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Context

Polynomial System Solving

» Input: polynomial system
fi,....fm € K[Xi,..., Xn]

» Output: exact solution

Important and difficult

» Many applications
» Cryptography, mechanics...
» Difficult problem
» Decision problem is NP-hard
» Many tools
» Triangular sets [Aubry,
Lazard and Moreno Maza
1999]
» Resultants [Cattani and
Dickenstein 2005]
» Geometric resolution [Giusti,
Lecerf and Salvy 2001]
» Grobner bases [Buchberger
1965]
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Polynomial System Solving

» Input: polynomial system
fi,....fm € K[Xi,..., Xn]

» Output: exact solution

Computing Grébner bases

(Buchberger, F4, Fs...)
1. Select a set of pairs of
polynomials from a queue
2. Reduce these polynomials
3. Add the new polynomials to

the basis, add new pairs to
the queue

4. Repeat 1-3 until the queue is

empty



Context
Polynomial System Solving
» Input: polynomial system

fi,....fm € K[X1,...,Xn]
» Output: exact solution

Computing Groébner bases

(Buchberger, F4, Fs...)

1. Select a set of pairs of
polynomials from a queue

2. Reduce these polynomials

3. Add the new polynomials to
the basis, add new pairs to

the queue

4. Repeat 1-3 until the queue is

empty

Importance of structure

» Systems from applications are not generic!

>

>

Design dedicated strategies
Complexity studies with generic properties

Examples of structures

>

>

Homogeneous systems
Multi-homogeneous systems (Dickenstein,
Emiris, Faugére/Safey/Spaenlehauer...)
Systems with group symmetries (Colin,
Gattermann, Faugére/Rahmany,
Faugére/Svartz...)

Weighted homogeneous systems

Sparse systems (Sturmfels,
Faugere/Spaenlehauer/Svartz...)



Problem statement: an example (1)
Discrete Logarithm Problem on Edwards elliptic curves (Faugére, Gaudry, Huot, Renault 2013)

7871 53362 26257 25203 19817 9843 11204
18574 50900 128 23117 29737 3752 25459
0= [14204| 16 + 36407 | &8 + | 3037 | &7 6, + |28918| &842 + |52187| &963 + |27006| 6faf + |58263| &363
32775 58813 38424 29298 36574 64195 17964
20289 20802 41456 56353 46683 63059 57146
46217 63811 40524 4522 27518
5478 50777 6881 1728 32176 .
+ |45631| 265 + |48809| 6165 + | 1238 | &8 + |18652| &745 + [31159| 86,85 + 2067 Smaller monomials
13171 1858 8056 54885 28424
42548 55751 54831 8241 5276
Description of the system Goal: compute a Grébner basis

> Ideal invariant under the group
(Z/2Z)"" x Gp,
rewritten with the invariants:
g =e(x%,...,x2) (1<i<n-1)
en(Xy,...,Xn)
» n equations of degree 2"
in Fq[é1 sy é,—,_1 s en]
» 1 DLP = thousands of such systems



Problem statement: an example (1)
Discrete Logarithm Problem on Edwards elliptic curves (Faugére, Gaudry, Huot, Renault 2013)

7871 53362 26257 25203 19817 9843 11204
18574 50900 128 23117 29737 3752 25459
0= [14204| 16 + 36407 | &8 + | 3037 | &7 6, + |28918| &842 + |52187| &563 + |27006| 6faf + |58263| &363
32775 58813 38424 29298 36574 64195 17964
20289 20802 41456 56353 46683 63059 57146
46217 63811 40524 4522 27518
5478 50777 6881 1728 32176 .
+ |45631| 265 + |48809| 6165 + | 1238 | &8 + |18652| &745 + [31159| 86,85 + 2067 Smaller monomials
13171 1858 8056 54885 28424
42548 55751 54831 8241 5276
Description of the system Goal: compute a Grébner basis
» Ideal invariant under the group > Normal strategy (total degree)

