Algèbre linéaire pour le calcul de bases de Gröbner de suites multidimensionnelles récurrentes linéaires

PAR JÉRÉMY BERTHOMIEU abc , BRICE BOYER abc , JEAN-CHARLES FAUGÈRE cab

- a. Sorbonne Universités, UPMC Univ Paris 06, Équipe PolSys, LIP6, Paris
 b. CNRS, UMR 7606, LIP6, Paris
 - c. INRIA, Équipe PolSys, Centre Paris Rocquencourt, Paris

JNCF 2015 - Cluny - Jeudi 5 novembre 2015

Can we compress the following table:

$$\mathbf{u} = \begin{pmatrix} u_{0,0} & u_{0,1} & \cdots \\ u_{1,0} & u_{1,1} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix} = \begin{pmatrix} 1 & 2 & 4 & 8 & 16 & \cdots \\ 3 & -1 & 12 & -4 & 48 & \cdots \\ -3 & 8 & -12 & 32 & -48 & \cdots \\ 9 & -24 & 36 & -96 & 144 & \cdots \\ -32 & 48 & -128 & 192 & -512 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

Can we compress the following table:

$$\mathbf{u} = \begin{pmatrix} u_{0,0} & u_{0,1} & \cdots \\ u_{1,0} & u_{1,1} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix} = \begin{pmatrix} 1 & 2 & 4 & 8 & 16 & \cdots \\ 3 & -1 & 12 & -4 & 48 & \cdots \\ -3 & 8 & -12 & 32 & -48 & \cdots \\ 9 & -24 & 36 & -96 & 144 & \cdots \\ -32 & 48 & -128 & 192 & -512 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

Solution.

For all $(i, j) \in \mathbb{N}^2$, we have

$$\begin{cases} u_{i+2,j} = u_{i+1,j+1} - u_{i,j+1} \\ u_{i,j+2} = 4u_{i,j}. \end{cases}$$

Can we compress the following table:

$$\mathbf{u} = \begin{pmatrix} u_{0,0} & u_{0,1} & \cdots \\ u_{1,0} & u_{1,1} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix} = \begin{pmatrix} 1 & 2 & 4 & 8 & 16 & \cdots \\ 3 & -1 & 12 & -4 & 48 & \cdots \\ -3 & 8 & -12 & 32 & -48 & \cdots \\ 9 & -24 & 36 & -96 & 144 & \cdots \\ -32 & 48 & -128 & 192 & -512 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

Solution.

For all $(i, j) \in \mathbb{N}^2$, we have

$$\begin{cases} u_{i+2,j} = u_{i+1,j+1} - u_{i,j+1} \\ u_{i,j+2} = 4u_{i,j}. \end{cases}$$

Can we compress the following table:

$$\mathbf{u} = \begin{pmatrix} u_{0,0} & u_{0,1} & \cdots \\ u_{1,0} & u_{1,1} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix} = \begin{pmatrix} 1 & 2 & 4 & 8 & 16 & \cdots \\ 3 & -1 & 12 & -4 & 48 & \cdots \\ -3 & 8 & -12 & 32 & -48 & \cdots \\ 9 & -24 & 36 & -96 & 144 & \cdots \\ -32 & 48 & -128 & 192 & -512 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

Solution.

ightarrow Extension of Berlekamp - Massey problem [Berlekamp $1968, \, \mathrm{Massey} \, 1969]$ We can compress u with

$$\begin{cases} (u_{i,j})_{0 \le i, j \le 1} &= \begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix} \\ u_{i+2,j} &= u_{i+1,j+1} - u_{i,j+1} \\ u_{i,j+2} &= 4 u_{i,j}. \end{cases}$$

 \rightarrow Berlekamp – Massey – Sakata (BMS) algorithm computes these relations [Sakata 1988, 1990].

Definition.

Let $u = (u_i)_{i \in \mathbb{N}^n}$ be a n-dimensional sequence. Let $x = (x_1, ..., x_n)$, for any monomial $x^i = x_1^{i_1} \cdots x_n^{i_n}$, we define

$$[x^i] = [x^i]_u = u_i.$$

We extend this definition to polynomials by linearity.

Example.

For
$$u = (u_i)_{i \in \mathbb{N}^2}$$
 and $P = x_1 x_2 - x_2 - 1$,

$$[P] = u_{1,1} - u_{0,1} - u_{0,0}$$
$$[x_1^2 x_2^3 P] = u_{3,4} - u_{2,4} - u_{2,3}.$$

Definition – Dimension 1.

A nonzero sequence $u = (u_i)_{i \in \mathbb{N}}$ over \mathbb{K} is linear recurrent with constant coefficients of order d if there exist $\alpha_0, ..., \alpha_{d-1} \in \mathbb{K}$ such that

$$\forall i \in \mathbb{N}, \quad u_{i+d} + \sum_{k=0}^{d-1} \alpha_k u_{i+k} = 0,$$

and d is minimal.

In other words, for all $i \in \mathbb{N}$, $[x^i(x^d + \sum_{k=0}^{d-1} \alpha_k x^k)] = 0$.

Example.

- $u = (3^i)_{i \in \mathbb{N}}$ is linear recurrent with constant coefficients of order 1.
- $u = ((3 i + 2) 5^i)_{i \in \mathbb{N}}$ and $v = (2^i + 3^i)_{i \in \mathbb{N}}$ are both linear recurrent with constant coefficients of order 2.
- $u = (1/i!)_{i \in \mathbb{N}}$ is not linear recurrent with constant coefficients.

Definition – Dimension 1.

A nonzero sequence $u = (u_i)_{i \in \mathbb{N}}$ over \mathbb{K} is linear recurrent with constant coefficients of order d if there exist $\alpha_0, ..., \alpha_{d-1} \in \mathbb{K}$ such that

$$\forall i \in \mathbb{N}, \quad u_{i+d} + \sum_{k=0}^{d-1} \alpha_k u_{i+k} = 0,$$

and d is minimal.

In other words, for all $i \in \mathbb{N}$, $[x^i(x^d + \sum_{k=0}^{d-1} \alpha_k x^k)] = 0$.

Proposition.

- Defining the ideal of relations of u as $I = \{P \in \mathbb{K}[x], [P] = 0\}$, then u is linear recurrent with constant coefficients of order d if and only if $\dim_{\mathbb{K}} \mathbb{K}[x]/I = d$.
 - The knowledge of $u_0, ..., u_{d-1}$ and a generator of I allows us to compute u_i , for all $i \in \mathbb{N}$.
- The generating series $\sum_{i=0}^{\infty} u_i x^i$ of u is in $\mathbb{K}(x)$ if and only if u is linear recurrent with constant coefficients.

- Dimension 1: Berlekamp Massey algorithm (BM).
- Definitions of multidimensional recurrent sequences.
- FGLM: inspiration and application.
- Algorithms for finding the relations.
- Complexity of the queries.
- Computation of the generating series.
- Applications to Sparse FGLM and correcting codes.

Definition.

Let $t = (t_i)_{0 \le i \le 2n-1}$. Matrix $H = (h_{i,j})_{0 \le i,j \le n-1}$ is Hankel if for all $i, j \le n-1$,

$$h_{i,j} = t_{i+j}$$
.

How to find the relations of a 1-dimensional sequence?

If one knows that sequence $u = (u_i)_{i \in \mathbb{N}}$ is linear recurrent of order d.

- $\exists \alpha_0, ..., \alpha_{d-1}, \forall i \in \mathbb{N}, \ \alpha_0 u_0 + \cdots + \alpha_{d-1} u_{d-1} + u_d = 0.$
- Solve the Hankel system $\begin{cases} \alpha_0 \, u_0 + \dots + \alpha_{d-1} \, u_{d-1} &= -u_d \\ \vdots & \vdots & \vdots \\ \alpha_0 \, u_{d-1} + \dots + \alpha_{d-1} \, u_{2d-2} &= -u_{2d-1}. \end{cases}$

Matrix version of BM.

Input: A sequence $u = (u_i)_{i \in \mathbb{N}}$ over \mathbb{K} , $d \in \mathbb{N}^*$. **Output:** A polynomial of degree at most d+1.

$$\begin{split} &H:=(u_{i+j})_{0\leq i,j\leq d-1}. \text{ /* a Hankel matrix */} \\ &\text{Compute } S'=\{s_0,...,s_{r-1}\} \text{ the column rank profile.} \\ &\text{/* } \{C_{s_0},...,C_{s_{r-1}}\} \text{ set of indep. columns with minimal indices in } H \text{ */} \\ &\text{Find } \begin{pmatrix} \alpha_0 \\ \vdots \\ \alpha_{d-1} \end{pmatrix} \text{s.t.} \begin{pmatrix} u_0 & \cdots & u_{d-1} \\ \vdots & \ddots & \vdots \\ u_{d-1} & \cdots & u_{2d-2} \end{pmatrix} \begin{pmatrix} \alpha_0 \\ \vdots \\ \alpha_{d-1} \end{pmatrix} + \begin{pmatrix} u_d \\ \vdots \\ u_{2d-1} \end{pmatrix} = 0. \end{split}$$

Return $x^{s_{r-1}+1} + \sum_{j=0}^{r-1} \alpha_{s_j} x^{s_j}$.

Theorem. [Berlekamp 1968, Massey 1969, Kaltofen, Yuhasz 2013]

BM algorithm is correct. It computes the polynomial of the relation in $O(M(d) \log d)$ operations in \mathbb{K} .

Matrix version of BM.

