Computation of sparsest bases in a biological context

Alexandre Temperville, PhD student supervised by F.Lemaire and F.Boulier

Université Lille 1

JNCF 2014, Luminy

Laboratoire d'Informatique Fondamentale de Lille

Alex Temperville (Lille 1)

alexandre.temperville@lifl.fr

11/06/2014 1 / 23

イロト イポト イヨト イヨト

Table of Contents

2 CSB Algorithm

イロト イポト イヨト イヨト

Motivation

Context: modeling in biology

Use of symbolic technics for simplifying the study of biological models.

My work

What: Obtain "good" bases of conservation laws. Why:

- each conservation law discards an equation in ODE systems,
- to prove that some concentrations are bounded.

How: Linear algebra methods.

Publication

On Defining and Computing "Good" conservation laws, F.Lemaire and A.Temperville, CMSB 2014.

Alex Temperville (Lille 1)

alexandre.temperville@lifl.fr

11/06/2014 4 / 23

Conservation laws

We consider systems of chemical reactions between species.

Definition (linear conservation law)

A linear conservation law is a linear combination of concentrations of species which is constant over time.

Example of conservation laws

$$S: \begin{cases} (r_1): A & \to B \\ (r_2): C+D & \to \emptyset \end{cases}$$

- A(t) + B(t) = cst is a conservation law.
- 2 C(t) D(t) = cst is a conservation law.
- A(t) + B(t) + C(t) D(t) = cst is a conservation law.

・ロト ・ 同ト ・ ヨト ・ ヨ

Computing a basis of conservation laws

Stoichiometry matrix

We can associate to a system of chemical reactions a stoichiometry matrix, with rows corresponding to species and columns to reactions.

Example

From
$$S: \begin{cases} (r_1): A \to B\\ (r_2): C+D \to \emptyset \end{cases}$$
, stoichiometry matrix $M = \begin{array}{c} A\\ B\\ C\\ D \\ 0 & -1 \\ D \end{array} \begin{pmatrix} -1 & 0\\ 1 & 0\\ 0 & -1 \\ 0 & -1 \end{pmatrix}$.

Alex Temperville (Lille 1)

) () ()

ra

Computing a basis of conservation laws

Stoichiometry matrix

We can associate to a system of chemical reactions a stoichiometry matrix, with rows corresponding to species and columns to reactions.

Example

From
$$S: \begin{cases} (r_1): A \to B\\ (r_2): C+D \to \emptyset \end{cases}$$
, stoichiometry matrix $M = \begin{array}{c} A\\ B\\ C\\ D \end{array} \begin{pmatrix} -1 & 0\\ 1 & 0\\ 0 & -1\\ D \end{pmatrix}$.

Any basis of $Ker({}^{t}M)$ is a basis of conservation laws. We will store the conservation laws by rows in a matrix B.

Alex Temperville (Lille 1)

alexandre.temperville@lifl.fr

11/06/2014 6 / 23

・ 同 ト ・ ヨ ト ・ ヨ

"Good" basis of conservation laws - sparsity

Some conservation laws seem naturally better than others.

Idea

A "good" basis of conservation laws should:

- be as sparse as possible,
- **2** have **few negative coefficients**. (not in this talk)

Interest of sparsity

preserve sparsity: using a sparse conservation law in a system of ODEs (for reducing the number of species by 1) keeps the system **sparse**.

< □ > < □ > < □ > < □ > < □ > < □ >

"Good" basis of conservation laws - positiveness

Interest of positiveness

The concentrations of species are clearly bounded.

Example

 $A(t) + B(t) = cst \Rightarrow A(t), B(t) \in [0, cst].$

Alex Temperville (Lille 1)

・ 戸 ト ・ ヨ ト ・ ヨ ト

"Good" basis of conservation laws - positiveness

Interest of positiveness

The concentrations of species are clearly bounded.

Example

$$A(t) + B(t) = cst \Rightarrow A(t), B(t) \in [0, cst].$$

Laws with negative coefficients sometimes can't be excluded Some systems don't have laws with only positive coefficients.

