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Problem — Finding the recurrent relations of a table 1

Problem.

Can we compress the following table:

( 1 2 4 8 16 \
3 —1 12 —4 48 ..
-3 8 —12 32 —48

9 —24 36 -96 144 -
32 48 —128 192 —512 .-

uop,0 uo,1 -

u—k ui,0 Ui,
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Solution.

For all (i, j) € N?, we have

Uij+2 = 4uij.

{Ui+2,j = Ui+1,54+1 — Ui j+1
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Problem.
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Solution.

— Extension of BERLEKAMP — MASSEY problem [BERLEKAMP 1968, MASSEY 1969]
We can compress u with

— 1 2

3 —1
Ui41,5+1 — Ui, j+1
4ui,j.
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— BERLEKAMP — MASSEY — SAKATA (BMS) algorithm computes these relations
[SAKATA 1988, 1990].




Correspondance between sequence terms and monomials 2

Definition.

Let u = (u;);enn be a n-dimensional sequence. Let © = (74, ..., x,), for any monomial
x*=xi -z, we define

We extend this definition to polynomials by linearity.

Example.

For u=(u;);enz and P=xq 20 — 20— 1,

[P] = w11 —u01— 00
[ZU%ZL”%P] = U3,4 —U2,4 — U2 3.




Linear recurrent sequences with constant coefficients 3

Definition — Dimension 1.

A nonzero sequence u = (u;);eN over K is linear recurrent with constant coefficients of
order d if there exist ag, ..., ag—1 € IK such that

d—1
VieN, wujpq+ E Qg Uit =0,
k=0
and d is minimal.

In other words, for all i € N, [z (29 + ZZ:) apz®)] =0.

Example.

o u=(3");cn is linear recurrent with constant coefficients of order 1.

o u=((37i+2)5;en and v = (2 + 3%);cn are both linear recurrent with constant
coefficients of order 2.

e u=(1/il);en is not linear recurrent with constant coefficients.




Linear recurrent sequences with constant coefficients 3

Definition — Dimension 1.

A nonzero sequence u = (u;);eN over K is linear recurrent with constant coefficients of
order d if there exist ag, ..., ag—1 € IK such that

d—1

VieN, wujpq+ Z Qg Uit =0,
k=0
and d is minimal.

In other words, for all i € N, [z (29 + ZZ:) apz®)] =0.

Proposition.

e Defining the ideal of relations of w as I = {P € K[|, [P] = 0}, then w is linear
recurrent with constant coefficients of order d if and only if dimy K[z] /I =d.

The knowledge of ug, ..., uq_1 and a generator of I allows us to compute u;, for all
1€ N.

o The generating series > .  u; 2 of w is in IK(z) if and only if w is linear recurrent
with constant coefficients.




e Dimension 1: BERLEKAMP — MASSEY algorithm (BM).
e Definitions of multidimensional recurrent sequences.

e FGLM: inspiration and application.

e Algorithms for finding the relations.

e Complexity of the queries.

e Computation of the generating series.

e Applications to SPARSE FGLM and correcting codes.




Hankel matrices 5

Definition.
Let t = (ti)OSiSQn—l- Matrix H = (hi,j)OSi,an—l is Hankel if for all Z,]Sn — 1,

hi,j=tliy;.

How to find the relations of a 1-dimensional sequence?

If one knows that sequence u = (u;);en is linear recurrent of order d.
e dag,....,aq_1,ViEN, agug+ -+ +ag—1ug—1+ uq=0.
Qouo+ -t ag—_1Ug—1 = —Ug

e Solve the Hankel system {

agUg—1+ -+t axg—1U24—2 = —U2d—1-




Hankel interpretation of BERLEKAMP — MASSEY (BM)

Matrix version of BM.

Input: A sequence u = (u;);en over K, d € N*.
Output: A polynomial of degree at most d + 1.

H:=(ujyj)o<i,j<d—1. /* a Hankel matrix */
Compute S’ ={sq, ..., S._1} the column rank profile.
/* {Cs,,....,Cs .} set of indep. columns with minimal indices in H */

R R
R P A uzm)\adl) ()

sr—1+1 r—1
Return z T i ®s;x”

Sj

Theorem. [BERLEKAMP 1968, MASSEY 1969, KALTOFEN, YUHASZ 2013]

BM algorithm is correct. It computes the polynomial of the relation in O(M(d) log d)
operations in K.