Input: A sequence $u = (u_i)_{i \in \mathbb{N}}$ over \mathbb{K} , $d \in \mathbb{N}^*$. **Output:** A polynomial of degree at most d+1.

$$\begin{split} &H := (u_{i+j})_{0 \leq i, j \leq d-1}. \text{ /* a Hankel matrix */} \\ &\text{Compute } S' = \{s_0, ..., s_{r-1}\} \text{ the column rank profile.} \\ &/* \{C_{s_0}, ..., C_{s_{r-1}}\} \text{ set of indep. columns with minimal indices in } H \text{ */} \\ &\text{Find } \begin{pmatrix} \alpha_{s_0} \\ \vdots \\ \alpha_{s_{r-1}} \end{pmatrix} \text{s.t.} \begin{pmatrix} u_{2s_0} & \cdots & u_{s_0+s_{r-1}} \\ \vdots & \ddots & \vdots \\ u_{s_{r-1}+s_0} & \cdots & u_{2s_{r-1}} \end{pmatrix} \begin{pmatrix} \alpha_{s_0} \\ \vdots \\ \alpha_{s_{r-1}} \end{pmatrix} + \begin{pmatrix} u_{s_0+s_{r-1}+1} \\ \vdots \\ u_{2s_{r-1}+1} \end{pmatrix} = 0. \\ &\text{Return } x^{s_{r-1}+1} + \sum_{j=0}^{r-1} \alpha_{s_j} x^{s_j}. \end{split}$$

Theorem. [Berlekamp 1968, Massey 1969, Kaltofen, Yuhasz 2013]

BM algorithm is correct. It computes the polynomial of the relation in $O(M(d) \log d)$ operations in \mathbb{K} .

Definitions for n-dimensional sequences linear recurrent sequences extends badly dimension 1 definition:

[Chabanne, Norton 1992, Saints, Heegard 1995] u is linear recurrent if there exists $P \in \mathbb{K}[x] \setminus \{0\}$ such that for all $i \in \mathbb{N}^n$ $[x^i P] = 0$.

$$\rightarrow \text{ Sequence } \boldsymbol{u} = (2^{i_2}/i_1!)_{\boldsymbol{i} \in \mathbb{N}^2} = \begin{pmatrix} 1 & 2 & 4 & 8 & \cdots \\ 1 & 2 & 4 & 8 & \cdots \\ 1/2 & 1 & 2 & 4 & \cdots \\ 1/6 & 1/3 & 2/3 & 4/3 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \text{ satisfies } [\boldsymbol{x^i}(x_2 - 2)] = 0 \text{ but }$$

- $\sum_{i \in \mathbb{N}^2} \frac{2^{i_2}}{i_1!} x^i = \frac{\exp x_1}{1 2x_2} \notin \mathbb{K}(x);$
- infinitely many coefficients $u_{i_1,0} = 1/i_1!, i_1 \in \mathbb{N}$ needed to compute them all.

$$\rightarrow \text{ Sequence } \boldsymbol{b} = \left(\binom{i_1}{i_2} \right)_{\boldsymbol{i} \in \mathbb{N}^2} = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 & \cdots \\ 1 & 1 & 0 & 0 & \cdots \\ 1 & \boldsymbol{2} & \boldsymbol{1} & 0 & \cdots \\ 1 & 3 & \boldsymbol{3} & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{array} \right) \text{ satisifies } \left[\boldsymbol{x^i} \left(x_1 \ x_2 - x_2 - 1 \right) \right] = 0,$$

PASCAL's rule, and

$$\sum_{m{i}\in\mathbb{N}^2}\!\binom{i_1}{i_2}m{x^i}\!=\!rac{1}{1-x_1-x_1\,x_2}\!\in\!\mathbb{K}(m{x})$$
 but

• infinitely many coefficients $b_{i_1,0} = 1, i_1 \in \mathbb{N}, b_{0,i_2} = 0, i_2 \in \mathbb{N}^*$ to compute them all.

Definition. [SAKATA 2009]

Let $u = (u_i)_{i \in \mathbb{N}}$ be a nonzero n-dimensional sequence with coefficients in \mathbb{K} . The sequence u is linear recurrent if from a nonzero finite number of initial terms $u_i, i \in S$, and a finite number of linear recurrence relations, without any contradiction, one can compute any term of the sequence. We say the order is d if #S = d and S is minimal.

Proposition.

Equivalently, u is linear recurrent if its ideal of relations has dimension 0.

Example.

The ideal of relations is $\langle x^2 - xy + y, y^2 - 4 \rangle$ of dimension 0 and u has order 4.

BMS for $(b_{i,j})_{(i,j)}$ with $i+j \leq d$ returns $\langle (x-1)^{d+1}, x \ y-y-1, y^{d+1} \rangle = \langle 1 \rangle$ of dimension -1!

Definition. [SAKATA 2009]

Let $u = (u_i)_{i \in \mathbb{N}}$ be a nonzero n-dimensional sequence with coefficients in \mathbb{K} . The sequence u is linear recurrent if from a nonzero finite number of initial terms $u_i, i \in S$, and a finite number of linear recurrence relations, without any contradiction, one can compute any term of the sequence. We say the order is d if #S = d and S is minimal.

Theorem.

Sequence u is linear recurrent if, equivalently,

- its ideal of relations has dimension 0;
- its generating series

$$S = \sum_{i \in \mathbb{N}^n} u_i \, \boldsymbol{x}^i = \frac{N(\boldsymbol{x})}{Q_1(x_1) \cdots Q_n(x_n)} \in \mathbb{K}(\boldsymbol{x}).$$

Example.

The generating series of
$$u = \begin{pmatrix} \frac{1}{3} & \frac{2}{-1} & \frac{4}{12} & \frac{8}{-4} & \cdots \\ \frac{3}{3} & -1 & \frac{12}{12} & -4 & \cdots \\ -3 & 8 & -12 & 32 & \cdots \\ \frac{9}{9} & -24 & 36 & -96 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$
 is $\frac{N(x,y)}{(4\,x^4-8\,x^3+4\,x^2-1)\,(4\,y^2-1)}.$

Proposition.

Let $u = (u_i)_{i \in \mathbb{N}^n}$ be a linear recurrent sequence over \mathbb{K} . Let S be the staircase of a Gröbner basis \mathcal{G} of its ideal of relations I.

Let $T_1, ..., T_n$ be the multiplication matrices by $x_1, ..., x_n$ in $\mathbb{K}[x]/I$ with basis $(s)_{s \in S}$. Let $r = (u_0, ...) = ([s]_u)_{s \in S}$, then

$$\forall i \in \mathbb{N}^n, \quad u_i = \langle r, T_1^{i_1} \cdots T_n^{i_n} \cdot \mathbf{1} \rangle, \ \mathbf{1} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

Proof Sketch.

First, $T_1^{i_1} \cdots T_n^{i_n} \cdot 1$ is the vector representing x^i in $\mathbb{K}[x]/I$.

Then, the scalar product corresponds exactly to the evaluation $[NF(x^i, \mathcal{G})]_u$.

Idea.

Reciprocally, we can build a linear recurrent sequence with a Gröbner basis and initial terms!

Let $\mathcal{G} \subseteq \mathbb{K}[x]$ be a Gröbner basis of an ideal J and let S be its staircase. Given $\{[s]_{\boldsymbol{u}}|s\in S\}$, one can make a unique linear recurrent sequence $\boldsymbol{u}=(u_{\boldsymbol{i}})_{\boldsymbol{i}\in\mathbb{N}^n}$.

Furthermore, I the ideal of relations of u satisfies $J \subseteq I$ and is Gorenstein (i.e. $R = \mathbb{K}[x]/I$ is R-isomorphic to its dual) [Brachat, $et\ al.\ 2010$]).

Proof Sketch.

For any $i \in \mathbb{N}^n$, let $u_i = [NF(x^i, \mathcal{G})]_u$.

Figure 2. A. Grothendieck (1928 – 2014)

Let $\mathcal{G} \subseteq \mathbb{K}[x]$ be a Gröbner basis of an ideal J and let S be its staircase. Given $\{[s]_{\boldsymbol{u}}|s\in S\}$, one can make a unique linear recurrent sequence $\boldsymbol{u}=(u_{\boldsymbol{i}})_{\boldsymbol{i}\in\mathbb{N}^n}$.

Furthermore, I the ideal of relations of u satisfies $J \subseteq I$ and is Gorenstein (i.e. $R = \mathbb{K}[x]/I$ is R-isomorphic to its dual) [Brachat, $et\ al.\ 2010$]).

Example.

$$\mathcal{G} = \{y^2 - 1, x - 2y\}, \{[1]_u = a, [y]_u = b\}$$

$$\rightsquigarrow (a \ b)$$

Remarks.

The Gröbner basis does not yield any contradiction!

We will want relations in the sequence.

- → Find elements in the ideal. (The ideal is not known!)
- \rightarrow Find a Gröbner basis \rightsquigarrow FGLM is an inspiration.

Let $\mathcal{G} \subseteq \mathbb{K}[x]$ be a Gröbner basis of an ideal J and let S be its staircase. Given $\{[s]_{\boldsymbol{u}}|s\in S\}$, one can make a unique linear recurrent sequence $\boldsymbol{u}=(u_{\boldsymbol{i}})_{\boldsymbol{i}\in\mathbb{N}^n}$.

Furthermore, I the ideal of relations of u satisfies $J \subseteq I$ and is Gorenstein (i.e. $R = \mathbb{K}[x]/I$ is R-isomorphic to its dual) [Brachat, $et\ al.\ 2010$]).

Example.

$$\mathcal{G} = \{y^2 - 1, x - 2y\}, \ \{[1]_{\boldsymbol{u}} = a, [y]_{\boldsymbol{u}} = b\}$$

$$\rightsquigarrow (a \ b \ a)$$

Remarks.

The Gröbner basis does not yield any contradiction!

We will want relations in the sequence.

- → Find elements in the ideal. (The ideal is not known!)
- \rightarrow Find a Gröbner basis \rightsquigarrow FGLM is an inspiration.