Example

$$(r): \mathcal{C} + D o \emptyset$$
 has only one conservation law: $\mathcal{C}(t) - D(t) = cst.$

Alex Temperville (Lille 1)

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Numerical methods computing sparse matrices

- Coleman-Pothen methods
- QR decomposition

- SVD based method
- Turnback algorithm

Numerical methods computing sparse matrices				
• Coleman-Pothen methods • SVD based method				
• QR decomposition		Turnback algorithm		
Exact methods producing (usually) sparse matrices				
• RREF	• HNF	• LLL		

イロト イヨト イヨト イヨト

Numerical methods c	omputing sparse r	matrices		
• Coleman-Pothen methods • SVD based method				
 QR decomposition 		 Turnback algorithm 		
Exact methods producing (usually) sparse matrices				
RREF	• HNF	• LLL		

Methods computing positive conservation laws

Soliman developped a method computing P-invariants (conservation laws with non-negative coefficient with minimal support) but misses sometimes complete bases.

Alex Temperville (Lille 1)

Numerical methods computing sparse matrices				
Coleman-Pothen methods SVD based method				
 QR decomposition 	on (Turnback algorithm 		
Exact methods producing (usually) sparse matrices				
• RREF	• HNF	• LLL		

Methods computing positive conservation laws

Soliman developped a method computing P-invariants (conservation laws with non-negative coefficient with minimal support) but misses sometimes complete bases.

These methods can sometimes give a sparsest basis.

We present a guaranteed algorithm computing a sparsest basis (published in CMSB 2014).

Alex Temperville (Lille 1)

Table of Contents

Basis of conservation laws

2 CSB Algorithm

Alex Temperville (Lille 1)

alexandre.temperville@lifl.fr

11/06/2014 10 / 23

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

ComputeSparsestBasis algorithm

Definition

1

2

3

4

B' is a sparsest basis if it is a basis with the fewest number of nonzeros.

ComputeSparsestBasis algorithm (CSB)

```
Algorithm 1: ComputeSparsestBasis(B)
```

 $\begin{array}{c|c} \textbf{Input: a basis B (stored row-wise)} \\ \textbf{Output: a sparsest basis B' \\ \textbf{begin} \\ & B' \leftarrow B ; \\ & \textbf{while it is possible do} \\ & & & & \\ & & & & \\ & & & \\ & & & &$

Alex Temperville (Lille 1)

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem for greedy approach

The following theorem justifies the greedy approach of our algorithm.

Theorem

The basis B is not sparsest \iff a row B_j can be replaced by a sparser one.

Alex Temperville (Lille 1)

A (10) > A (10) > A

On an example

Example

Question: $B = \begin{pmatrix} 1 & 1 & 2 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \end{pmatrix}$ is sparsest or not ? If not, how to reduce it ?

Alex Temperville (Lille 1)

3

イロト 不得下 イヨト イヨト

On an example

Example

Question:
$$B = \begin{pmatrix} 1 & 1 & 2 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \end{pmatrix}$$
 is sparsest or not ? If not, how to reduce it ?

Principle of the method

Denote $\mathcal{N}(v)$ the total number of nonzero coefficients of v. Look for a linear combination $w = \sum_{i=1}^{3} \alpha_i B_i$ and an index j s.t.: a $\alpha_j \neq 0$, a $\mathcal{N}(w) < \mathcal{N}(B_j)$.

イロト 不得下 イヨト イヨト ニヨー

On an example

Example

Question:
$$B = \begin{pmatrix} 1 & 1 & 2 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \end{pmatrix}$$
 is sparsest or not ? If not, how to reduce it ?

Principle of the method

Denote $\mathcal{N}(v)$ the total number of nonzero coefficients of v. Look for a linear combination $w = \sum_{i=1}^{3} \alpha_i B_i$ and an index j s.t.: $\alpha_i \neq 0$.

In theory, we can do an exhaustive search

• Consider $w = \sum_{i=1}^{3} \alpha_i B_i = (\alpha_1, \alpha_1 + \alpha_3, 2\alpha_1 + \alpha_2 + \alpha_3, \alpha_1, \alpha_1 + \alpha_2),$

2 Compute 2⁵ possible patterns with $w_i = 0$ or $w_i \neq 0$.

Alex Temperville (Lille 1)

alexandre.temperville@lifl.fr

11/06/2014 13 / 23

Binary tree

Example

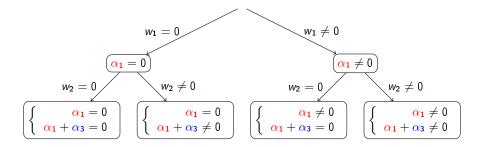
$$w = \sum_{i=1}^{3} \alpha_i B_i = (\alpha_1, \alpha_1 + \alpha_3, 2\alpha_1 + \alpha_2 + \alpha_3, \alpha_1, \alpha_1 + \alpha_2)$$

