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Notation-Vocabulary

K = C(z), ′ = ∂ = d
dz .

System of first order linear differential equations:

[A] ∂X = A(z)X ,

where X = (x1, . . . , xn)T is column-vector of length n.

A(z) is an n × n matrix with entries in K = C(z).

The (finite) singularities of system [A] are the poles of the entries of A(z).

Scalar linear differential equation of order n: L(x(z)) = 0

L = ∂n + cn−1(z)∂n−1 + · · ·+ c0(z) ∈ K[∂]

The (finite) singularities of L are the poles of the ci ’s.

M. BARKATOU (Univ. Limoges/CNRS) Apparent Singularities of Linear ODEs 2 / 42



Apparent singularities

Singularities of solutions of L(x) = 0 (resp. [A]) are necessarily
singularities of the coefficients of L (resp. [A]), but the converse is not
always true.

Def. An apparent singularity of L (resp. [A]) is a singular point where
the general solution of L(x) = 0 (resp. [A]) is holomorphic.

Example 1. L(x) = dx
dz −

µ
z x = 0, µ ∈ C.

The general solution of L is

x(z) = czµ, c ∈ C.

When µ ∈ N, the general solution of L(x) = 0 is holomorphic at z = 0.

When µ ∈ N, the point z = 0 is an apparent singularity of L.
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Task:
To detect and remove the apparent singularities of a given operator L or
system [A].

• Removing apparent singularities of L ∈ C(z)[∂]:

→ to construct another operator L̃ ∈ C(z)[∂] such that:

(i) any solution of L(y) = 0 is a solution of L̃(y) = 0,
i.e. L̃ = R ◦ L for some R ∈ C(z)[∂]

(ii) and the singularities of L̃ are exactly the singularities of L that are not
apparent.

Such an operator L̃ is called a desingularization of L.

Example: L = ∂ − µ
z , µ ∈ N.

The operator L̃ = ∂µ+1 is a desingularization of L.
M. BARKATOU (Univ. Limoges/CNRS) Apparent Singularities of Linear ODEs 4 / 42



• Several algorithms have been developed for linear differential (and more
generally Ore) operators, e.g.

Abramov-Barkatou-van Hoeij’2006,

M. Jaroschek ’2013

Chen-Jaroschek-Kauers-Singer’2013, Chen-Kauers-Singer’2015

We developed, in [ABH 2006]∗ an algorithm that, given an operator L
of order n, produces a desingularization L̃ with minimal order
m ≥ n + 1.

This algorithm has been implemented in Maple.

I will refer to this algorithm as ABH method.

∗ S. Abramov, M. Barkatou and M. van Hoeij AAECC 2006
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Example 2:

Consider the second order operator

L := ∂2 − (z + 2)

z
∂ +

2
z
.

z = 0 is a singularity of L.

The general solution of L(y) = 0 is given by

c1e
z + c2

(
1 + z +

z2

2

)
c1, c2 ∈ C.

L has an apparent singularity at z = 0.

The desingularization computed by ABH method is of order 4

L̃ = ∂4 +
(
−1 +

z

4

)
∂3 +

(
−1
4
− 3 z

8

)
∂2 +

(
1
2

+
z

8

)
∂ − 1

4
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The apparent singularity of L at z = 0 can be removed by computing
a gauge equivalent first-order differential system with coefficient in
C(z) of size ord(L) = 2.
Consider the first-order differential system associated with L

[A]
d

dz
X = A(z)X , A(z) =

[
0 1
−2
z 1 + 2

z

]
.

Set

X = T (z) Y , where T (z) =

[
1 0
1 z2

]
.

The new variable Y satisfies the gauge equivalent first-order
differential system of the same dimension given by

[B]
d

dz
Y = B Y

where

B := T−1AT − T−1 d

dz
T =

[
1 z2

0 0

]
.
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General fact : Any system [A] with rational coefficients can be
reduced to a gauge equivalent system [B] with rational coefficients,
such that the finite singularities of [B] coincide with the non-apparent
singularities of [A].
We present an algorithm which for a system [A] constructs a
desingularization [B].

Outline:
1 Review of ABH method
2 New algorithm
3 Examples of comparison to ABH and existing methods for scalar

equations
4 Conclusion
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Desingularization of scalar equations
Review of ABH method
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Classification of Singularities

Let L ∈ C(z)[∂], ∂ = d
dz , be monic, have order n :

L = ∂n + cn−1(z)∂n−1 + · · ·+ c0(z).