Let $\mathcal{G} \subseteq \mathbb{K}[x]$ be a Gröbner basis of an ideal J and let S be its staircase. Given $\{[s]_{\boldsymbol{u}}|s\in S\}$, one can make a unique linear recurrent sequence $\boldsymbol{u}=(u_{\boldsymbol{i}})_{\boldsymbol{i}\in\mathbb{N}^n}$.

Furthermore, I the ideal of relations of u satisfies $J \subseteq I$ and is Gorenstein (i.e. $R = \mathbb{K}[x]/I$ is R-isomorphic to its dual) [Brachat, $et\ al.\ 2010$]).

Example.

$$\mathcal{G} = \{y^2 - 1, x - 2y\}, \{[1]_{\mathbf{u}} = a, [y]_{\mathbf{u}} = b\}$$

$$\rightsquigarrow (a \ b \ a \ b \ \cdots)$$

Remarks.

The Gröbner basis does not yield any contradiction!

We will want relations in the sequence.

- → Find elements in the ideal. (The ideal is not known!)
- \rightarrow Find a Gröbner basis \rightsquigarrow FGLM is an inspiration.

Let $\mathcal{G} \subseteq \mathbb{K}[x]$ be a Gröbner basis of an ideal J and let S be its staircase. Given $\{[s]_{\boldsymbol{u}}|s\in S\}$, one can make a unique linear recurrent sequence $\boldsymbol{u}=(u_{\boldsymbol{i}})_{\boldsymbol{i}\in\mathbb{N}^n}$.

Furthermore, I the ideal of relations of u satisfies $J \subseteq I$ and is Gorenstein (i.e. $R = \mathbb{K}[x]/I$ is R-isomorphic to its dual) [Brachat, $et\ al.\ 2010$]).

Example.

$$\mathcal{G} = \{y^2 - 1, x - 2y\}, \{[1]_{\mathbf{u}} = a, [y]_{\mathbf{u}} = b\}$$

$$\longrightarrow \left(\begin{array}{ccccc} a & b & a & b & \cdots \\ 2b & 2a & 2b & 2a & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{array} \right)$$

Remarks.

The Gröbner basis does not yield any contradiction! We will want relations in the sequence.

- → Find elements in the ideal. (The ideal is not known!)
- \rightarrow Find a Gröbner basis \rightsquigarrow FGLM is an inspiration.

Idea.

Computation of a Gröbner basis → change of variables.

Proposition.

Natural action of $GL_n(\mathbb{K})$ on *n*-dimensional sequences.

Let $A \in GL_n(\mathbb{K})$ and $\boldsymbol{\xi} = A \cdot \boldsymbol{x}$, then from sequence \boldsymbol{u} , we build $\boldsymbol{v} = A \cdot \boldsymbol{u} = ([\boldsymbol{\xi}^i]_{\boldsymbol{u}})_{i \in \mathbb{N}^n}$. If \boldsymbol{u} is linear recurrent with ideal I, then \boldsymbol{v} is linear recurrent with ideal

$$A^{-1} \cdot I := \{ P(A^{-1} x) | P \in I \}.$$

One can compute $\{v_{\boldsymbol{i}}|\sum_{\ell=1}^n i_\ell = |\boldsymbol{i}| \leq d\}$ in

- $O(n^{2d})$ memory space and operations in \mathbb{K} ;
- ullet $O(n^d)$ queries to $oldsymbol{u}$.

Proposition.

Natural action of $GL_n(\mathbb{K})$ on *n*-dimensional sequences.

Let $A \in GL_n(\mathbb{K})$ and $\boldsymbol{\xi} = A \cdot \boldsymbol{x}$, then from sequence \boldsymbol{u} , we build $\boldsymbol{v} = A \cdot \boldsymbol{u} = ([\boldsymbol{\xi}^i]_{\boldsymbol{u}})_{i \in \mathbb{N}^n}$. If \boldsymbol{u} is linear recurrent with ideal I, then \boldsymbol{v} is linear recurrent with ideal

$$A^{-1} \cdot I := \{ P(A^{-1} \mathbf{x}) | P \in I \}.$$

One can compute $\{v_{i}|\sum_{\ell=1}^{n}i_{\ell}=|i|\leq d\}$ in

- $O(n^{2d})$ memory space and operations in \mathbb{K} ;
- $O(n^d)$ queries to u.

Example.

$$u = (u_{i,j})_{(i,j) \in \mathbb{N}^2}$$
, $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, the

$$\begin{aligned} v_{0,0} &= u_{0,0} \\ v_{1,0} &= a \, u_{1,0} + b \, u_{0,1} \\ v_{2,0} &= a^2 \, u_{2,0} + 2 \, a \, b \, u_{1,1} + b^2 \, u_{0,2} \end{aligned} \quad v_{0,1} = c \, u_{1,0} + d \, u_{0,1} \\ v_{1,1} &= a \, c \, u_{2,0} + (a \, d + b \, c) \, u_{1,1} + b \, d \, u_{0,2} \quad \dots \end{aligned}$$

Proposition.

Natural action of $GL_n(\mathbb{K})$ on *n*-dimensional sequences.

Let $A \in GL_n(\mathbb{K})$ and $\boldsymbol{\xi} = A \cdot \boldsymbol{x}$, then from sequence \boldsymbol{u} , we build $\boldsymbol{v} = A \cdot \boldsymbol{u} = ([\boldsymbol{\xi^i}]_{\boldsymbol{u}})_{\boldsymbol{i} \in \mathbb{N}^n}$. If \boldsymbol{u} is linear recurrent with ideal I, then \boldsymbol{v} is linear recurrent with ideal

$$A^{-1} \cdot I := \{ P(A^{-1} \mathbf{x}) | P \in I \}.$$

One can compute $\{v_i|\sum_{\ell=1}^n i_\ell = |i| \le d\}$ in

- $O(n^{2d})$ memory space and operations in \mathbb{K} ;
- $O(n^d)$ queries to u.

Proof Sketch.

$$[P(A^{-1} x)]_{\mathbf{v}} = [P(A^{-1} A x)]_{\mathbf{u}} = [P]_{\mathbf{u}} = 0.$$

With $\xi = (\xi_1, ..., \xi_n)$, compute $[(z_0 + \xi_1 z_1 + \cdots + \xi_n z_n)^d]_{\mathbf{u}}$.

The coefficient of $z_0^{d-|\boldsymbol{i}|} z_1^{i_1} \cdots z_n^{i_n}$ is exactly $v_{\boldsymbol{i}}$.

Theorem – Advantage.

For a generic n-dimensional sequence u of ideal of relations I and random $A \in GL_n(\mathbb{K})$, $A^{-1} \cdot I$ is in shape position:

$$A^{-1} \cdot I = \langle x_1 - h_1(x_n), ..., x_{n-1} - h_{n-1}(x_n), h_n(x_n) \rangle, \quad \deg h_n = d.$$

This computation requires

- to run BM algorithm in $O(M(d) \log d)$ operations in K for h_n ;
- to solve n-1 Hankel systems in $O(n \operatorname{\mathsf{M}}(d) \log d)$ operations in $\mathbb K$ for $h_1,...,h_{n-1}$;
- (n+1) d queries to the new table.

Example.

$$\langle x-2y^3+2y^2+7y+8, y^4-4y^2-8y-4\rangle$$
.

Theorem – Advantage.

For a generic n-dimensional sequence u of ideal of relations I and random $A \in GL_n(\mathbb{K})$, $A^{-1} \cdot I$ is in shape position:

$$A^{-1} \cdot I = \langle x_1 - h_1(x_n), ..., x_{n-1} - h_{n-1}(x_n), h_n(x_n) \rangle, \quad \deg h_n = d.$$

This computation requires

- to run BM algorithm in $O(\mathsf{M}(d)\log d)$ operations in $\mathbb K$ for h_n ;
- to solve n-1 Hankel systems in $O(n \operatorname{\mathsf{M}}(d) \log d)$ operations in $\mathbb K$ for $h_1,...,h_{n-1}$;
- (n+1) d queries to the new table.

Drawback.

This change of variables requires:

- $O(n^{d+2})$ memory space and operations in \mathbb{K} ;
- $O(n^{2d})$ queries to the original table.

FGLM Algorithm.

Input: A Gröbner basis \mathcal{G}_1 of a 0-dim. ideal $I \subseteq \mathbb{K}[x]$ wrt. \prec_1 and another ordering \prec_2 . **Output:** A Gröbner basis \mathcal{G}_2 of I wrt. \prec_2 .

$$L := \{1\}, S := \{\}, \mathcal{G}_2 := \{\}.$$

While $L \neq \emptyset$ do

 $t := \min_{\prec_2} (L)$ and remove t from L.

 $\bar{t} := NF(t + \sum_{s \in S} \alpha_s s, \mathcal{G}_1).$

If $\exists (\alpha_s)_{s \in S}, \ \bar{t} = 0$ then $\mathcal{G}_2 := \mathcal{G}_2 \cup \{t + \sum_{s \in S} \alpha_s s\}$ and remove multiples of t from L.

Else $S := S \cup \{t\}, L := L \cup \{x_1 t, ..., x_n t\}.$

Return \mathcal{G}_2 .

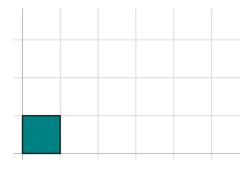
Theorem. [FAUGÈRE, GIANNI, LAZARD, MORA 1993]

FGLM Algorithm is correct and computes \mathcal{G}_2 in $O(n d^3)$ operations in \mathbb{K} , where d is the dimension of I.

Example.

