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Motivation

Context: modeling in biology

Use of symbolic technics for simplifying the study of biological models.

My work

What: Obtain �good� bases of conservation laws.
Why:

each conservation law discards an equation in ODE systems,

to prove that some concentrations are bounded.

How: Linear algebra methods.

Publication

On De�ning and Computing �Good� conservation laws, F.Lemaire and
A.Temperville, CMSB 2014.
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Conservation laws

We consider systems of chemical reactions between species.

De�nition (linear conservation law)

A linear conservation law is a linear combination of concentrations of
species which is constant over time.

Example of conservation laws

S :

{
(r1) : A → B

(r2) : C + D → ∅
1 A(t) + B(t) = cst is a conservation law.

2 C (t)− D(t) = cst is a conservation law.

3 A(t) + B(t) + C (t)− D(t) = cst is a conservation law.
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Computing a basis of conservation laws

Stoichiometry matrix

We can associate to a system of chemical reactions a stoichiometry matrix,
with rows corresponding to species and columns to reactions.

Example

From S :

{
(r1) : A → B

(r2) : C + D → ∅
, stoichiometry matrix M =

r1 r2
A

B

C

D


−1 0
1 0
0 −1
0 −1

 .

Any basis of Ker(tM) is a basis of conservation laws.
We will store the conservation laws by rows in a matrix B .
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"Good" basis of conservation laws - sparsity

Some conservation laws seem naturally better than others.

Idea

A "good" basis of conservation laws should:

1 be as sparse as possible,

2 have few negative coe�cients. (not in this talk)

Interest of sparsity

preserve sparsity: using a sparse conservation law in a system of ODEs
(for reducing the number of species by 1) keeps the system sparse.
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"Good" basis of conservation laws - positiveness

Interest of positiveness

The concentrations of species are clearly bounded.

Example

A(t) + B(t) = cst ⇒ A(t),B(t) ∈ [0, cst].

Laws with negative coe�cients sometimes can't be excluded

Some systems don't have laws with only positive coe�cients.

Example

(r) : C + D → ∅ has only one conservation law: C (t)− D(t) = cst.
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Computing sparse bases - state of art

Numerical methods computing sparse matrices

Coleman-Pothen methods

QR decomposition

SVD based method

Turnback algorithm

Exact methods producing (usually) sparse matrices

RREF HNF LLL

Methods computing positive conservation laws

Soliman developped a method computing P-invariants (conservation laws
with non-negative coe�cient with minimal support) but misses sometimes
complete bases.

These methods can sometimes give a sparsest basis.
We present a guaranteed algorithm computing a sparsest basis (published
in CMSB 2014).

Alex Temperville (Lille 1) alexandre.temperville@li�.fr 11/06/2014 9 / 23



Basis of conservation laws CSB Algorithm Benchmarks

Computing sparse bases - state of art

Numerical methods computing sparse matrices

Coleman-Pothen methods

QR decomposition

SVD based method

Turnback algorithm

Exact methods producing (usually) sparse matrices

RREF HNF LLL

Methods computing positive conservation laws

Soliman developped a method computing P-invariants (conservation laws
with non-negative coe�cient with minimal support) but misses sometimes
complete bases.

These methods can sometimes give a sparsest basis.
We present a guaranteed algorithm computing a sparsest basis (published
in CMSB 2014).

Alex Temperville (Lille 1) alexandre.temperville@li�.fr 11/06/2014 9 / 23



Basis of conservation laws CSB Algorithm Benchmarks

Computing sparse bases - state of art

Numerical methods computing sparse matrices

Coleman-Pothen methods

QR decomposition

SVD based method

Turnback algorithm

Exact methods producing (usually) sparse matrices

RREF HNF LLL

Methods computing positive conservation laws

Soliman developped a method computing P-invariants (conservation laws
with non-negative coe�cient with minimal support) but misses sometimes
complete bases.

These methods can sometimes give a sparsest basis.
We present a guaranteed algorithm computing a sparsest basis (published
in CMSB 2014).

Alex Temperville (Lille 1) alexandre.temperville@li�.fr 11/06/2014 9 / 23



Basis of conservation laws CSB Algorithm Benchmarks

Computing sparse bases - state of art

Numerical methods computing sparse matrices

Coleman-Pothen methods

QR decomposition

SVD based method

Turnback algorithm

Exact methods producing (usually) sparse matrices

RREF HNF LLL

Methods computing positive conservation laws

Soliman developped a method computing P-invariants (conservation laws
with non-negative coe�cient with minimal support) but misses sometimes
complete bases.

These methods can sometimes give a sparsest basis.
We present a guaranteed algorithm computing a sparsest basis (published
in CMSB 2014).

Alex Temperville (Lille 1) alexandre.temperville@li�.fr 11/06/2014 9 / 23



Basis of conservation laws CSB Algorithm Benchmarks

Table of Contents

1 Basis of conservation laws

2 CSB Algorithm

3 Benchmarks

Alex Temperville (Lille 1) alexandre.temperville@li�.fr 11/06/2014 10 / 23



Basis of conservation laws CSB Algorithm Benchmarks

ComputeSparsestBasis algorithm

De�nition

B ′ is a sparsest basis if it is a basis with the fewest number of nonzeros.