Let S(L) be the set of finite singularities of L (poles of the ci ’s.)

z0 ∈ S(L) is a regular singularity if there exist n linearly independent
formal solutions at z = z0 of the form

yi = tλi
(
ϕi0(t) + ϕi1(t) log t + · · ·+ ϕisi (t)(log t)si−1)

where
t = z − z0, 1 ≤ si ≤ n, λi ∈ C, ϕij ∈ C[[t]].

The λi ’s called local exponents (at z = z0)

otherwise, z0 is called an irregular singular point.
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Characterization of Ordinary Points

A point z0 ∈ C is an ordinary point for L if z0 /∈ S(L).

Proposition1 The following statements are equivalent.
a) z0 is an ordinary point of L.

b) There exist a basis of solutions y1, . . . , yn of L, holomorphic at z = z0,
for which yi vanishes at z0 with order i − 1.

c) z0 is not an irregular singularity of L, the local exponents at z0 are
0, 1, . . . , n − 1, and the formal solutions of L at z0 are in C[[z − z0]].
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Characterization of apparent singularities

Any apparent singularity is a regular singularity with n distinct integer
exponents 0 ≤ λ1 < · · · < λn and λn ≥ n.

Proposition2 The following statements are equivalent.
a) z0 is either an ordinary point or an apparent singularity of L.

b) z0 is not an irregular singular point of L, the local exponents are
non-negative integers and the formal solutions at z0 do not involve
logarithms.

c) There exists a monic operator L̃ ∈ C(z)[∂] that has L as a right-hand
factor such that z0 is an ordinary point of L̃.
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Proof of Proposition 2:

• a) ⇒ b) is clear.

• c) ⇒ a) follows from Cauchy’s theorem.

• b) ⇒ c).

Let m(z0) be the highest local exponent at z0.

Let E (z0) ⊂ {0, 1, . . . ,m(z0)} be the set of exponents of L at z0.

Let L1 be an operator with the following as basis of solutions:

L((z − z0)i ), i ∈ {0, 1, . . . ,m(z0)} \ E (z0).

Then L̃ = L1L satisfies part b) of Proposition 1.
z0 is an ordinary point of L̃.
Note that L̃ has order m(z0) + 1.
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Theorem Every monic L ∈ C(z)[∂] has a desingularization L̃.

Proof:
Let A(L) := { finite apparent singularities of L}, and

m := max
z0∈A(L)

m(z0).

If a desingularization L̃ exists then the order of L̃ must be at least
m + 1.
Take z0 ∈ A(L) for which m(z0) = m. m is an exponent of L̃ at z0
(for L is a right-hand factor of L̃.),
but since z0 is a regular point of L̃ it follows that 0, 1, . . . ,m are
exponents of L̃ at z0 as well, so the order of L̃ must be at least m + 1.

We will now show that a desingularization L̃ of order m + 1 exists.
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How to construct a desingularization L̃ of order m + 1?

Construct y1, . . . , ym+1−n ∈ C[z ] such that for every z0 ∈ A(L) and
every i ∈ {0, 1, . . . ,m} \ E (z0) there is precisely one yj that vanishes
at z0 with order i .

Let L1 be the monic operator whose solutions are spanned by
L(y1), . . . , L(ym+1−n).

Then every z0 ∈ A(L) is an ordinary point of L1L.

However, L1L need not satisfy the definition of a desingularization
because we may have created new apparent singularities.
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An example

Let L be the monic operator with z cos(z) and z sin(z) as solutions:

L = ∂2 − 2
z
∂ + 1 +

2
z2

L has one apparent singularity at z = 0 with exponents 1 and 2.
To desingularize L we must add a solution with exponent 0.
Take y1 = z0 = 1 and compute L(y1). We find L(y1) = 1 + 2/z2.
Let L1 be the monic operator with 1 + 2/z2 as a basis of solutions :

L1 = ∂ +
4

z(z2 + 2)
.

Multiplying L on the left by L1 adds a solution (namely y1 = z0) to L
with the missing exponent 0.

L1L = ∂3 − 2
z∂2

z2 + 2
+

(
6 + z2) ∂
z2 + 2

Hence z = 0 is a regular point of L1L.
Unfortunately, L1 introduces new singularities, namely at z2 + 2 = 0.
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How to remedy this?
1 Let a ∈ C[z ] be the denominator of L1L so that aL1L ∈ C[z ][∂]

2 Let b ∈ C[z ] be the denominator of L so that bL ∈ C[z ][∂].

3 Let d = gcd(a, b). Compute u, v ∈ C[z ] such that ua + vb = d .

4 Now let L′ = uaL1L + v∂m+1−n.(bL)

5 L′ ∈ C[z ][∂] and its leading coefficient is d

6 The monic operator L̃ = 1
d L
′ is a desingularization of L.
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We will illustrate how to remedy this using the trick above:

L = ∂2 − 2
z
∂ + 1 +

2
z2

L1L = ∂3 − 2
z∂2

z2 + 2
+

(
6 + z2) ∂
z2 + 2

Here
a := z2 + 2, b := z2,

d := gcd(a, b) = 1, ua + vb = d , u =
1
2
, v = −1

2

Let L′ = uaL1L + v∂.(bL)

L̃ = L′ = ∂3 − z∂2 + 3∂ − z .
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Example

Consider

L = ∂2 +

(
3 z2 − 4

)
∂

z (z2 + 2)
− 2
−1 + 2 z2

z2 + 2

L has an apparent singularity at z = 0 with local exponents 0 and 3.

The desingularization computed by ABH method is of order 4

L̃ = ∂4 + 1/2
z
(
24 + 7 z2) ∂3

z2 + 2
+ 1/2

(
58 z2 + 88 + 27 z4) ∂2

(z2 + 2)2

−1/2
z
(
−4 z2 + 4 + 93 z4 + 28 z6) ∂

(z2 + 2)3 − 4
44 z2 + 16 + 42 z4 + 7 z6

(z2 + 2)3 .
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Removing apparent singularities of first-order
systems

A new algorithm

M. BARKATOU (Univ. Limoges/CNRS) Apparent Singularities of Linear ODEs 20 / 42



Classification of Singularities

Consider a System of first order linear differential equations:

[A] ∂X = A(z)X , A(z) ∈ Matn(C(z))

A pole z0 of A(z) is a regular singular point for [A] if there is a fund
soln matrix W of [A] has the form:

W (z) = Φ(z)(z − z0)Λ

where Φ(z) is holomorphic and Λ is a constant matrix.

Otherwise z0 is called an irregular singular point.

A system [A] has regular singularity at z0 iff it is gauge equivalent to a
system [B] with a simple pole at z0.
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Desingularization of a First Order System

Consider a system

[A]
d

dz
X = A(z)X .

Def. A system

[B]
d

dz
Y = B(z)Y

with B ∈ C(z)n×n is called a desingularization of [A] if:

(i) there exits a polynomial matrix T (z) with detT (z) 6≡ 0 such that
B = T [A] := T−1AT − T−1T ′ ,

(ii) The singularities of [B] are the singularities of [A] that are not
apparent.
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Existence of Desingularization

Prop.0 If z = z0 is a finite apparent singularity of [A] then there exists a
polynomial matrix T (z) with

detT (z) = c(z − z0)α, c ∈ C∗, α ∈ N

such that [B] := T [A] has no pole at z = z0.

Proof.
Every fund soln matrix Φ of [A] is holomorphic (in a neighborhood of
z0);
Since C[[z − z0]] is a PID, there exists unimodular matrices
P(z) ∈ GLn(C[z ]), and Q(z) ∈ GLn(C[[z − z0]]) such that

P(z)Φ(z)Q(z) = Diag((z − z0)α1 , . . . , (z − z0)αn)

where α1, . . . αn are nonnegative integers.
Take

T (z) = P−1(z) Diag((z − z0)α1 , . . . , (z − z0)αn)
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How to detect and remove an apparent singularity?

Prop.1: If z = z0 is a finite apparent singularity of [A] then one can
construct a polynomial matrix T (z) with detT (z) = c(z − z0)α, c ∈ C∗
and α ∈ N such that T [A] has at worst a simple pole at z = z0.

This follows from the fact that:
- if z0 is an apparent singularity then z0 is a regular singularity,
- and that a system with a regular singularity at z0 is equivalent to a
system with a simple pole at z0.

• The transformation T can be constructed using the rational Moser
algorithm (developed in Bar’1995).
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An example: Let A ∈ M4(Q(z))

A =


−1
z

−1+z17−8 z14+24 z11−32 z8+16 z5

z3(z3−2)2
0 1

z3(z3−2)2

0 0 1
z3(z3−2)2

0

1
(z3−2)3z4 0 4

z 0

0 − 2
z

1
z3(z3−2)2

2
z


Here the denominator of A is the polynomial z4(z3 − 2)3.