イロン 不聞と 不同と 不同と

Binary tree

Example

$$w = \sum_{i=1}^{3} \alpha_i B_i = (\alpha_1, \alpha_1 + \alpha_3, 2\alpha_1 + \alpha_2 + \alpha_3, \alpha_1, \alpha_1 + \alpha_2)$$



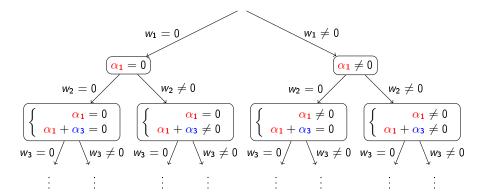
3

イロト イヨト イヨト イヨト

Binary tree

Example

$$w = \sum_{i=1}^{3} \alpha_i B_i = (\alpha_1, \alpha_1 + \alpha_3, 2\alpha_1 + \alpha_2 + \alpha_3, \alpha_1, \alpha_1 + \alpha_2)$$



Alex Temperville (Lille 1)

■ト・モトト ヨークへで 11/06/2014 14 / 23

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

In practise, branches are cut

Example

$$w = \sum_{i=1}^{3} \alpha_i B_i = (\alpha_1, \alpha_1 + \alpha_3, 2\alpha_1 + \alpha_2 + \alpha_3, \alpha_1, \alpha_1 + \alpha_2)$$

Branches and solutions

- Some branches can be cut : if $w_1 = w_2 = 0$ then $\alpha_1 = \alpha_1 + \alpha_3 = 0$ so $\alpha_1 = \alpha_3 = 0$ and α_2 free. No linear combination possible.
- Some leaves do not give a solution

Some leaves are solutions

Alex Temperville (Lille 1)

alexandre.temperville@lifl.fr

E▶ ◀ Ē▶ Ē ∽へ⊂ 11/06/2014 15 / 23

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

In practise, branches are cut

Example

$$w = \sum_{i=1}^{3} \alpha_i B_i = (\alpha_1, \alpha_1 + \alpha_3, 2\alpha_1 + \alpha_2 + \alpha_3, \alpha_1, \alpha_1 + \alpha_2)$$

Branches and solutions

- Some branches can be cut
- Some leaves do not give a solution : if $w_1 = w_3 = w_4 = 0$ and $w_2, w_5 \neq 0$, then $\alpha_1 = 0$ and $\alpha_2 = -\alpha_3 \neq 0$. w is not sparser than B_2 nor B_3 : $2 = \mathcal{N}(w) = \mathcal{N}(B_2) = \mathcal{N}(B_3)$.
- Some leaves are solutions

Alex Temperville (Lille 1)

In practise, branches are cut

Example

$$w = \sum_{i=1}^{3} \alpha_i B_i = (\alpha_1, \alpha_1 + \alpha_3, 2\alpha_1 + \alpha_2 + \alpha_3, \alpha_1, \alpha_1 + \alpha_2)$$

Branches and solutions

- Some branches can be cut
- Some leaves do not give a solution

• Some leaves are solutions : if $w_2 = w_3 = w_5 = 0$ and $w_1, w_4 \neq 0$, then $\alpha_3 = \alpha_2 = -\alpha_1 \neq 0$. Linear combination possible on row 1 as $\alpha_1 \neq 0$ and $2 = \mathcal{N}(w) < \mathcal{N}(B_1) = 5$.

Alex Temperville (Lille 1)

End of example

Solution found

We have found a solution with j = 1 and $(\alpha_1, \alpha_2, \alpha_3) = (1, -1, -1)$, this corresponds to: $B_1 \leftarrow B_1 - B_2 - B_3$.

Alex Temperville (Lille 1)

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

End of example

Solution found

We have found a solution with j = 1 and $(\alpha_1, \alpha_2, \alpha_3) = (1, -1, -1)$, this corresponds to: $B_1 \leftarrow B_1 - B_2 - B_3$.

Example

After this linear combination: $B = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \end{pmatrix}$.

Alex Temperville (Lille 1)

イロト 不得下 イヨト イヨト

End of example

Solution found

We have found a solution with j = 1 and $(\alpha_1, \alpha_2, \alpha_3) = (1, -1, -1)$, this corresponds to: $B_1 \leftarrow B_1 - B_2 - B_3$.

Example

After this linear combination: $B = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \end{pmatrix}$.

Second step: trying to find another linear combination

On the new matrix B, no row can be made sparser. Then, B is a sparsest basis.