Hankel interpretation of BERLEKAMP — MASSEY (BM)

Matrix version of BM.

Input: A sequence u = (u;);en over K, d € N*.
Output: A polynomial of degree at most d + 1.

H:=(ujyj)o<i,j<d—1. /* a Hankel matrix */
Compute S’ ={sq, ..., S._1} the column rank profile.
/* {Cs,,....,Cs .} set of indep. columns with minimal indices in H */

(e YO () [ )
Find k%;_l)s.t. kusr_'ﬁso 3 msr 1 )\asr 1) k Wsr-ﬁl ) 0.

1 ,
Return o1 43707 a7,

J

Theorem. [BERLEKAMP 1968, MASSEY 1969, KALTOFEN, YUHASZ 2013]

BM algorithm is correct. It computes the polynomial of the relation in O(M(d) log d)
operations in K.




Multidimensional linear recurrent sequences (with constant coefficients)

Problem.

Definitions for n-dimensional sequences linear recurrent sequences extends badly dimen-
sion 1 definition:

[CHABANNE, NORTON 1992, SAINTS, HEEGARD 1995]
w is linear recurrent if there exists P € K[x]\ {0} such that for all i € N" [x? P] =0.

/ 1 2 4 8 \

1 2 4 8 -

—  Sequence u = (22/i1!);c NQ_L 1/2 1 2 4 - )satlsfles [x? (22— 2)] =0 but
1/6 1/3 2/3 4/

22
° ZieNg T b= 1e’ip2$;2 ¢ K(x);

e infinitely many coefficients u;, o=1/%1!,i1 € N needed to compute them all.

— Sequence b = ((2))7:611\12 — L

PAscAL’s rule, and

Zze}l\m( )zc = 1—9511_;1;13;2 € K(x) but

e infinitely many coefficients b;, o=1,i1 €N, by ;,=0,i2 € IN* to compute them all.

. J satisifies [x® (27 20 — 20 — 1)] = 0,




Definition in dimension n 8

Definition. [SAKATA 2009]

Let w = (u;);en be a nonzero n-dimensional sequence with coefficients in K. The
sequence u is linear recurrent if from a nonzero finite number of initial terms u;,7 € 5,
and a finite number of linear recurrence relations, without any contradiction, one can
compute any term of the sequence. We say the order is d if #5 =d and S is minimal.

Proposition.

Equivalently, w is linear recurrent if its ideal of relations has dimension 0.

Example.

1 2 4 8
/ 3 -1 12 —4 \ . . (ui,j>0§i,j§1 = (; _21>

e u=| -3 s -—12 32 . |islinear recurrent: { , e
9 —24 36 —96 - it+2,7 = Wit1,5+1 i,5+1
: : : : " Uq, 42 = 4’u27]

The ideal of relations is (2% — x4+ v, y* —4) of dimension 0 and u has order 4.

. (1950 (bio)ozi = 1
; : : <

o bz(()) o =| 1 2 1 o - |is not linear recurrent:{ (b, ;)1<; = 0
177, 5) €N R biti,j41 = bij41+0bi ;.

BMS for (b; ;). ;) with i + j <d returns ((x — 1) xy —y — 1, yo+h)
dimension —1!

(1) of




Definition in dimension n 8

Definition. [SAKATA 2009]

Let w = (u;);en be a nonzero n-dimensional sequence with coefficients in K. The
sequence u is linear recurrent if from a nonzero finite number of initial terms u;, 7 € .5,
and a finite number of linear recurrence relations, without any contradiction, one can
compute any term of the sequence. We say the order is d if #5 =d and S is minimal.

Theorem.

Sequence u is linear recurrent if, equivalently,
e its ideal of relations has dimension 0;

e its generating series

Example.

/ 1 2 4 8 \
The generating series of u:L B P J is A2 —82° fizéy_) ) (4y2—1)

9 —24 36 —96 -




FGLM viewpoint 9

Proposition.

Let w = (u;);enn~ be a linear recurrent sequence over K. Let S be the staircase of a
Grobner basis G of its ideal of relations .

Let 77, ..., T;, be the multiplication matrices by z1, ..., z,, in K[x]| /I with basis (s)scs.
Let 7 = (uog, ...) = ([S]u)scs, then

1
Vie N, w;=(r, T3 T 1), 1( ; )
0

Proof Sketch.

