2)^3/2 - x_2 + 2.5 \ , \\ g_2 &:= -x_1 - x_2 + 8(-x_1 + x_2 + 0.65)^2 + 3.85 \ , \\ \mathbf{S} &:= \left\{ \mathbf{x} \in \mathbb{R}^2 : g_1(\mathbf{x}) \geqslant 0, g_2(\mathbf{x}) \geqslant 0 \right\} \ . \end{split}$$

$$f_1 := (x_1 + x_2 - 7.5)^2 / 4 + (-x_1 + x_2 + 3)^2 ,$$

$$f_2 := (x_1 - 1)^2 / 4 + (x_2 - 4)^2 / 4 .$$

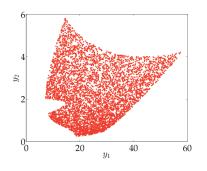


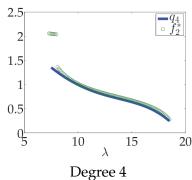


Previous Contributions

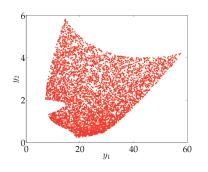
- Numerical schemes that avoid computing finitely many points.
- Pareto curve approximation with polynomials, **convergence guarantees** in L_1 -norm
- V. Magron, D. Henrion, J.B. Lasserre. Approximating Pareto Curves using Semidefinite Relaxations. *Operations Research Letters*. arxiv:1404.4772, April 2014.

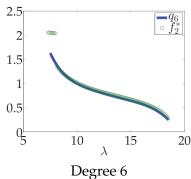
Previous Contributions



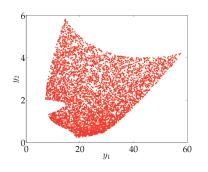


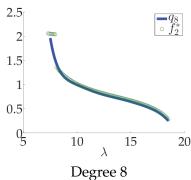
Previous Contributions



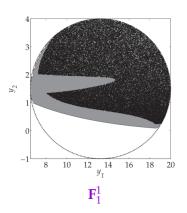


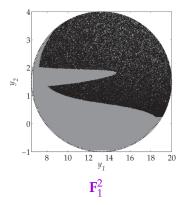
Previous Contributions



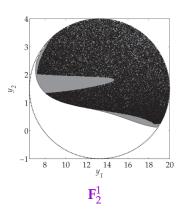


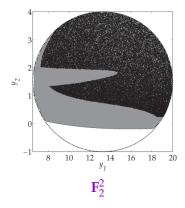
Back on our previous nonconvex example:



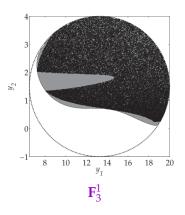


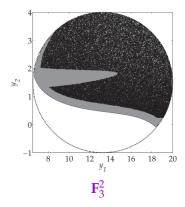
Back on our previous nonconvex example:



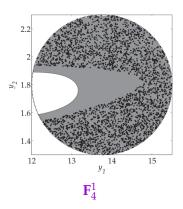


Back on our previous nonconvex example:

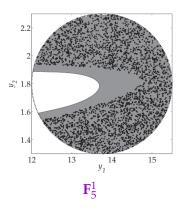




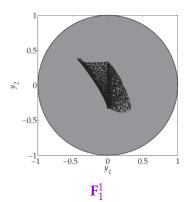
"Zoom" on the region which is hard to approximate:

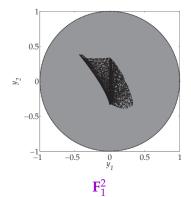


"Zoom" on the region which is hard to approximate:

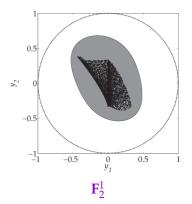


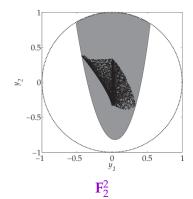
$$f(\mathbf{x}) := (\min(x_1 + x_1x_2, x_1^2), x_2 - x_1^3)/3$$



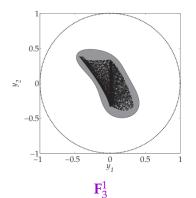


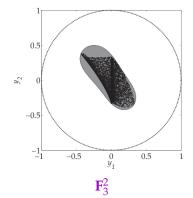
$$f(\mathbf{x}) := (\min(x_1 + x_1x_2, x_1^2), x_2 - x_1^3)/3$$



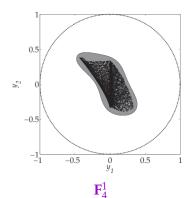


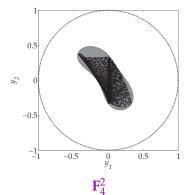
$$f(\mathbf{x}) := (\min(x_1 + x_1x_2, x_1^2), x_2 - x_1^3)/3$$





$$f(\mathbf{x}) := (\min(x_1 + x_1x_2, x_1^2), x_2 - x_1^3)/3$$





The Problem

m=1: Polynomial Optimization

Method 1: existential quantifier elimination

Method 2: support of image measures

Application examples

Conclusion

Conclusion

- Unifying framework:
 - Projections of semialgebraic sets
 - Approximation of Pareto curves
 - Structure sparsity can be exploited

Conclusion

Further research:

- Alternative positivity certificates LP/SDP
 - 1 Less computationally demanding than SDP
 - 2 More efficient than LP (as generic convergence cannot occur)

End

V. Magron, D. Henrion, J.B. Lasserre. Semidefinite approximations of projections and polynomial images of semialgebraic sets. oo:2014.10.4606, October 2014.

Thank you for your attention!

cas.ee.ic.ac.uk/people/vmagron