— difficult

n—1
(z/22)"" x &y, — non regular

rewritten with the invariants:
{é, = e(x2,...,x8) (1<i<n—1)
en(Xy,...,Xn)
» n equations of degree 2"
in Fq[é4,...,6n_1,€nl
» 1 DLP = thousands of such systems



Problem statement: an example (2)
Discrete Logarithm Problem on Edwards elliptic curves (Faugére, Gaudry, Huot, Renault 2013)

’Algorithm Fs, step by step

Degree
T T T T T
20 N
10 | N
| | | | | | |

1 5 10 15 20 25 30 35 Step

» 5 equations of degree (16, ...,16) in 5 variables with W = (2,...,2,1)
» 65536 solutions
» Without weights: 2 h (37 steps)



Problem statement: an example (3)
Discrete Logarithm Problem on Edwards elliptic curves (Faugére, Gaudry, Huot, Renault 2013)

7871 53362 26257 25203 19817 9843 11204
18574 50900 128 23117 29737 3752 25459
0= |14294| l6 + |36407| &8 + | 3037 | 6], + [28918| 862 + |52187 | &963 + |27006| &fe) + |58263| 6363
32775 58813 38424 29298 36574 64195 17964
20289 20802 41456 56353 46683 63059 57146
46217 63811 40524 4522 27518
5478 50777 6881 1728 32176 .
+ [45631| 265 + |48809| &6 + | 1238 | &8 + |18652| &7y + [31159| 6,8, + 2067 Smaller monomials
13171 1858 8056 54885 28424
42548 55751 54831 8241 5276
Description of the system Goal: compute a Grébner basis
» Ideal invariant under the group > NOfdfT;?' sltrategy (total degree)
— difficult
7,/27)"1 x
@/ i ) ] Sn, o — non regular
rewritten with the invariants: .
. ) ) ] » Weighted degree strategy
6 :=e(x5,...,xp) (1<i<n-1) Weight(&;) = 2 - Weight(e;)
en(Xy,...,Xn) — easier
— regular

» n equations of degree 2"
in Fq[é1 Sy é,—,_1 s en]
» 1 DLP = thousands of such systems



Problem statement: an example (4)
Discrete Logarithm Problem on Edwards elliptic curves (Faugére, Gaudry, Huot, Renault 2013)

’Algorithm Fs, step by step

Degree

W-degree/2 ‘ ‘ ‘ ‘ ‘

30 || —— Normal
—— Weighted

20

\ | | | | | |
1 5 10 15 20 25 30 35 Step

» 5 equations of degree (16, ...,16) in 5 variables with W = (2,...,2,1)
65 536 solutions

Without weights: 2h (37 steps)

With weights: 15 min (29 steps)

v

v

v



Problem statement: another example
Ideal of relations between 50 monomials of degree 2 in 25 variables

Degree

20 [

v

v

v

v

Algorithm F4, step by step

—— Normal
—+— Weighted

15

50 equations of degree 2 in 75 variables

GREVLEX ordering (e.g. for a 2-step strategy)
Without weights: 3.9 h (34 steps reaching degree 22)
With weights: 0.1 s (5 steps reaching degree 6)

25

35

Step



Problem statement: another example
Ideal of relations between 50 monomials of degree 2 in 25 variables

Degree

20 [

Problem

Algorithm F4, step by step

—»— Normal

—— Weighted

» Strategy for this structure?

» Complexity bounds? Relevant generic properties?

15

25

35

Step



Weighted homogeneous systems

Definition (e.g. [Robbiano 1986], [Becker and Weispfenning 1993])

System of weights: W = (w4, ..., w,) € N”
Weighted degree (or W-degree): deg,, (X;" ... X5") = > 1, Wicii
Weighted homogeneous polynomial: poly. with monomials of same W-degree

Given a general (not weighted homogeneous) system and a system of weights
Computational strategy: weighted-homogenize it as in the homogeneous case

Complexity estimates: consider the highest W-degree components of the system

» Enough to study weighted homogeneous systems
» Notations: (fi, ..., fn), W-homo. with W-degree (d, ..., dn)