First, Tj*--- T/ - 1 is the vector representing a* in K[z] /1.
Then, the scalar product corresponds exactly to the evaluation [NF(x*, G)|a.

Idea.

Reciprocally, we can build a linear recurrent sequence with a Grébner basis and initial
terms!




Building a n-dimensional linear recurrent sequence

Theorem.

Let G C K|x] be a Grobner basis of an ideal J and let S be its staircase. Given {[s],|s €
S}, one can make a unique linear recurrent sequence u = (u;);eNn.

Furthermore, I the ideal of relations of w satisfies J C I and is Gorenstein (i.e. R =
K[x]| /I is R-isomorphic to its dual) [BRACHAT, et al. 2010]).

Proof Sketch.

For any i € N™, let u; = [NF(z*, G)]4.

Figure 1. D. GORENSTEIN (1923 — 1992) Figure 2. A. GROTHENDIECK (1928 — 2014)



Building a n-dimensional linear recurrent sequence

Theorem.

Let G C K|x] be a Grobner basis of an ideal J and let S be its staircase. Given {[s],|s €
S}, one can make a unique linear recurrent sequence u = (u;);eNn.

Furthermore, I the ideal of relations of w satisfies J C I and is Gorenstein (i.e. R =
K[x]| /I is R-isomorphic to its dual) [BRACHAT, et al. 2010]).

Example.
G={y*- Lz -2y} {[Lu=a,[yl.=0}

Remarks.

The Grobner basis does not yield any contradiction!
We will want relations in the sequence.

—  Find elements in the ideal. (The ideal is not known!)

— Find a Grobner basis ~ FGLM is an inspiration.
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Theorem.

Let G C K|x] be a Grobner basis of an ideal J and let S be its staircase. Given {[s],|s €
S}, one can make a unique linear recurrent sequence u = (u;);eNn.
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G={y*- Lz -2y} {[Lu=a,[yl.=0}

~(a b ab )

Remarks.

The Grobner basis does not yield any contradiction!
We will want relations in the sequence.

—  Find elements in the ideal. (The ideal is not known!)

— Find a Grobner basis ~ FGLM is an inspiration.




Building a n-dimensional linear recurrent sequence

Theorem.

Let G C K|x] be a Grobner basis of an ideal J and let S be its staircase. Given {[s].|s €
S}, one can make a unique linear recurrent sequence u = (u;);eNn.

Furthermore, I the ideal of relations of w satisfies J C I and is Gorenstein (i.e. R =
K[x]| /I is R-isomorphic to its dual) [BRACHAT, et al. 2010]).

Example.

G={y*—1Lz-2y}, {{llu=a, [yl.=0}

a b a b -
~1 2b 2a 2b 2a --

Remarks.

The Grobner basis does not yield any contradiction!
We will want relations in the sequence.

—  Find elements in the ideal. (The ideal is not known!)

— Find a Grobner basis ~ FGLM is an inspiration.




Reduction to 1-dimensional case

Idea.
Computation of a Grébner basis ~~ change of variables.

Proposition.

Natural action of GL,,(IK) on n-dimensional sequences.
Let A€ GL,(K) and £ = A -z, then from sequence u, we build v = A-u = ([£%],)icnn.
If w is linear recurrent with ideal I, then v is linear recurrent with ideal

A~V T:={P(A'z)|PeT).

One can compute {v;|>",  iy=|i| <d} in
e O(n??) memory space and operations in K;

e O(n9) queries to u.




Reduction to 1-dimensional case

Proposition.

Natural action of GL,,(IK) on n-dimensional sequences.
Let A€ GL,(K) and £ = A - x, then from sequence u, we build v=A-u=([£"]4)icnn.
If w is linear recurrent with ideal I, then v is linear recurrent with ideal

A~V T:={P(A'z)|PeT).

One can compute {v;|>",  ig=1i| < d} in
e O(n*?) memory space and operations in K;

o O(n9 queries to u.

Example.

V0,0 — U0,0
Ul,O:aU1,0+bU0,1 Uo,lzcu1,0+duo,1
'UQ’O:CL2U2,0+ 2abu1,1 + b2u0,2 V1,1 :ach,o—I— (ad+bc) U1, 1 +bdu0,2




Reduction to 1-dimensional case

Proposition.