Take p = z3 − 2. The algorithm in [Bar’95] produces the following
transformation

T =


0

(
z3 − 2

)3 0 0

0 0 0 1

0 0 z3 − 2 0(
z3 − 2

)4 0 0 1
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and the equivalent matrix B = T [A]:

B = T [A] =



− 10 z3+4
z(z3−2)

0 0 0

1
z3(z3−2)

− 8 z3+2
z(z3−2)

0 z2

z3−2

0 1
z4(z3−2)

z3−8
z(z3−2)

0

0 0 1
z3(z3−2)

0


the denominator of the matrix B is z4(z3 − 2).
Hence the differential system [A] has regular singularities at the zeros
of z3 − 2.
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The same algorithm applied to B and the point z = 0 produces the
transformation

S =


0 0 0 −z5

0 z4 0 0

0 0 z2 0

1 0 0 1


and the equivalent matrix

C = S [B] =



0 0 1
z(z3−2)

15 z3−6
z(z3−2)

1
z2(z3−2)

− 12 z3−6
z(z3−2)

0 0

0 1
z2(z3−2)

− 4+z3

z(z3−2)
0

0 0 0 − 15 z3−6
z(z3−2)


Hence the point z = 0 is an irregular singular point of the original system
[A].
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Prop.2 Suppose that A(z) has simple pole at z = z0 and let

A(z) =
A0

(z − z0)
+
∑
k≥1

Ak(z − z0)k−1, Ak ∈ Cn×n.

If z0 is an apparent singularity then the eigenvalues of A0 are nonnegative
integers
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Prop.3: Suppose that z = z0 is a simple pole of A(z) and that its residue
matrix A0 has only nonnegative integer eigenvalues. Then one can
construct a polynomial matrix T (z) with

detT (z) = c(z − z0)α

for some c ∈ C∗ and α ∈ N such that

B := T [A] = B0(z − z0)−1 + · · ·

has at worst a simple pole at z = z0 with

B0 = mIn + N

where m ∈ N and N nilpotent.

Moreover z0 is an apparent singularity iff N = 0.

In this case the gauge transformation Y = (z − z0)mỸ leads to a
system for which z = z0 is an ordinary point.
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Main idea of the proof:
The eigenvalues of A0 of are nonnegative integers:

m1 > m2 > . . . > ms , mi −mi+1 = `i ∈ N∗, i = 1, . . . , s − 1.

By applying a constant gauge transformation we can assume that:

A0 =

(
A11

0 0

0 A22
0

)
,

where A11
0 is an ν1 by ν1 matrix having one single eigenvalue m1

A11
0 = m1Iν1 + N1

N1 being a nilpotent matrix.
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• Apply the gauge transformation U = diag((z − z0)Iν1 , In−ν1) yields the
new system:

Z ′ = (z − z0)−1Ã(z)Z , Ã(z) = (z − z0)U−1A(z)U − (z − z0)U−1U ′

with the leading matrix:

Ã(0) =
(
A0 + (z − z0)U−1A1U − (z − z0)U−1U ′

)
|z=z0

.

• Let A1 be partitioned as A0 :

A1 =

(
A11

1 A12
1

A21
1 A22

1

)
, A11

1 ∈ Cν1×ν1

Then

Ã(0) =

(
A11

0 − Iν1 A12
1

0 A22
0

)
.

Hence the eigenvalues of Ã(0) are: m1 − 1,m2, . . . ,ms , each with the
same initial multiplicity νi .
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• By repeating this process `1 times, the eigenvalues become:

m1 − `1 = m2,m2, . . . ,ms .

• Thus, after `1 + . . .+ `s−1 steps, the eigenvalues m1, . . . ,ms are reduced
to one single eigenvalue ms of multiplicity ν1 + . . .+ νs = n.

A0 = → → → = ms In + N

z0 is an apparent singularity iff N = 0.

In this case the gauge transformation Y = (z − z0)ms Ỹ leads to a
system for which z = z0 is an ordinary point.
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• The matrix T in Prop3 is obtained as a product of invertible constant
matrices or diagonal matrices of the form U = diag((z − z0)Iν , In−ν).

Hence T is a polynomial matrix with detT (z) = c(z − z0)α for some
c ∈ C and α ∈ N.

• Due to the form of its determinant, the gauge transformation T (z) in the
above proposition does not affect the other finite singularities of [A]. We
have:

Theorem One can construct a polynomial matrix T (z) which is invertible
in C(z) such that the finite poles of B := T [A] are exactly the real
singularities for [A].
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Algorithm

1 Let P(A) be the set of poles of A.
2 Compute a polynomial matrix T (z) such that

the zeros of detT (z) are in P(A)
T [A] has the same poles as A with minimal orders.