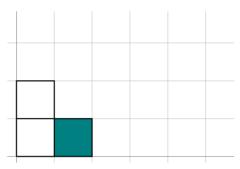
We have $\mathcal{G}_1 = \{x_1^2 + x_2 - x_1, x_2^2 - 1\}$ wrt. $\mathsf{DRL}(x_1 \prec_1 x_2)$ and we want \mathcal{G}_2 wrt. $\mathsf{LEX}(x_1 \prec_2 x_2)$.

We have $\mathcal{G}_1 = \{x_1^2 + x_2 - x_1, x_2^2 - 1\}$ wrt. $\mathsf{DRL}(x_1 \prec_1 x_2)$ and we want \mathcal{G}_2 wrt. $\mathsf{LEX}(x_1 \prec_2 x_2)$.

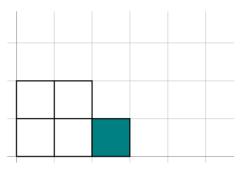


• $L = \{1\}$, $NF(1, \mathcal{G}_1) = 1$.

We have $\mathcal{G}_1 = \{x_1^2 + x_2 - x_1, x_2^2 - 1\}$ wrt. $\mathsf{DRL}(x_1 \prec_1 x_2)$ and we want \mathcal{G}_2 wrt. $\mathsf{LEX}(x_1 \prec_2 x_2)$.

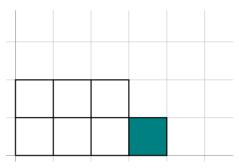


- $L = \{1\}$, $NF(1, \mathcal{G}_1) = 1$.
- $L = \{x_1, x_2\}$, $NF(x_1, \mathcal{G}_1) = x_1$.

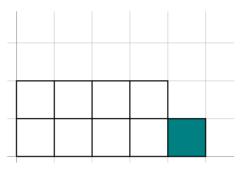


- $L = \{1\}$, NF $(1, \mathcal{G}_1) = 1$.
- $L = \{x_1, x_2\}$, $NF(x_1, \mathcal{G}_1) = x_1$.
- $L = \{x_1^2, x_2, x_1 x_2\}$, $NF(x_1^2, \mathcal{G}_1) = -x_2 + x_1$.

We have $\mathcal{G}_1 = \{x_1^2 + x_2 - x_1, x_2^2 - 1\}$ wrt. $\mathsf{DRL}(x_1 \prec_1 x_2)$ and we want \mathcal{G}_2 wrt. $\mathsf{LEX}(x_1 \prec_2 x_2)$.

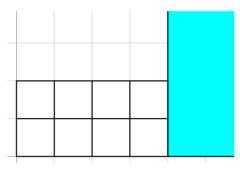


- $L = \{1\}$, NF $(1, \mathcal{G}_1) = 1$.
- $L = \{x_1, x_2\}$, $NF(x_1, \mathcal{G}_1) = x_1$.
- $L = \{x_1^2, x_2, x_1 x_2\}$, $NF(x_1^2, \mathcal{G}_1) = -x_2 + x_1$.
- $L = \{x_1^3, x_2, x_1 x_2, x_1^2 x_2\}$, $NF(x_1^3, \mathcal{G}_1) = -x_1 x_2 x_2 + x_1$.



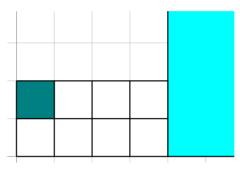
- $L = \{1\}$, NF $(1, \mathcal{G}_1) = 1$.
- $L = \{x_1, x_2\}$, $NF(x_1, \mathcal{G}_1) = x_1$.
- $L = \{x_1^2, x_2, x_1 x_2\}$, $NF(x_1^2, \mathcal{G}_1) = -x_2 + x_1$.
- $L = \{x_1^3, x_2, x_1 x_2, x_1^2 x_2\}$, $NF(x_1^3, \mathcal{G}_1) = -x_1 x_2 x_2 + x_1$.
- $L = \{x_1^4, x_2, x_1 x_2, x_1^2 x_2, x_1^3 x_2\}$, $NF(x_1^4, \mathcal{G}_1) = -2 x_1 x_2 x_2 + x_1 + 1$.

Example.



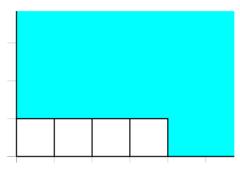
- $L = \{1\}$, NF $(1, \mathcal{G}_1) = 1$.
- $L = \{x_1, x_2\}$, $NF(x_1, \mathcal{G}_1) = x_1$.
- $L = \{x_1^2, x_2, x_1 x_2\}$, $NF(x_1^2, \mathcal{G}_1) = -x_2 + x_1$.
- $L = \{x_1^3, x_2, x_1 x_2, x_1^2 x_2\}$, $NF(x_1^3, \mathcal{G}_1) = -x_1 x_2 x_2 + x_1$.
- $L = \{x_1^4, x_2, x_1 x_2, x_1^2 x_2, x_1^3 x_2\}$, $NF(x_1^4, \mathcal{G}_1) = -2 x_1 x_2 x_2 + x_1 + 1$.

Example.



- $L = \{1\}$, NF $(1, \mathcal{G}_1) = 1$.
- $L = \{x_1, x_2\}$, $NF(x_1, \mathcal{G}_1) = x_1$.
- $L = \{x_1^2, x_2, x_1 x_2\}$, $NF(x_1^2, \mathcal{G}_1) = -x_2 + x_1$.
- $L = \{x_1^3, x_2, x_1 x_2, x_1^2 x_2\}$, $NF(x_1^3, \mathcal{G}_1) = -x_1 x_2 x_2 + x_1$.
- $L = \{x_1^4, x_2, x_1 x_2, x_1^2 x_2, x_1^3 x_2\}$, $NF(x_1^4, \mathcal{G}_1) = -2 x_1 x_2 x_2 + x_1 + 1 \Rightarrow (x_1^4 2x_1^3 + x_1^2 1) \in \mathcal{G}_2$.
- $L = \{x_2, x_1 x_2, x_1^2 x_2, x_1^3 x_2\}$, $NF(x_2, \mathcal{G}_1) = x_2$.

Example.

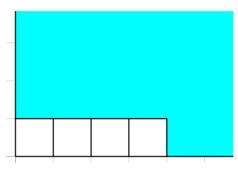


- $L = \{1\}, NF(1, \mathcal{G}_1) = 1.$
- $L = \{x_1, x_2\}, NF(x_1, \mathcal{G}_1) = x_1.$
- $L = \{x_1^2, x_2, x_1 x_2\}$, $NF(x_1^2, \mathcal{G}_1) = -x_2 + x_1$.
- $L = \{x_1^3, x_2, x_1 x_2, x_1^2 x_2\}$, $NF(x_1^3, \mathcal{G}_1) = -x_1 x_2 x_2 + x_1$.
- $L = \{x_1^4, x_2, x_1 x_2, x_1^2 x_2, x_1^3 x_2\}$, $NF(x_1^4, \mathcal{G}_1) = -2 x_1 x_2 x_2 + x_1 + 1 \Rightarrow (x_1^4 2x_1^3 + x_1^2 1) \in \mathcal{G}_2$.
- $L = \{x_2, x_1 x_2, x_1^2 x_2, x_1^3 x_2\}$, $NF(x_2, \mathcal{G}_1) = x_2 \Rightarrow (x_2 + x_1^2 x_1) \in \mathcal{G}_2$.

FGLM

Example.

We have $G_1 = \{x_1^2 + x_2 - x_1, x_2^2 - 1\}$ wrt. $DRL(x_1 \prec_1 x_2)$ and we want G_2 wrt. $LEX(x_1 \prec_2 x_2)$.



- $L = \{1\}, NF(1, \mathcal{G}_1) = 1.$
- $L = \{x_1, x_2\}$, $NF(x_1, \mathcal{G}_1) = x_1$.
- $L = \{x_1^2, x_2, x_1 x_2\}$, $NF(x_1^2, \mathcal{G}_1) = -x_2 + x_1$.
- $L = \{x_1^3, x_2, x_1 x_2, x_1^2 x_2\}$, $NF(x_1^3, \mathcal{G}_1) = -x_1 x_2 x_2 + x_1$.
- $L = \{x_1^4, x_2, x_1 x_2, x_1^2 x_2, x_1^3 x_2\}$, $NF(x_1^4, \mathcal{G}_1) = -2 x_1 x_2 x_2 + x_1 + 1 \Rightarrow (x_1^4 2x_1^3 + x_1^2 1) \in \mathcal{G}_2$.
- $L = \{x_2, x_1 x_2, x_1^2 x_2, x_1^3 x_2\}$, $NF(x_2, \mathcal{G}_1) = x_2 \Rightarrow (x_2 + x_1^2 x_1) \in \mathcal{G}_2$.
- $L = \emptyset$, $G_2 = \{x_1^4 2x_1^3 + x_1^2 1, x_2 + x_1^2 x_1\}$.

What we want.

For a set of terms \mathcal{T} and a polynomial $P \in \mathbb{K}[x]$, we write

$$NF(P, \mathcal{T}) = 0 \Leftrightarrow [t P]_{\mathbf{u}} = 0, \ \forall t \in \mathcal{T}.$$

What we should have.

Any BMS-like algorithm will generate minimal relations:

- a) Find $P \in \mathbb{K}[x]$, s.t. $NF(P, \mathcal{T}) = 0$.
- b) No nonzero relations $\sum_{t \prec \operatorname{LT}(P)} \alpha_t [m \, t]_{\boldsymbol{u}} = 0$ which are valid for all $m \in \mathcal{T}$.

Definition.

A finite set of terms S is a useful staircase if S is maximal for the inclusion, minimal for \prec and $\sum_{t \in S} \beta_t [m \, t]_{\boldsymbol{u}} = 0$, $\forall m \in S$ implies that $\beta_t = 0$ for all $t \in S$.