Natural action of GL,,(IK) on n-dimensional sequences.
Let A€ GL,(K) and £ = A - x, then from sequence u, we build v=A-u=([£"]4)icnn.
If w is linear recurrent with ideal I, then v is linear recurrent with ideal

A~V T:={P(A'z)|PeT).

One can compute {v;|>",  ig=1i| < d} in
e O(n*?) memory space and operations in K;

o O(n9 queries to u.

Proof Sketch.

[P(A™ @)}y = [P(A~ A2)]u= [Plu=0.

With &= (&1,..., &), compute [(20+ &1 21+ + &5 20) Y.

. dl .
The coefficient of 201" 2i1... 27 is exactly v;.




Reduction to 1-dimensional case

Theorem — Advantage.

For a generic n-dimensional sequence w of ideal of relations I and random A € GL,,(KK),
A~1.T is in shape position:

A7 T=(x1—hi(xn), ooy Ty 1 — I _1(x), hp(xy)), degh,=d.

This computation requires
e to run BM algorithm in O(M(d) log d) operations in K for h,,;

e to solve n — 1 Hankel systems in O(n M(d) log d) operations in K for hq, ..., hy,—1;

e (n+1)d queries to the new table.

Example.

/ 1 2 4 8 \

3 -1 12 —4 ..

(1 _1 ) -3 8 —12 32 .. |=
9 —24 36 —96 -

[t

1 3 13 24 80 212 564 ) )
7 -3 -8 & & & & |yieldsideal

5 —
O A A A A & & &

(=203 +292+Ty+8,y' -4y -8y —4).




Reduction to 1-dimensional case

Theorem — Advantage.

For a generic n-dimensional sequence w of ideal of relations I and random A € GL,,(K),
A~1. T is in shape position:

AN T ={z1 —hi(xn), ooy Tn—1— hn_1(x), hn(2)), degh, =d.

This computation requires
e to run BM algorithm in O(M(d) log d) operations in K for h,,;

e to solve n — 1 Hankel systems in O(n M(d) log d) operations in K for hq, ..., hy,_1;

e (n-+1)d queries to the new table.

Drawback.

This change of variables requires:
e O(n%"2) memory space and operations in IK;

o O(n??) queries to the original table.




FGLM

FGLM Algorithm.

Input: A Grobner basis G; of a 0-dim. ideal I C K[x] wrt. <; and another ordering <s.
Output: A Grébner basis G of I wrt. <s.

L:={1},5:={},G2:={}.

While L+ & do
t:=min_, (L) and remove t from L.

t:=NF({t+>  gxs5,G1).
If 3(as)ses, t =0 then Go:=GaU{t+> g0 s} and remove multiples of ¢ from L.
Else S:=SU{t},L:=LU{z1t,...,xnt}.

Return §s.

Theorem. [FAUGERE, GIANNI, LAZARD, MORA 1993]

FGLM Algorithm is correct and computes G, in O(n d?) operations in K, where d is the
dimension of 1.




FGLM

Example.

We have G; = {x% + x9 — T, T3 — 1} wrt. DRL(z7; <1 22) and we want Go wrt.
LEX(ZEl <2 ZEQ).




FGLM

Example.

We have G; = {:v% + x9 — T, T3 — 1} wrt. DRL(z7; <1 22) and we want Go wrt.
LEX($1 <2 ZCQ).

o L={1}, NF(1,G,)=1.




FGLM

Example.

We have G; = {:v% + x9 — T, T3 — 1} wrt. DRL(z7; <1 22) and we want Go wrt.
LEX($1 <2 ZCQ).
e L={1}, NF(1,G;)=1.

o [ = {J}l, ZCQ}, NF(ZCl, gl) =T.




FGLM

Example.

We have G; = {:v% + x9 — T, T3 — 1} wrt. DRL(z7; <1 22) and we want Go wrt.

LEX(xl <92 ZCQ).

o L= {x%, Ta, T1 T2}, NF(z%,G1) = —xo + 1.

e L={1}, NF(1,G,)=1.
o L:{xl,:vg}, NF(:Cl,gl):iL'l.




FGLM

Example.

We have G; = {:v% + x9 — T, T3 — 1} wrt. DRL(z7; <1 22) and we want Go wrt.

LEX(ZEl <92 ZCQ).

o L= {a:%, Ta, T1 T2}, NF (2%, G1) = —xo + 1.

e L={1}, NF(1,G,)=1.
o L:{lel,ZCQ}, NF(:Cl,gl):ajl.

o [ —= {x?, T, T1 Lo, T Ta}, NF(x?, G1)=—x1T9— T2+ x1.