3 For each simple pole z0 compute A0,z0 the residue matrix of A(z) at
z = z0 and its eigenvalues.

4 Let App(A) denote the set of singularities z0 such that A0,z0 has only
nonnegative integer eigenvalues.

5 For each z0 ∈ App(A) compute a polynomial matrix Tz0(z) with
detTz0(z) = c(z − z0)α such that Tz0 [A] has at worst a simple pole
at z = z0 with residue matrix of the form Rz0 = mz0 In + Nz0 where
mz0 ∈ N and Nz0 nilpotent.

6 Keep in App(A) only the points z0 for which Nz0 = 0.
7 The scalar transformation T =

∏
z0∈App(A) (z − z0)mz0 In yields a

desingularization of the original system [A].
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Application to Desingularization of Scalar
Differential Equations
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Example 5

Let ∂ = d
dz and consider

L = ∂2 − (z2 − 3) (z2 − 2 z + 2)

(z − 1) (z2 − 3 z + 3) z
∂ +

(z − 2) (2 z2 − 3 z + 3)

(z − 1)(z2 − 3 z + 3)z
.

L has apparent singularities at z = 0 and the roots of z2− 3 z + 3 = 0.

A desingularization computed by the classical algorithm† is given by:

L̃Classical = (z − 1) (z4 − z3 + 3 z2 − 6 z + 6)∂4

− (z5 − 2 z4 + z3 − 12 z2 + 24 z − 24) ∂3

− (3 z3 + 9 z2) ∂2 + (6 z2 + 18 z) ∂ − (6 z + 18).

†Exm 1, Chen-Kauers-Singer’14
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A desingularization computed by the probabilistic method of CKS14‡

is given by:

L̃CKS = (z − 1) (z6 − 3 z5 + 3 z4 − z3 + 6) ∂4

− (2 z6 − 9 z5 + 15 z4 − 11 z3 + 3 z2 − 24) ∂3

− (z7 − 4 z6 + 6 z5 − 4 z4 + z3 + 6 z − 6) ∂

+ (2 z6 − 9 z5 + 15 z4 − 11 z3 + 3 z2 − 24).

The removal of one apparent singularity introduces new singularities.
The latter can then be removed by using a trick introduced in ABH
algorithm.

‡Exm 7(1), Chen-Kauers-Singer’14
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The desingularization computed by ABH method is:

L̃ABH = ∂4 +
(16 z4 − 55 z3 + 63 z2 − 42 z + 36)

9 (z − 1)
∂3

− (64 z5 − 316 z4 + 591 z3 − 468 z2 + 123 z + 42)

9 (z − 1)2 ∂2

− 96 z5 − 570 z4 + 1333 z3 − 1597 z2 + 993 z − 219
9 (z − 1)3

+
β

9 (z − 1)3 ∂,

where

β = (48 z6 − 197 z5 + 148 z4 + 488 z3 − 1162 z2 + 999 z − 288).
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The companion matrix of L is

A =

[
0 1

(z−2) (2 z2−3 z+3)
(z−1) (z2−3 z+3) z

(z2−3) (z2−2 z+2)
(z−1) (z2−3 z+3) z

]

Our new algorithm computes the following gauge transformation T

T =

[
1 0
1 (−z2 + 3 z − 3) z2

]
The matrix of the new equivalent system is

B = T−1(AT − T ′) =

[
1 −z2 (z2 − 3 z + 3)
0 2

1−z

]
It has z = 0 and roots of z2 − 3 z + 3 = 0 as ordinary points.
No new apparent singularities are introduced.
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Comments

The desingularization algorithms developed specifically for scalar
equations are based on computing a least common left multiple of the
operator in question and an appropriately chosen operator.

This outputs an equation whose solution space contains strictly the
solution space of the input equation.

The new algorithm is based on an adequate choice of a gauge
transformation.

The desingularized output system is always equivalent to the input
system and the dimension of the solution space is preserved.

The transformations and the equivalent systems computed by our
algorithm, have rational function coefficients.
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Summary

We gave a method for detecting and removing the apparent
singularities of linear differential systems via a rational algorithm, i.e.
an algorithm which avoids the computations with individual conjugate
singularities.
Our method can be used, in particular, for the desingularization of
differential operators in the scalar case.
Maple Package available for download at:

http : //www .unilim.fr/pages_perso/suzy .maddah/Research.html

More examples can be found there:
Desingularization at polynomial of degree 4: The Ising Model§ in
statistical physics.
Desingularization at polynomial of degree 37.

§Bostan-Boukraa-Hassani-van Hoeij-Maillard-Weil-Zenine
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Further investigations

The complexity study of the various algorithms existing for the scalar
case, as well as this new algorithm which can be applied to the
companion system, so that their efficiency can be compared (work in
progress).
Investigating the case of difference systems.
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