For
$$\mathbf{u} = \begin{pmatrix} 1 & 2 & 4 & 8 & 16 & \cdots \\ 3 & -1 & 12 & -4 & 48 & \cdots \\ -3 & 8 & -12 & 32 & -48 & \cdots \\ 9 & -24 & 36 & -96 & 144 & \cdots \\ -32 & 48 & -128 & 192 & -512 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$
 and $\mathcal{T} = \{1, y, x, y^2, xy, x^2\}$.

$$\Rightarrow P = \alpha_1 + \alpha_y y + \alpha_x x + \alpha_{y^2} y^2 + \alpha_{xy} xy + \alpha_{x^2} x^2 \text{ s.t. NF}(P, \mathcal{T}) = 0,$$

$$\Rightarrow [t P]_{\mathbf{u}} = 0, \ \forall t \in \mathcal{T} \Longleftrightarrow \begin{pmatrix} 1 & 2 & 3 & 4 & -1 & -3 \\ 2 & 4 & -1 & 8 & 12 & 8 \\ 3 & -1 & -3 & 12 & 8 & 9 \\ 4 & 8 & 12 & 16 & -4 & -12 \\ -1 & 12 & 8 & -4 & -12 & -24 \\ -3 & 8 & 9 & -12 & -24 & -3 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_y \\ \alpha_x \\ \alpha_{x^2} \\ \alpha_{xy} \\ \alpha_{x^2} \end{pmatrix} = 0.$$

Finding a useful staircase is finding a maximal full rank submatrix \rightsquigarrow rank profile.

Definition – Proposition.

For $u = (u_i)_{i \in \mathbb{N}^n}$ and two sorted sets of terms S, T, matrix $H_{S,T}$ is multi-Hankel

$$H_{S,T} = ([st]_{\boldsymbol{u}})_{s \in S, t \in T} = \begin{array}{c} \vdots \\ t \in T \\ \vdots \end{array} \left(\begin{array}{ccc} \ddots & \vdots & \ddots \\ \cdots & [st]_{\boldsymbol{u}} & \cdots \\ \vdots & \vdots & \ddots \end{array} \right).$$

If $S \subseteq T$ is a useful staircase, then $\operatorname{rank} H_S = \operatorname{rank} H_T$ with $H_S = H_{S,S}$.

Beware!

A useful staircase may fail to be a staircase.

Example.

Stabilization.

Stability criterion ensures we can turn a useful staircase into a staircase by adding divisors of the terms.

SCALAR-FGLM Algorithm.

Input: A sequence $u = (u_i)_{i \in \mathbb{N}^n}$ over \mathbb{K} , $d \in \mathbb{N}^*$ and \prec a monomial ordering.

Output: A reduced (d+1)-truncated Gröbner basis wrt. \prec of the ideal of relations of u.

 $\mathcal{T} := \{x^i | |i| \le d\}$ sorted by increasing order.

$$H_{\mathcal{T}} := ([s\,t]_{\boldsymbol{u}})_{s,t\in\mathcal{T}}$$
. /* a multi-Hankel matrix */

Compute S' the useful staircase s.t. $\operatorname{rank} H_{S'} = \operatorname{rank} H_{\mathcal{T}}$.

S := Stabilize(S').

$$L := \{ \boldsymbol{x}^{\boldsymbol{i}} | | \boldsymbol{i} | \le d+1 \} \setminus S.$$

$$\mathcal{G} := \{\}.$$

While $L \neq \emptyset$ do

 $t := \min_{\prec} (L)$ and remove t from L.

Find $\alpha = (\alpha_s)_{s \in S'}$ s.t. $H_{S'}\alpha + H_{S',\{t\}} = 0$.

 $\mathcal{G} := \mathcal{G} \cup \{t + \sum_{s \in S'} \alpha_s s\}$ and remove multiples of t from L.

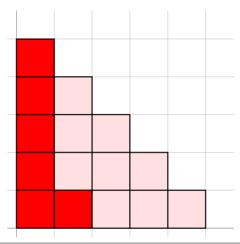
Return \mathcal{G} .

Proposition.

Scalar-FGLM Algorithm is correct. If u is recursive of order D, then setting d = D recovers the full Gröbner basis.

Problem.

We can visit too many elements! Assume $LT(\mathcal{G}) = \{x_1, x_2^4\}$ with $x_1 \prec x_2$, then we visit $\{x^i | i_1 + i_2 \leq 4\}$.



Solution.

Take the shape of the Gröbner basis into account!

Visit the monomial as in FGLM.

In FGLM, NF $(f, \mathcal{G}) = 0 \Rightarrow \forall m, \text{NF}(m f, \mathcal{G}) = 0.$ In BMS / SCALAR-FGLM, $[f]_{\boldsymbol{u}} = 0 \Rightarrow \forall m, [m f]_{\boldsymbol{u}} = 0.$ From a staircase S, consider $t = x_i s$ for $s \in S$. If $\operatorname{rank} H_{S \cup \{t\}} > \operatorname{rank} H_S$, follow the lead!

ADAPTIVE SCALAR-FGLM Algorithm.

Input: A sequence $u = (u_i)_{i \in \mathbb{N}^n}$ over \mathbb{K} , $d \in \mathbb{N}^*$ and \prec a monomial ordering.

Output: A reduced Gröbner basis wrt. \prec of an ideal of degree at least d.

$$L := \{1\}, S := \{\}, \mathcal{G}' := \{\}.$$

While $L \neq \emptyset$ do

 $t := \min_{\prec} (L)$ and remove t from L.

If $H_{S \cup \{t\}}$ is full rank then

 $S := S \cup \{t\}, L := L \cup \{x_1 t, ..., x_n t\}$ and remove multiples of \mathcal{G}' in L.

If $\#S \ge d$ then /* early termination */

 $\mathcal{G} := \{\}, \mathcal{G}' := \operatorname{MinGBasis}(\mathcal{G}' \cup L \cup \{x^i | |i| = \deg t + 1\} \setminus S).$

For all $t' \in \mathcal{G}'$ do

 $\mathcal{G} := \mathcal{G} \cup \{t' + \sum_{s \in S} \alpha_s s\}$ with $\alpha = (\alpha_s)_{s \in S}$ s.t. $H_S \alpha + H_{S,\{t'\}} = 0$.

Return S and G.

Else $\mathcal{G}' := \mathcal{G}' \cup \{t\}$ and remove multiples of t in L.

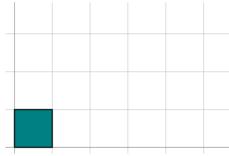
Error "Run Scalar-FGLM".

Proposition.

S is a staircase of size at least d and for all $g \in \mathcal{G}$, NF(g, S) = 0.

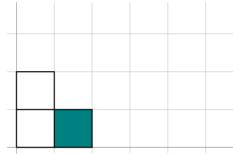
Can be extended to consider $t_1 = x_i s$, $t_2 = x_i^2 s$ for $s \in S$ and so on.

For
$$\boldsymbol{u} = \begin{pmatrix} 1 & -2 & -1 & 2 & 1 & \cdots \\ 1 & -6 & -1 & 6 & 1 & \cdots \\ 2 & 1 & -2 & -1 & 2 & \cdots \\ 6 & 1 & -6 & -1 & 6 & \cdots \\ -1 & 2 & 1 & -2 & -1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$
, $\mathsf{DRL}(x_1 \prec x_2)$ and $d = 4$.



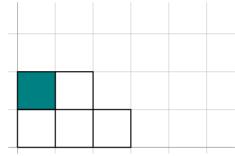
•
$$L = \{1\}$$
, $H_{\{1\}} = (1)$.

For
$$\boldsymbol{u} = \begin{pmatrix} 1 & -2 & -1 & 2 & 1 & \cdots \\ 1 & -6 & -1 & 6 & 1 & \cdots \\ 2 & 1 & -2 & -1 & 2 & \cdots \\ 6 & 1 & -6 & -1 & 6 & \cdots \\ -1 & 2 & 1 & -2 & -1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$
, $\mathsf{DRL}(x_1 \prec x_2)$ and $d = 4$.



- $L = \{1\}$, rank $H_{\{1\}} = 1$, $S = \{1\}$.
- $L = \{x_1, x_2\}, H_{\{1, x_1\}} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$.

For
$$\boldsymbol{u} = \begin{pmatrix} 1 & -2 & -1 & 2 & 1 & \cdots \\ 1 & -6 & -1 & 6 & 1 & \cdots \\ 2 & 1 & -2 & -1 & 2 & \cdots \\ 6 & 1 & -6 & -1 & 6 & \cdots \\ -1 & 2 & 1 & -2 & -1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$
, DRL $(x_1 \prec x_2)$ and $d = 4$.



- $L = \{1\}$, rank $H_{\{1\}} = 1$, $S = \{1\}$.
- $L = \{x_1, x_2\}$, rank $H_{\{1, x_1\}} = 2$, $S = \{1, x_1\}$.

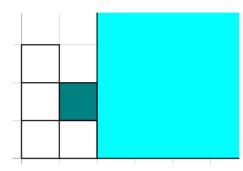
•
$$L = \{x_2, x_1^2, x_1 x_2\}, H_{\{1, x_1, x_2\}} = \begin{pmatrix} 1 & 1 & -2 \\ 1 & 2 & -6 \\ -2 & -6 & -1 \end{pmatrix}.$$

For
$$\mathbf{u} = \begin{pmatrix} 1 & -2 & -1 & 2 & 1 & \cdots \\ 1 & -6 & -1 & 6 & 1 & \cdots \\ 2 & 1 & -2 & -1 & 2 & \cdots \\ 6 & 1 & -6 & -1 & 6 & \cdots \\ -1 & 2 & 1 & -2 & -1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$
, DRL $(x_1 \prec x_2)$ and $d = 4$.