FGLM

Example.

We have G; = {:v% + x9 — T, T3 — 1} wrt. DRL(z7; <1 22) and we want Go wrt.

LEX(ZEl <92 ZCQ).

o L={1}, NF(1,G1)=1.

o L={z1,22}, NF(x1,G1)=11.

o L= {a:%, Ta, T1 T2}, NF (2%, G1) = —xo + 1.

o L= {a::f, T, T1 Lo, T Ta}, NF(:E‘%, G1)=—x1T9— T2+ x1.

4 9 4
o L={z7,19 2122 7722, T3 xa}, NF(21,G1) =—2x122 — 20+ 21+ 1.




FGLM

Example.

We have G; = {:v% + x9 — T, T3 — 1} wrt. DRL(z7; <1 22) and we want Go wrt.
LEX(ZEl <2 ZCQ).

o L={1}, NF(1,G1)=1.

o L={z1,22}, NF(x1,G1)=11.

o L= {a:%, Ta, T1 T2}, NF (2%, G1) = —xo + 1.

o L= {a::f, T, T1 Lo, T Ta}, NF(a::f, G1)=—x1T9— T2+ x1.

4 9 4
o L={z7,19 1122, 77T, T3 xa}, NF(z21,G1) = 22120 — 20+ 21 + 1.




FGLM

Example.

We have G; = {:v% + x9 — T, T3 — 1} wrt. DRL(z7; <1 22) and we want Go wrt.
LEX(ZEl <2 ZCQ).
e L={1}, NF(1,G;)=1.

o [ = {331, ZCQ}, NF(ZE;[, gl) =T.

o L={a} x0 x122}, NF(2%,G1)=—22+ 1.
° L={$§,$2,5B1$2,$%$2}, NF(ZE‘%, G1)=—x12T2— To+ 1.

o [ = {ZC%, To, T1 T2, ZC% To, ZC% 1132}, NF(SB%, Ql) = 22129 — 290+ 21+ 1=
(x1 =223+ 27— 1) € Go.

o L={w,xxo, T3 To, T3 x2}, NF(z9, G) = xa.




FGLM

Example.

We have G; = {:v% + x9 — T, T3 — 1} wrt. DRL(z7; <1 22) and we want Go wrt.
LEX(ZEl <2 ZCQ).

o L={1}, NF(1,G1)=1.

o L={x1,22}, NF(x1,G1)=11.

o L= {a:%, Ta, T1 T2}, NF (2%, G1) = —xo + 1.

o L= {a::f, T, T1 Lo, T Ta}, NF(a::f, G1)=—x1T9— T2+ x1.

o [ = {ZC%, To, T1 T2, ZC% To, ZC% 1132}, NF(SB%, Ql) = 22129 — 290+ 21+ 1=
(x1 =223+ 27— 1) € Go.

o L ={x9, 210, T3 To, T3 x2}, NF(29,G1) =20 = (12 + 3 — x1) € Go.




FGLM

Example.

We have G; = {:v% + x9 — T, T3 — 1} wrt. DRL(z7; <1 22) and we want Go wrt.
LEX(ZEl <2 ZCQ).

o L={1}, NF(1,G1)=1.

o L={z1,22}, NF(x1,G1)=11.

o L= {a:%, Ta, T1 T2}, NF (2%, G1) = —xo + 1.

o L= {a::f, T, T1 Lo, T Ta}, NF(:E‘%, G1)=—x1T9— T2+ x1.

o [ = {ZC%, To, T1 T2, ZC% To, ZC% 1132}, NF(SB%, Ql) = 22129 — 290+ 21+ 1=
(x1 =223+ 27— 1) € Go.

o L ={x9, 210, T3 To, T3 xa}, NF(29,G1) =x0= (12 + 3 — x1) € Go.

o L=, g2:{$%—2$?+£€%—1,£U2+ZL’%—ZU1}-




Back to sequences

What we want.

For a set of terms 7 and a polynomial P € K[x]|, we write

NF(P,T)=0< [t Pl,=0, VteT.

What we should have.

Any BMS-like algorithm will generate minimal relations:

a) Find P e K[z, s.t. NF(P,T)=0.

b) No nonzero relations ZHLT(P) oy [mt]y, =0 which are valid for all m e T.