Alex Temperville (Lille 1)

alexandre.temperville@lifl.fr

◆□ ト < 部 ト < 注 ト 注 の Q C 11/06/2014 16 / 23

Complexity for one row improvement

Notation

Consider a basis *B* of dimensions $m \times n$. Denote $d = \max{\mathcal{N}(B_i), i \in [\![1, m]\!]}$.

Alex Temperville (Lille 1)

3

イロト 不得下 イヨト イヨト

Complexity for one row improvement

Notation

Consider a basis *B* of dimensions $m \times n$. Denote $d = \max{\mathcal{N}(B_i), i \in [\![1, m]\!]}.$

Number of processed nodes (for one row improvement)

At most $\sum_{i=0}^{d} \binom{k}{i}$ nodes at depth k are reached when going to the right at most d times. One shows that the total number of processed nodes in the tree is bounded by: $\sum_{i=0}^{d} \binom{n+1}{i+1} \leq 2(n+1)^{d+1}$.

・得下 ・ヨト ・ヨト ・ヨ

Complexity for one row improvement

Notation

Consider a basis *B* of dimensions $m \times n$. Denote $d = \max{\mathcal{N}(B_i), i \in [\![1, m]\!]}.$

Number of processed nodes (for one row improvement)

At most $\sum_{i=0}^{d} \binom{k}{i}$ nodes at depth k are reached when going to the right at most d times. One shows that the total number of processed nodes in the tree is bounded by: $\sum_{i=0}^{d} \binom{n+1}{i+1} \leq 2(n+1)^{d+1}$.

Remarks

We observed that models with small values of d were easily solved. The total number of row improvements is bounded by nd.

Alex Temperville (Lille 1)

alexandre.temperville@lifl.fr

11/06/2014 17 / 23

Table of Contents

Basis of conservation laws

2 CSB Algorithm

Alex Temperville (Lille 1)

3

イロト イヨト イヨト イヨト

Experiments on the 'BioModels' database

We study the curated models on the biomodels database: www.ebi.ac.uk/biomodels-main/.

bases of models with one compartment			
214			
already sparsest	can be improved	aborted after 2 days running	
141	71	2	

Most of systems of reactions have less than 50 conservation laws and less than 200 species.

Alex Temperville (Lille 1)

11/06/2014 19 / 23

Maple times on CSB algorithm

Model	Size of B	d	Time	Model	Size of B	d	Time
068	3×8	4	0.06s	014	8 imes 86	45	235.9s
064	4 imes 21	18	1.99s	478	11 imes 33	11	1.85s
183	4 imes 67	61	36.50s	153	11 imes75	38	964.6s
086	5 imes 17	12	3.12s	152	11 imes 64	32	97.46s
336	5 imes18	7	0.30s	334	13 imes73	50	132.6s
237	6 imes 26	17	0.91s	019	15 imes 61	13	24.36s
431	6 imes 27	15	10.93s	332	25 imes166	49	pprox4000s
475	7 imes 23	14	10.59s	175	36 imes194	42	pprox1day

d: number of nonzeros in the row of *B* with the most of nonzeros $(d = \max{\mathcal{N}(B_i), i \in [[1, m]]})$

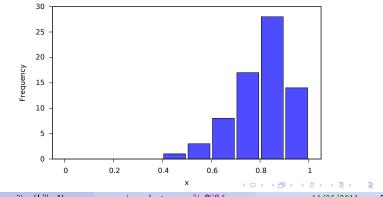
3

イロト イロト イヨト イヨト

Improvement ratio on the 71 non sparsest bases

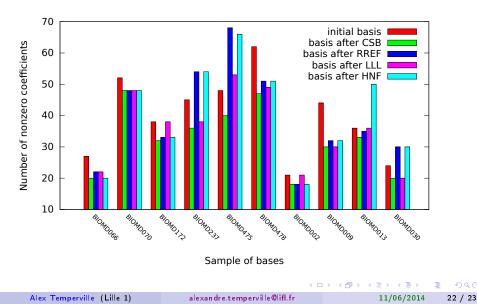
Improvement ratio

Consider an initial basis *B* and a sparsest basis *B'* computed by CSB for every model. We define the ratio $x = \frac{\mathcal{N}(B')}{\mathcal{N}(B)}$. For the 71 non sparsest bases, this ratio satisfies 0 < x < 1.



Alex Temperville (Lille 1)

Comparison of sparsity on exact algorithms



Benchmarks

Questions/Suggestions

Any questions or suggestions ?

Alex Temperville (Lille 1)

alexandre.temperville@lifl.fr

11/06/2014 23 / 23

▲ □ ► < □ ► </p>