- $L = \{1\}$, rank $H_{\{1\}} = 1$, $S = \{1\}$.
- $L = \{x_1, x_2\}$, rank $H_{\{1, x_1\}} = 2$, $S = \{1, x_1\}$.
- $L = \{x_2, x_1^2, x_1 x_2\}$, rank $H_{\{1, x_1, x_2\}} = 3$, $S = \{1, x_1, x_2\}$.

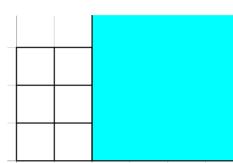
•
$$L = \{x_1^2, x_1 x_2, x_2^2\}, H_{\{1, x_1, x_2, x_1^2\}} = \begin{pmatrix} 1 & 1 & -2 & 2 \\ 1 & 2 & -6 & 6 \\ -2 & -6 & -1 & 1 \\ 2 & 6 & 1 & -1 \end{pmatrix}.$$

For
$$\mathbf{u} = \begin{pmatrix} 1 & -2 & -1 & 2 & 1 & \cdots \\ 1 & -6 & -1 & 6 & 1 & \cdots \\ 2 & 1 & -2 & -1 & 2 & \cdots \\ 6 & 1 & -6 & -1 & 6 & \cdots \\ -1 & 2 & 1 & -2 & -1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$
, DRL $(x_1 \prec x_2)$ and $d = 4$.



- $L = \{1\}$, rank $H_{\{1\}} = 1$, $S = \{1\}$.
- $L = \{x_1, x_2\}$, rank $H_{\{1, x_1\}} = 2$, $S = \{1, x_1\}$.
- $L = \{x_2, x_1^2, x_1 x_2\}$, rank $H_{\{1, x_1, x_2\}} = 3$, $S = \{1, x_1, x_2\}$.
- $L = \{x_1^2, x_1 x_2, x_2^2\}$, rank $H_{\{1, x_1, x_2, x_1^2\}} = 3$, $\mathcal{G}' = \{x_1^2\}$.
- $L = \{x_1 x_2, x_2^2\}, H_{\{1, x_1, x_2, x_1 x_2\}} = \begin{pmatrix} 1 & 1 & -2 & -6 \\ 1 & 2 & -6 & 1 \\ -2 & -6 & -1 & -1 \\ 6 & 1 & 1 & 2 \end{pmatrix}$

For
$$\boldsymbol{u} = \begin{pmatrix} 1 & -2 & -1 & 2 & 1 & \cdots \\ 1 & -6 & -1 & 6 & 1 & \cdots \\ 2 & 1 & -2 & -1 & 2 & \cdots \\ 6 & 1 & -6 & -1 & 6 & \cdots \\ -1 & 2 & 1 & -2 & -1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$
, $\mathsf{DRL}(x_1 \prec x_2)$ and $d = 4$.

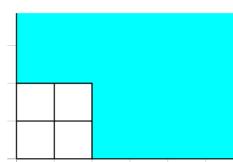


- $L = \{1\}$, rank $H_{\{1\}} = 1$, $S = \{1\}$.
- $L = \{x_1, x_2\}$, rank $H_{\{1, x_1\}} = 2$, $S = \{1, x_1\}$.
- $L = \{x_2, x_1^2, x_1 x_2\}$, rank $H_{\{1, x_1, x_2\}} = 3$, $S = \{1, x_1, x_2\}$.
- $L = \{x_1^2, x_1 x_2, x_2^2\}$, rank $H_{\{1, x_1, x_2, x_1^2\}} = 3$, $\mathcal{G}' = \{x_1^2\}$.
- $L = \{x_1 x_2, x_2^2\}$, $H_{\{1, x_1, x_2, x_1 x_2\}} = \begin{pmatrix} 1 & 1 & -2 & -6 \\ 1 & 2 & -6 & 1 \\ -2 & -6 & -1 & -1 \\ -6 & 1 & -1 & -2 \end{pmatrix}$, $S = \{1, x_1, x_2, x_1 x_2\}$.

$$\#S = 4 \leadsto \text{Early termination! } L := \{x_2^2, x_1 x_2^2\}.$$

$$\mathcal{G}' = \operatorname{MinGBasis}(\mathcal{G}' \cup L \cup \{x^i | |i| = 3\} \setminus S) = \{x_1^2, x_2^2\}.$$

For
$$\boldsymbol{u} = \begin{pmatrix} 1 & -2 & -1 & 2 & 1 & \cdots \\ 1 & -6 & -1 & 6 & 1 & \cdots \\ 2 & 1 & -2 & -1 & 2 & \cdots \\ 6 & 1 & -6 & -1 & 6 & \cdots \\ -1 & 2 & 1 & -2 & -1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$
, $\mathsf{DRL}(x_1 \prec x_2)$ and $d = 4$.



- $L = \{1\}$, rank $H_{\{1\}} = 1$, $S = \{1\}$.
- $L = \{x_1, x_2\}$, rank $H_{\{1, x_1\}} = 2$, $S = \{1, x_1\}$.
- $L = \{x_2, x_1^2, x_1 x_2\}$, rank $H_{\{1, x_1, x_2\}} = 3$, $S = \{1, x_1, x_2\}$.
- $L = \{x_1^2, x_1 x_2, x_2^2\}$, rank $H_{\{1, x_1, x_2, x_1^2\}} = 3$, $\mathcal{G}' = \{x_1^2\}$.
- $L = \{x_1 x_2, x_2^2\}$, $H_{\{1, x_1, x_2, x_1 x_2\}} = \begin{pmatrix} 1 & 1 & -2 & -6 \\ 1 & 2 & -6 & 1 \\ -2 & -6 & -1 & -1 \\ -6 & 1 & -1 & -2 \end{pmatrix}$, $S = \{1, x_1, x_2, x_1 x_2\}$.

 $\#S = 4 \rightsquigarrow \text{ Early termination! } L := \{x_2^2, x_1 x_2^2\}.$

 $\mathcal{G}' = \text{MinGBasis}(\mathcal{G}' \cup L \cup \{x^i | |i| = 3\} \setminus S) = \{x_1^2, x_2^2\} \leadsto \mathcal{G} = \{x_1^2 - x_2, x_2^2 + 1\}.$

Proposition.

The number of table queries done by ADAPTIVE SCALAR-FGLM is the #(2S) where $2S = \{u \ v \ | \ u, v \in S\}.$

Problem.

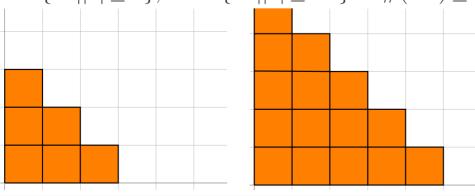
In the worst case $\#(2S) \le \#S(\#S-1)/2 \le (\#S)^2/2$.

In practice.

• $S = \{1, ..., x^d\}, 2S = \{1, ..., x^{2d}\} \Rightarrow \#(2S) = 2 \#S - 1.$

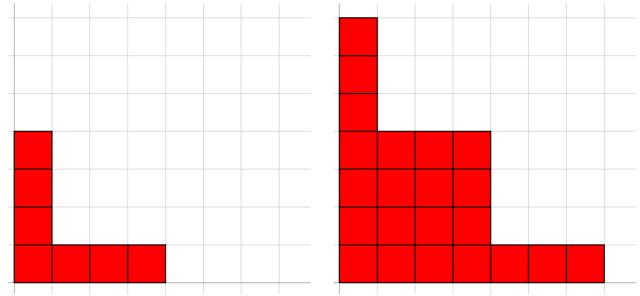


• $S = \{x^i | |i| \le d\}, 2S = \{x^i | |i| \le 2d\} \Rightarrow \#(2S) \le 2^n \#S.$



Worst case.

$$S = \bigcup_{i=1}^{n} \{1, ..., x_i^d\}, \ \#(2S) = \frac{n-1}{2n} (\#S)^2.$$



Theorem. [Rusza, 1994]

Set S is included in a n-dimensional parallelotope with C # S points iff. $\#(2 S) \le c \# S$.

Definition. [Fasino, Tilli 2000, Serra-Capizzano 2002]

A scalar is a multilevel block Hankel matrix of depth 0. Recursively, a multilevel block Hankel matrix has depth n+1 if it is a block Hankel matrix where each block is multilevel block Hankel of depth n.

SCALAR-FGLM on
$$(2^i+(1+j)\ (1+k))_{(i,j,k)\in\mathbb{N}^3}$$
 with LEX $(x\prec y\prec z)$ returns $I=((x-1)\ (x-2),(x-1)\ (y-1),(y-1)^2,(x-1)\ (z-1),(z-1)^2)$, with

$$S = \{1, x, y, z, yz\}, \quad H_S = \begin{pmatrix} 2 & 3 & 3 & 3 & 5 \\ 3 & 5 & 4 & 4 & 6 \\ 3 & 4 & 4 & 5 & 7 \\ 3 & 4 & 5 & 4 & 7 \\ 5 & 6 & 7 & 7 & 10 \end{pmatrix}.$$

Definition. [FASINO, TILLI 2000, SERRA-CAPIZZANO 2002]

A scalar is a multilevel block Hankel matrix of depth 0. Recursively, a multilevel block Hankel matrix has depth n+1 if it is a block Hankel matrix where each block is multilevel block Hankel of depth n.