Definition.

A finite set of terms S is a useful staircase if S is maximal for the inclusion, minimal for
<and ), Bitimtly=0, VmeS implies that 5, =0 for all £ € 5.




Useful staircase and multi-Hankel matrices

Example.
1 2 4 8 16
3 —1 12 —4 48 5 5
J— -3 8 —12 32 —48 J—
Foru_ 9 —24 36 —96 144 and T_{]"y’x’y 7ajy7'/1; }
—32 48 —128 192 —512 ..

s P=ari+ayy+as o+ ey + agyry+ ag2a? st NF(P,T) =0,
/1234—1_3\/‘1;\
2

4 -1 8 12 8 «
_ 3 —-1 -3 12 8 9 ax | __
e [tP]U_OD VieT «— 4 8 12 16 —4 —12 > g2 =0.
-1 12 8 —4 —12 —24 axy
-3 8 9 —12 —24 -3 o o
X

Finding a useful staircase is finding a maximal full rank submatrix ~~ rank profile.

Definition — Proposition.

For u = (u;);enn and two sorted sets of terms S, T, matrix Hg 7 is multi-Hankel

e

If S CT is a useful staircase, then rank Hg=rank Hr with Hg=Hg g.

Hs 7= ([stlu)ses ter=




Useful staircase is no staircase

Beware!

A useful staircase may fail to be a staircase.

Example.
/0 0 0 0 \
For u kg X (1) 8 jﬁ }and T={1y,z 9% xy =%}

( )

v Hr = ([st]w)s,teT = with useful staircase S={y,z,y* zy}, 1¢5.

SO OO oo
O OO OO
OO rRrOOO
SO O OO
[N olNoNoll o]
S OO O oo

Stabilization.

Stability criterion ensures we can turn a useful staircase into a staircase by adding divisors
of the terms.




SCALAR-FGLM

SCALAR-FGLM Algorithm.

Input: A sequence u = (u;);enn~ over IK, d € N* and < a monomial ordering.
Output: A reduced (d+ 1)-truncated Grobner basis wrt. < of the ideal of relations of wu.

T :={x*||i| < d} sorted by increasing order.
Hr:=([stlu)s,te7. /* a multi-Hankel matrix */
Compute S’ the useful staircase s.t. rank Hg=rank H.
S := Stabilize(S’).
L:={z*||i|<d+1}\S.
G:={}.
While L + @ do
t:=min~ (L) and remove ¢ from L.
Find a = (as)ses s.t. Herao+ Hgr 4y =0.
G:=GU{t+ Zses,ass} and remove multiples of ¢ from L.
Return G.

Proposition.

SCALAR-FGLM Algorithm is correct. If u is recursive of order D, then setting d =D
recovers the full Grébner basis.




Early termination?

Problem.

We can visit too many elements! Assume LT(G) = {z1, a:%} with x1 < 29, then we visit
{CB""il + 19 < 4}

Solution.

Take the shape of the Grobner basis into account!
Visit the monomial as in FGLM.

In FGLM, NF(f,G)=0=Vm,NF(m f,G)=0.
In BMS / SCALAR-FGLM, [f], =0 VYm,[m f],=0.




Early termination?

I From a staircase S, consider t =x; s for s€ S. If rank Hg ;) >rank Hg, follow the lead!

ADAPTIVE SCALAR-FGLM Algorithm.

Input: A sequence u = (u;);enn» over K, d € N* and < a monomial ordering.
Output: A reduced Grobner basis wrt. < of an ideal of degree at least d.
L:={1},5:={},G":={}.
While L. + 2 do
t:=min~ (L) and remove ¢ from L.
If Hsuyey is full rank then
S:=SU{t}, L:=LU{x1t,...,x,t} and remove multiples of G’ in L.
If #S >d then /* early termination */
G:={},G":=MinGBasis(G'U LU {x*||i| =degt + 1} \ S).
For all ' € G’ do
G:=GU{t' +3 . gass} with a=(as)ses st. Hsa+ Hg 11} =0.
Return S and G.
Else G':=G’U{t} and remove multiples of ¢ in L.
Error “Run SCALAR-FGLM".

Proposition.

S is a staircase of size at least d and for all g € G, NF(g,5)=0.
Can be extended to consider t; =x; s,ts =1 s for s €S and so on.




ADAPTIVE SCALAR-FGLM

Example.
(b2 )
For u:L 21—z o2 J DRL(x1 < x2) and d=4.