ComputeSparsestBasis algorithm (CSB)

Algorithm 1: ComputeSparsestBasis(B)
Input: a basis B (stored row-wise)
Output: a sparsest basis B′

1 begin
2 B′ ← B ;
3 while it is possible do
4 Replace a row of B′ by a sparser row (keeping B′ basis) ;
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Theorem for greedy approach

The following theorem justi�es the greedy approach of our algorithm.

Theorem

The basis B is not sparsest ⇐⇒ a row Bj can be replaced by a sparser
one.
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On an example

Example

Question: B =
(

1 1 2 1 1
0 0 1 0 1
0 1 1 0 0

)
is sparsest or not ? If not, how to reduce it ?

Principle of the method

Denote N (v) the total number of nonzero coe�cients of v .
Look for a linear combination w =

∑3
i=1 αiBi and an index j s.t.:

1 αj 6= 0,

2 N (w) < N (Bj).

In theory, we can do an exhaustive search

1 Consider w =
∑3

i=1 αiBi = (α1, α1 +α3, 2α1 +α2 +α3, α1, α1 +α2),

2 Compute 25 possible patterns with wi = 0 or wi 6= 0.
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Binary tree

Example

w =
∑3

i=1 αiBi = (α1, α1 + α3, 2α1 + α2 + α3, α1, α1 + α2)

α1 = 0 α1 6= 0

{
α1 = 0

α1 + α3 = 0

{
α1 = 0

α1 + α3 6= 0

{
α1 6= 0

α1 + α3 = 0

{
α1 6= 0

α1 + α3 6= 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

w3 = 0 w3 6= 0 w3 = 0 w3 6= 0 w3 = 0 w3 6= 0 w3 = 0 w3 6= 0

w1 = 0 w1 6= 0

w2 = 0 w2 6= 0 w2 = 0 w2 6= 0
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In practise, branches are cut

Example

w =
∑3

i=1 αiBi = (α1, α1 + α3, 2α1 + α2 + α3, α1, α1 + α2)

Branches and solutions

Some branches can be cut : if w1 = w2 = 0 then α1 = α1 +α3 = 0 so
α1 = α3 = 0 and α2 free. No linear combination possible.

Some leaves do not give a solution

: if w1 = w3 = w4 = 0 and
w2,w5 6= 0, then α1 = 0 and α2 = −α3 6= 0. w is not sparser than B2

nor B3: 2 = N (w) = N (B2) = N (B3).

Some leaves are solutions

: if w2 = w3 = w5 = 0 and w1,w4 6= 0, then
α3 = α2 = −α1 6= 0. Linear combination possible on row 1 as α1 6= 0
and 2 = N (w) < N (B1) = 5.
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End of example

Solution found

We have found a solution with j = 1 and (α1, α2, α3) = (1,−1,−1), this
corresponds to: B1 ← B1 − B2 − B3.

Example

After this linear combination: B =
(

1 0 0 1 0
0 0 1 0 1
0 1 1 0 0

)
.

Second step: trying to �nd another linear combination

On the new matrix B , no row can be made sparser. Then, B is a sparsest
basis.
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Complexity for one row improvement

Notation

Consider a basis B of dimensions m × n. Denote
d = max{N (Bi ), i ∈ J1,mK}.

Number of processed nodes (for one row improvement)

At most
∑d

i=0

(
k
i

)
nodes at depth k are reached when going to the right at

most d times. One shows that the total number of processed nodes in the

tree is bounded by:
d∑

i=0

(
n + 1

i + 1

)
≤ 2(n + 1)d+1.

Remarks

We observed that models with small values of d were easily solved. The
total number of row improvements is bounded by nd .
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Experiments on the 'BioModels' database

We study the curated models on the biomodels database:
www.ebi.ac.uk/biomodels-main/.

bases of models with one compartment
214

already sparsest can be improved aborted after 2 days running
141 71 2

Most of systems of reactions have less than 50 conservation laws and less
than 200 species.
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Maple times on CSB algorithm

Model Size of B d Time

068 3× 8 4 0.06s
064 4× 21 18 1.99s
183 4× 67 61 36.50s
086 5× 17 12 3.12s
336 5× 18 7 0.30s
237 6× 26 17 0.91s
431 6× 27 15 10.93s
475 7× 23 14 10.59s

Model Size of B d Time

014 8× 86 45 235.9s
478 11× 33 11 1.85s
153 11× 75 38 964.6s
152 11× 64 32 97.46s
334 13× 73 50 132.6s
019 15× 61 13 24.36s
332 25× 166 49 ≈4000s
175 36× 194 42 ≈1day

d : number of nonzeros in the row of B with the most of nonzeros
(d = max{N (Bi ), i ∈ J1,mK})
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Improvement ratio on the 71 non sparsest bases

Improvement ratio

Consider an initial basis B and a sparsest basis B ′ computed by CSB for

every model. We de�ne the ratio x = N (B′)
N (B) . For the 71 non sparsest

bases, this ratio satis�es 0 < x < 1.
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Comparison of sparsity on exact algorithms
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Questions/Suggestions

Any questions or suggestions ?
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