Strategy in the homogeneous case

(Homogeneous)
| F | Reduces matrices
of monomials
Fo)<------- degree by degree
— Size of the matrices
GREVLEX — Max degree dmax
basis of F

0 (dmax <”+ Z”‘a* - 1) >
degx2 max




Strategy in the W-homogeneous case

(W-homogeneous) (Homogeneous)

| FOX™, - X5") | Reduces matrices

of monomials

1
E Fo)<------- degree by degree
: — Size of the matrices
Y
W-GREVLEX GREVLEX basis of — Max W-degree Ohax
basis of F F(X{ ..., X0

X x2 989




Strategy in the W-homogeneous case

(W-homogeneous) (Homogeneous)

| FX™, .. X | Reduces matrices

of monomials

degree by degree

: Fo)<=------ — Size of the matrices
v ~ divided by []w
W-GREVLEX GREVWLEX basis of — Max W-degree dhax ?
basis of F F(X ., X5

N+ Omax — 1 :
dmaX

XQ%XS




Strategy in the W-homogeneous case

(W-homogeneous) (Homogeneous)

| FOXM .. X | Reduces matrices

of monomials

degree by degree

: Fo)<=------ — Size of the matrices
v ~ divided by []w
W-GREVLEX GREVLEX basis of — Max W-degree dhax ?
basis of F FOX o X0

Ohax [N+ Cnax — 1
["((va/)“( e ))]

Results from the homogeneous case (m < n) [Faugére, Safey, V. 2013]

» Generic properties: regular sequences (m = n), Noether position (m < n)

m m
» Weighted Macaulay’s bound: @mnax < Z di— Z w; + 1@/@;{w,~}
i=1 i=1 -



Main results

m m
> The previous bound: Ghax < > di— > wi+ max {w}
s/jsm

i=1 i=1
The order of the variables matters: simultaneous Noether position (m < n)

m m
» Better bound on dmax: Gmax < Z di— Z Wi + Wn
i=1 i=1
» Algorithmic improvement: order the variables so that wm < w; Vj

The overdetermined case: semi-regular sequences

» Tricky definition in the weighted case
» With hypotheses, same characterization as in the homogeneous case
» Practical and theoretical gains



Regular sequences (m < n)

Definition Y
F=(f,...,fn) W-homo. € K[X] is regular iff m/
(F) # K[X] X

{Vi, fi is no zero-divisor in K[X]//i_1

X2+ Y?
(h = (h,.... ) X-2Yy

Properties

» Generic if not empty (for large classes of W-degrees and weights)
» Algorithmic benefit: Fs criterion
» Hilbert Series:
HS = generating series of the rank defects of the Fs matrices per W-deg

_OE,a =19
B [T (1 — ™)

n n
» Macaulay bound (if m = n): dmax < E a — E wi + 1rga<x{wj}
<j<n

i=1 i=1



Noether position (m < n)

Definition y @ y
F:(f1,...,fm)EK[X1,...,X,1] | N
is in Noether position iff
(F, Xm+1, ..., Xn) is regular ‘ X M
“Regularity + selected variables”

Properties

» Generic if not empty
» True up to a generic change of coordinates if non-trivial changes exist
(Ex:if 1 =wn | Wot | ... | w1)

m m
» Macaulay bound on Ghax: Gmax < 21: d — 21: Wi+ max {w}
i= i=
(only the first m weights matter)



Simultaneous Noether position (m < n)

Noether position = information on what variables are important
= Good property for W-homogeneous systems in general

Definition Properties

FZ(f1,‘..,fm) EK[X“‘..,Xn]

is in simultaneous Noether position iff > Omax < Z ) + W
(fi,...,f)is in Noether pos. for all j’'s

» Better to have Wn < W (J #

m)



Simultaneous Noether position (m < n)

Noether position = information on what variables are important
= Good property for W-homogeneous systems in general

Definition Properties

FZ(f1,,..,fm) EK[X1,.,.,Xn]

is in simultaneous Noether position iff > Omax < Z ) + W
(fi,...,f)is in Noether pos. for all j’'s

» Better to have Wm < W (j # m)