SCALAR-FGLM on
$$(2^i+(1+j)\ (1+k))_{(i,j,k)\in\mathbb{N}^3}$$
 with LEX $(x\prec y\prec z)$ returns $I=((x-1)\ (x-2),(x-1)\ (y-1),(y-1)^2,(x-1)\ (z-1),(z-1)^2)$, with

$$S = \{1, x, y, z, yz\}, \quad H_S = \begin{pmatrix} 2 & 3 & 3 & 3 & 5 \\ 3 & 5 & 4 & 4 & 6 \\ \hline 3 & 4 & 4 & 5 & 7 \\ \hline 3 & 4 & 5 & 4 & 7 \\ \hline 5 & 6 & 7 & 7 & 10 \end{pmatrix}.$$

Definition. [FASINO, TILLI 2000, SERRA-CAPIZZANO 2002]

A scalar is a multilevel block Hankel matrix of depth 0. Recursively, a multilevel block Hankel matrix has depth n+1 if it is a block Hankel matrix where each block is multilevel block Hankel of depth n.

SCALAR-FGLM on
$$(2^i+(1+j)\ (1+k))_{(i,j,k)\in\mathbb{N}^3}$$
 with LEX $(x\prec y\prec z)$ returns $I=((x-1)\ (x-2),(x-1)\ (y-1),(y-1)^2,(x-1)\ (z-1),(z-1)^2)$, with

$$S = \{1, x, y, z, yz\}, \quad H_S = \begin{pmatrix} 2 & 3 & 3 & 3 & 5 \\ 3 & 5 & 4 & 4 & 6 \\ \hline 3 & 4 & 4 & 5 & 7 \\ \hline 5 & 6 & 7 & 7 & 10 \end{pmatrix} \subseteq H_{S'} = \begin{pmatrix} 2 & 3 & 3 & 4 & 3 & 4 & 5 & 6 \\ \hline x & & & & & & & \\ \hline x & & & & & & \\ \hline x & & & & & & \\ \hline x & & & \\$$

SCALAR-FGLM on
$$(2^i+(1+j)\ (1+k))_{(i,j,k)\in\mathbb{N}^3}$$
 with LEX $(x\prec y\prec z)$ returns $I=((x-1)\ (x-2),(y-1)\ (x-1),(y-1)^2,(z-1)\ (x-1),(z-1)^2)$, with

Theorem. [Bostan, Jeannerod, Schost 2007]

A quasi-Hankel system of size D and displ. rank α can be solved in $O(\alpha^{\omega-1} M(D) \log D)$.

Proposition.

A multilevel block Hankel of depth n system can be solved in $O(d_n^{\omega-1}\operatorname{M}(d_1\cdots d_{n-1})\log(d_1\cdots d_{n-1}))$, with d_i the number of blocks of depth i-1.

Highly structured → better complexity bound?

Proposition.

A n-dimensional sequence u is linear recurrent over $\mathbb K$ with ideal of relations I if and only if its generating series is

$$\frac{N(\boldsymbol{x})}{Q_1(x_1)\cdots Q_n(x_n)} = \frac{\left(Q_1\cdots Q_n\sum_{\boldsymbol{i}=(0,\ldots,0)}^{(d_1-1,\ldots,d_n-1)}u_{\boldsymbol{i}}\boldsymbol{x}^{\boldsymbol{i}}\right) \operatorname{mod}(x_1^{d_1},\ldots,x_n^{d_n})}{Q_1(x_1)\cdots Q_n(x_n)} \in \mathbb{K}(\boldsymbol{x}),$$

where $I \cap \mathbb{K}[x_i] = (P_i)$, $d_i = \deg P_i$ and Q_i is the reverse polynomial of P_i .

Proof Sketch.

- Easily proven for n=1: $Q(x)\sum_{i=0}^{\infty}u_i\,x^i=(Q(x)\sum_{i=0}^{d-1}u_i\,x^i)\,\mathrm{mod}\,x^d$, with d degree of P, I=(P).
- Induction of n.

Proposition.

A n-dimensional sequence u is linear recurrent over $\mathbb K$ with ideal of relations I if and only if its generating series is

$$\frac{N(\boldsymbol{x})}{Q_1(x_1)\cdots Q_n(x_n)} = \frac{\left(Q_1\cdots Q_n\sum_{\boldsymbol{i}=(0,\ldots,0)}^{(d_1-1,\ldots,d_n-1)}u_{\boldsymbol{i}}\boldsymbol{x}^{\boldsymbol{i}}\right) \operatorname{mod}(x_1^{d_1},\ldots,x_n^{d_n})}{Q_1(x_1)\cdots Q_n(x_n)} \in \mathbb{K}(\boldsymbol{x}),$$

where $I \cap \mathbb{K}[x_i] = (P_i)$, $d_i = \deg P_i$ and Q_i is the reverse polynomial of P_i .

Problem.

- How can we compute $P_1 \in \mathbb{K}[x_1], ..., P_n \in \mathbb{K}[x_n]$?
- Let d be the degree of I, then $d_1, ..., d_n \le d$. Assuming $P_1, ..., P_n$, and thus $Q_1, ..., Q_n$, are know, computing $N(\mathbf{x})$ requires at most $O(n d^{n-1} \mathsf{M}(d))$ operations in \mathbb{K} .

GENERATING SERIES Algorithm.

Input: A sequence $u = (u_i)_{i \in \mathbb{N}^n}$.

Output: The *n* univariate polynomials $P_1, ..., P_n$.

Compute $G_1 := \{P_1, P_{1,2}, ..., P_{1,m_1}\}$ with SCALAR-FGLM for LEX $(x_1 \prec [x_2, ..., x_n])$.

For k from 2 to n do

Compute $\mathcal{G}_k := \{P_k, P_{k,2}, ..., P_{k,m_k}\}$ for LEX $(x_k \prec [x_1, ... x_{k-1}, x_{k+1}, x_n])$.

Return $P_1, ..., P_n$.

Better idea!

A subsequence $(u_{i,N_2,...,N_n})_{i\in\mathbb{N}}$ is linear recurrent with P_1 in its ideal of relations.

Idea.

A subsequence $(u_{i,N_2,...,N_n})_{i\in\mathbb{N}}$ is linear recurrent with P_1 in its ideal of relations.

- P_1 is the lcm of relations of such sequences.
- \rightarrow Make a linear combination of such sequences to have P_1 has minimal relation.

Example.

$$\boldsymbol{u} = ((-1)^{ij})_{(i,j) \in \mathbb{N}^2} = \begin{pmatrix} 1 & 1 & 1 & 1 & \cdots \\ 1 & -1 & 1 & -1 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ 1 & -1 & 1 & -1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \text{ has ideal } \langle x^2 - 1, y^2 - 1 \rangle.$$

- For N even, subsequence $(u_{i,N})_{i\in\mathbb{N}}=(1)_{i\in\mathbb{N}}$ has ideal $\langle x-1\rangle$.
- For N odd, subsequence $(u_{i,N})_{i\in\mathbb{N}} = ((-1)^i)_{i\in\mathbb{N}}$ has ideal $\langle x+1\rangle$.
- For $\alpha_1, \alpha_2 \in \mathbb{K}^*$, with probability 1/2, wlog. N_1 is even, N_2 is odd and sequence

$$(\alpha_1 u_{i,N_1} + \alpha_2 u_{i,N_2})_{i \in \mathbb{N}} = (\alpha_1 + \alpha_2 (-1)^i)_{i \in \mathbb{N}}$$

has ideal $\langle x^2 - 1 \rangle$.

Let $u = (u_i)_{i \in \mathbb{N}^n}$ be a n-dimensional linear recurrent sequence of order d over \mathbb{K} . Fast Generating Series Algorithm computes the n univariate polynomials in $O(n \operatorname{\mathsf{M}}(d) \log d)$ operations in \mathbb{K} and at most $2 n d^2$ queries to the table.

FAST GENERATING SERIES Algorithm.

Input: A sequence $u = (u_i)_{i \in \mathbb{N}^n}$.

Output: The *n* univariate polynomials $P_1, ..., P_n$.

For k from 1 to n do

For ℓ from 1 to d do

Pick at random $\alpha_{\ell} \in \mathbb{K}$.

Pick at random $N_{\ell,1},...,N_{\ell,k-1},N_{\ell,k+1},...,N_{\ell,n} \in \{0,d-1\}.$

Compute $P_k = \mathsf{BM}((\sum_{\ell=1}^d \alpha_\ell u_{N_{\ell,1},\dots,i,\dots,N_{\ell,n}})_{i\in\mathbb{N}}, d).$

Return $P_1, ..., P_n$.

Proof Sketch.

Each subsequence requires d rows of 2 d elements, hence at most $2 n d^2$ queries.

Each call to BM is in $O(M(d) \log d)$ operations in \mathbb{K} .

Sparse-FGLM on Cyclic-n.

Input: A Gröbner basis \mathcal{G}_1 of $I \subseteq \mathbb{K}[x]$ 0-dim. wrt. \prec_1 and order \prec_2 .

Output: A Gröbner basis \mathcal{G}_2 of I wrt. \prec_2 .

Compute multiplication matrices $T_1, ..., T_n$ wrt. $x_1, ..., x_n$ in $\mathbb{K}[x]/I$.

Pick at random a vector $r = (r_0, ...) = ([s]_u)_{s \in S}$, with S the staircase of \mathcal{G}_1 .

Compute \mathcal{G}_2 with SCALAR-FGLM on $u = (\langle r, T_1^{i_1} \cdots T_n^{i_n} \cdot 1 \rangle)_{i \in \mathbb{N}^n}$ for \prec_2 .

If $deg(\langle \mathcal{G}_2 \rangle) = \#S$ then return \mathcal{G}_2 .

Else error "Not Gorenstein"

 $\rightarrow n$ equations in n variables of degree 1,...,n.

