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The first step in Guruswami and Sudan’s list decoding algorithm for Reed-Solomon
codes [8] amounts to bivariate interpolation with prescribed multiplicities and degree
constraints. Later, variants of this problem arose in Koetter and Vardy’s soft-decision
decoding algorithm [9] (where constraints on the points are weakened), in Guruswami and
Rudra’s list decoding algorithm for folded Reed-Solomon codes [7] (where more variables
are involved), and more recently in Devet, Goldberg, and Heninger’s work on Private
Information Retrieval [5].

In quest of fast algorithms, essentially two approaches have been proposed so far in
the literature: one [3] uses fast structured system solving [2] while the other one [4]
uses fast polynomial lattice reduction [6], which itself relies on fast order basis computa-
tions [11]. In this talk, we will first introduce the problem, give a quick overview of those
fast algorithms, and discuss possible improvements. Then, noting the analogy between
the quadratic iterative algorithms by Kötter [10] and by Beckermann and Labahn [1]
respectively for constrained multivariate interpolation and order basis computation, we
will present our recent work on a fast divide-and-conquer algorithm which gives a unified
solution to these two problems.
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