Order of the variables wp,  dnax HEEELIEYS New bound Fs time (s)
bound
Xi>Xo> X5 > Xy 1 210 229 210 101.9
Xe>Xs>Xo> X 20 220 229 229 2555

Generic W-homo. system, W-degree (60, 60, 60, 60) w.r.t W = (20,5,5,1)



Overdetermined case (m > n)

Equivalent definitions in the homogeneous case
F=(f,...,fn) € K[Xi,..., Xs] homogeneous is semi-regular
< Vke{l,....mhVd eN,(-f): (A/lk-1)g = (A/lk=1)g4,q, is full-rank

s vke (. myHsay = [T =TD 1 cated at the first coef, < 0
sor,m},HSa = -7y (truncated at the first coef. < 0)
+

But in the weighted case...
Ex:n=3,W=(3,2,1),m=8,D=(6,...,6):
m _ T4
71_[;:‘(1 T_) =14+ T+2T24+37°+4T*+5T°
[T —=T") |,
HSa/ =14+ T +2T2 +3T° 4 4T* +5T° e 7



Overdetermined case (m > n)

Equivalent definitions in the weighted homogeneous case
Assume that 1 = wy | Wp—1 | ... | w4.
F=(f,...,fmn) € K[Xi,...,Xs] W-homogeneous is semi-regular
< Vke{l,...mVd eN,(-f): (A lk-1)g = (A/lk=1)g4,q, is full-rank
[T (1 - T%) :
<~ Vke{l,...,m} HSy = L_L,,:“_TWI) . (truncated at the first coef. < 0)
Properties

» Conjectured to be generic » Practical and theoretical gains
» Proved in some cases (ex: m=n+ 1) > Asymptotic studies of dmax



Experimental data

F : affine system with a weighted homogeneous structure:
fi="" Ccama with deg,,(m.) < d;

Assumption: the highest W-degree components are generic

GREVLEX

Normal strate |—>
9y | F basis of F

Weighted normal |

| W-GREVLEX
strategy

basis of F

| F(X") GREVLEX

basis of F(X")

Onax [N+ Gnax — 1)
[0<(HW1)w< dmax ) )]




Experimental results

System Normal (s) Weighted (s) Speed-up
BEFLVE‘EE”? rc?r?jgr(:F?: FGb) 6461.2 935.4 6.9
GReVLE. ré’%é’r?Ffj Magma) 56 195.0 6044.0 9.3
g\ézaéi?[]é;eésraeoryflﬂf , ,;A:gi}m > 75000 392.7 > 191
LT.anféinof'Srd%ﬁ'%i ,nM:agSr:na) NA 382.5 NA
GREVLEX order (Fy. Magma) 146308 02 73153
Monomial rels., n = 26, m = 52, 175995 R oo

elimination order (F4, Magma)




Conclusion and perspectives

What has been done

» Theoretical results for W-homogeneous systems under generic properties
» Complexity bounds for Fs for a W-GREVLEX basis

» Size of the matrices divided by ([T w;)

» Bounds on the maximal degree reached by the F5 algorithm

» Bounds for 0-dim., positive-dim. and overdetermined systems

> Indication on the best order for the variables
» Consequences:

» Zero-dim: already successfully used on systems from the DLP

» Positive-dim: applicable to polynomial inversion problems
» Overdetermined: applicable to many problems (ex: cryptography)



Conclusion and perspectives

What has been done

» Theoretical results for W-homogeneous systems under generic properties
» Complexity bounds for Fs for a W-GREVLEX basis

» Size of the matrices divided by ([T w;)

» Bounds on the maximal degree reached by the F5 algorithm
» Bounds for 0-dim., positive-dim. and overdetermined systems
» Indication on the best order for the variables

» Consequences:

» Zero-dim: already successfully used on systems from the DLP
» Positive-dim: applicable to polynomial inversion problems
» Overdetermined: applicable to many problems (ex: cryptography)

Perspectives

» Some timings still not completely understood
» Affine systems: algorithm to find a good system of weights

» Additional structure: W-homo. for several systems of weights, weights < 0. ..



One last word

Thank you for your attention!