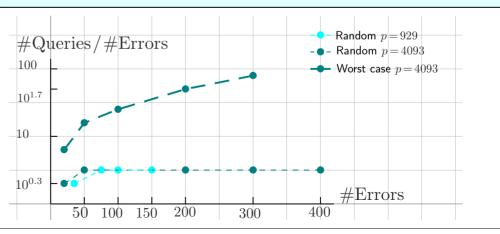
Cyclic-n	D	#Ranks	$\#\text{Queries}/(2^{n-1}D)$
Cyclic-5	70	76	0.5
Cyclic-6	156	167	0.3
Cyclic-7	924	953	0.3

Coding Theory: n-dimensional cyclic codes.

 \rightarrow Sparse interpolation in

$$\begin{split} \mathbb{F}_p[\boldsymbol{x}]/(x_1^{p-1}-1,...,x_n^{p-1}-1) \text{ at } \\ \text{points } (a^{i_1},...,a^{i_n})\text{, } \langle a\rangle = \mathbb{F}_p^*. \end{split}$$

→ Goal: recover the support of the error polynomial.



Conclusion.

- Definition of linear recurrent n-dimensional sequences with constant coefficients.
- Algorithms to compute the ideal of relations.
- Estimation of the number of table queries for these algorithms.
- Computation of the generating series.

Prospectives.

- Extension of these algorithms for the holonomic (P-recursive) n-dimensional sequences.
- Is Scalar-FGLM a matrix version of BMS?

Thank you for your attention!

Let $\mathcal{G} \subseteq \mathbb{K}[x]$ be a Gröbner basis of an ideal J and let S be its staircase. Given $\{[s]_{\boldsymbol{u}}|s\in S\}$, one can make a unique linear recurrent sequence $\boldsymbol{u}=(u_{\boldsymbol{i}})_{\boldsymbol{i}\in\mathbb{N}^n}$.

Furthermore, I the ideal of relations of u satisfies $J \subseteq I$.

Proof Sketch.

For any $i \in \mathbb{N}^n$, let $u_i = [NF(x^i, \mathcal{G})]_u$.

Example.

From $u_0 = a \neq 0$, $u_1 = b$ and $J = (x^2)$, we build the table

$$(a \ b \ 0 \ 0 \ \cdots).$$

Let $\mathcal{G} \subseteq \mathbb{K}[x]$ be a Gröbner basis of an ideal J and let S be its staircase. Given $\{[s]_{\boldsymbol{u}}|s\in S\}$, one can make a unique linear recurrent sequence $\boldsymbol{u}=(u_{\boldsymbol{i}})_{\boldsymbol{i}\in\mathbb{N}^n}$.

Furthermore, I the ideal of relations of u satisfies $J \subseteq I$.

Proof Sketch.

For any $i \in \mathbb{N}^n$, let $u_i = [NF(x^i, \mathcal{G})]_u$.

Example.

From $u_0 = a \neq 0$, $u_1 = b$ and $J = (x^2)$, we build the table

$$(a b 0 0 \cdots).$$

Its ideal of relation contains a polynomial of degree 1, if $\exists (\alpha, \beta) \neq (0, 0) \in \mathbb{K}^2$ such that $\alpha \, a + \beta \, b = 0$ and $\alpha \, b + \beta \, 0 = 0$.

Let $\mathcal{G} \subseteq \mathbb{K}[x]$ be a Gröbner basis of an ideal J and let S be its staircase. Given $\{[s]_{\boldsymbol{u}}|s\in S\}$, one can make a unique linear recurrent sequence $\boldsymbol{u}=(u_{\boldsymbol{i}})_{\boldsymbol{i}\in\mathbb{N}^n}$.

Furthermore, I the ideal of relations of u satisfies $J \subseteq I$.

Proof Sketch.

For any $i \in \mathbb{N}^n$, let $u_i = [NF(x^i, \mathcal{G})]_u$.

Example.

From $u_0 = a \neq 0$, $u_1 = b$ and $J = (x^2)$, we build the table

$$(a \ b \ 0 \ 0 \ \cdots).$$

Its ideal of relation contains a polynomial of degree 1, if $\exists (\alpha, \beta) \neq (0, 0) \in \mathbb{K}^2$ such that $\alpha \, a + \beta \, b = 0$ and $\alpha \, b + \beta \, 0 = 0$.

Let $\mathcal{G} \subseteq \mathbb{K}[x]$ be a Gröbner basis of an ideal J and let S be its staircase. Given $\{[s]_{\boldsymbol{u}}|s\in S\}$, one can make a unique linear recurrent sequence $\boldsymbol{u}=(u_{\boldsymbol{i}})_{\boldsymbol{i}\in\mathbb{N}^n}$.

Furthermore, I the ideal of relations of u satisfies $J \subseteq I$.

Proof Sketch.

For any $i \in \mathbb{N}^n$, let $u_i = [NF(x^i, \mathcal{G})]_u$.

Example.

From $u_0 = a \neq 0$, $u_1 = b$ and $J = (x^2)$, we build the table

$$(a \ b \ 0 \ 0 \ \cdots).$$

Its ideal of relation contains a polynomial of degree 1, if $\exists (\alpha, \beta) \neq (0, 0) \in \mathbb{K}^2$ such that $\alpha \, a + \beta \, b = 0$ and $\alpha \, b + \beta \, 0 = 0$.

- \rightarrow Thus, if $b \neq 0$, then $I = (x^2) = J$.
- \rightarrow If b=0, then I=(x).

Let $\mathcal{G} \subseteq \mathbb{K}[x]$ be a Gröbner basis of an ideal J and let S be its staircase. Given $\{[s]_{\boldsymbol{u}}|s\in S\}$, one can make a unique linear recurrent sequence $\boldsymbol{u}=(u_{\boldsymbol{i}})_{\boldsymbol{i}\in\mathbb{N}^n}$.

Furthermore, I the ideal of relations of u satisfies $J \subseteq I$ and is Gorenstein (i.e. $R = \mathbb{K}[x]/I$ is R-isomorphic to its dual) [Brachat, $et\ al.\ 2010$]).

Example.

From $u_{0,0} = a \neq 0, u_{1,0} = b, u_{0,1} = c$ and $J = (x^2, xy, y^2)$, we build the table

$$\begin{pmatrix} a & c & 0 & 0 & \cdots \\ b & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

Let $\mathcal{G} \subseteq \mathbb{K}[x]$ be a Gröbner basis of an ideal J and let S be its staircase. Given $\{[s]_{\boldsymbol{u}}|s\in S\}$, one can make a unique linear recurrent sequence $\boldsymbol{u}=(u_{\boldsymbol{i}})_{\boldsymbol{i}\in\mathbb{N}^n}$.

Furthermore, I the ideal of relations of u satisfies $J \subseteq I$ and is Gorenstein (i.e. $R = \mathbb{K}[x]/I$ is R-isomorphic to its dual) [Brachat, $et\ al.\ 2010$]).

Example.

From $u_{0,0} = a \neq 0, u_{1,0} = b, u_{0,1} = c$ and $J = (x^2, xy, y^2)$, we build the table

$$\begin{pmatrix} a & c & 0 & 0 & \cdots \\ b & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

Let $\mathcal{G} \subseteq \mathbb{K}[x]$ be a Gröbner basis of an ideal J and let S be its staircase. Given $\{[s]_{\boldsymbol{u}}|s\in S\}$, one can make a unique linear recurrent sequence $\boldsymbol{u}=(u_{\boldsymbol{i}})_{\boldsymbol{i}\in\mathbb{N}^n}$.

Furthermore, I the ideal of relations of u satisfies $J \subseteq I$ and is Gorenstein (i.e. $R = \mathbb{K}[x]/I$ is R-isomorphic to its dual) [Brachat, $et\ al.\ 2010$]).

Example.

From $u_{0,0} = a \neq 0, u_{1,0} = b, u_{0,1} = c$ and $J = (x^2, xy, y^2)$, we build the table

$$\begin{pmatrix} a & c & 0 & 0 & \cdots \\ b & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

Let $\mathcal{G} \subseteq \mathbb{K}[x]$ be a Gröbner basis of an ideal J and let S be its staircase. Given $\{[s]_{\boldsymbol{u}}|s\in S\}$, one can make a unique linear recurrent sequence $\boldsymbol{u}=(u_{\boldsymbol{i}})_{\boldsymbol{i}\in\mathbb{N}^n}$.

Furthermore, I the ideal of relations of u satisfies $J \subseteq I$ and is Gorenstein (i.e. $R = \mathbb{K}[x]/I$ is R-isomorphic to its dual) [Brachat, $et\ al.\ 2010$]).

Example.

From $u_{0,0} = a \neq 0, u_{1,0} = b, u_{0,1} = c$ and $J = (x^2, xy, y^2)$, we build the table

$$\begin{pmatrix} a & c & 0 & 0 & \cdots \\ b & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

Let $\mathcal{G} \subseteq \mathbb{K}[x]$ be a Gröbner basis of an ideal J and let S be its staircase. Given $\{[s]_{\boldsymbol{u}}|s\in S\}$, one can make a unique linear recurrent sequence $\boldsymbol{u}=(u_{\boldsymbol{i}})_{\boldsymbol{i}\in\mathbb{N}^n}$.

Furthermore, I the ideal of relations of u satisfies $J \subseteq I$ and is Gorenstein (i.e. $R = \mathbb{K}[x]/I$ is R-isomorphic to its dual) [Brachat, $et\ al.\ 2010$]).

Example.

From $u_{0,0} = a \neq 0, u_{1,0} = b, u_{0,1} = c$ and $J = (x^2, xy, y^2)$, we build the table

$$\left(\begin{array}{cccccc}
a & c & 0 & 0 & \cdots \\
b & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\right).$$

- \rightarrow Thus, if $b \neq 0$ and $c \neq 0$, then $I = (x \frac{c}{b}y, y^2) \supseteq J$.
- \rightarrow If b=0 (resp. c=0, b=c=0), then $I=(x,y^2)$, (resp. $I=(x^2,y)$, I=(x,y)).