ADAPTIVE SCALAR-FGLM

Example.
(b2 )
For u:L 2 1 212 ;j;J, DRL(x1 < x2) and d=4.

m

o L={1}, rank H1y =1, S={1}.

o L={x, x5}, H{1,x1}:< i ; )




ADAPTIVE SCALAR-FGLM

Example.
/ 1 —2 —1 2 1
1 -6 —1 6 1
J— 2 1 —2 —1 2
FOI’ u= 6 1 -6 —1 6
—1 2 1 —2 —1

:

, DRL(z1 < x2) and d =4.

o L={1}, rank H1y =1, S={1}.

o L={zy, 22}, rank Hyy ;1 =2, S={1,21}.

1 1 -2
2
o L={wo,x1, x122}, H{l,xl’x2}2< 1 2 -6 )

—2 —6 —1




ADAPTIVE SCALAR-FGLM

i i

1
For u:L 2 1 21 ;j;J, DRL(x1 < x2) and d=4.

-6 —1 6

1
o L={zy, 22}, rank Hyy ;1 =2, S={1,21}.

o L={1}, rank H1y =1, S={1}.

° L:{ZEQ,ZC%,ZCl To}, rank Hyy o 2y =3, S=1{1,21,22}.

/ 1 1 -2 2
N ) 2 1 2 -6 6

® L_{x17$1 33273:2}1 H{l,xl,xg,ac%}— -2 —6 -1 1 )
2 6 1 -1




ADAPTIVE SCALAR-FGLM

i i

-6 —1 6

1
For u:L 2 1 21 ;j;J, DRL(x1 < x2) and d=4.

1
1 2 1 -2 -1 .-

o L={1}, rank H1y =1, S={1}.
o L={zy, 22}, rank Hyy ;1 =2, S={1,21}.

° L:{ZEQ,ZC%,ZCl To}, rank Hyy o 2y =3, S=1{1,21,22}.

o L={x} 1120 23} rank Hyq ,) o0 221 =3, G’ ={z%}.

/ 1 1 -2

_ 2 - 1 2 —6

o L_{:El ':C27x2}1 H{l,wl,xQ,CEle}_k -2 —6 —1
-6 1 -1

-6 \
1
—1

)




ADAPTIVE SCALAR-FGLM

(b2 )
For u:Lg Lozt ;j;J, DRL(x1 < x2) and d=4.

o L={1}, rankHjy =1, S={1}.
o L={zy, 22}, rank Hyy ;1 =2, S={1,21}.
° L:{ZUQ,ZC%,ZCl To}, rank Hyy 4 23 =3, S=1{1,21,22}.
o L={x} x4 29 23} rank Hpy o) o, 221 =3, G'={z%}.
/ 1 1 =2 —6\
o L={n :Cg,a:%}, H{l,wl’xQ’wle}:k _12 _26 :f _11 ) S={1,z1,x2, 122}
6 1 —1 —2

#S =4 ~~ Early termination! L:={z3 x; 23}
G'=MinGBasis(G'U LU {x*||i| =3} \ S) = {«1, 3}.




ADAPTIVE SCALAR-FGLM

(b2 )
For u:Lg Lozt ;j;J, DRL(x1 < x2) and d=4.

o L={1}, rankHjy =1, S={1}.
o L={zy, 22}, rank Hyy ;1 =2, S={1,21}.
° L:{ZUQ,ZC%,ZCl To}, rank Hyy 4 23 =3, S=1{1,21,22}.
o L={x} x4 29 23} rank Hpy o) o, 221 =3, G'={z%}.
/ 1 1 =2 —6\
o L={n :Cg,a:%}, H{l,wl’xQ’wle}:k _12 _26 :f _11 ) S={1,z1,x2, 122}
6 1 —1 —2

#S =4 ~~ Early termination! L:={z3 x; 23}
G’ =MinGBasis(G' U LU {x||i| =3} \ §) = {2%, 23} ~ G={a] —x9, 25+ 1}.




Queries complexity?

Proposition.

The number of table queries done by ADAPTIVE SCALAR-FGLM is the #(2.5) where
2S5={uv|lu,veS}.

Problem.

In the worst case #(25) <#S (#S —1)/2 < (#5)%/2.

In practice.
S={1,...,29},25={1,..., 2%} = #(25) =2 #5 — 1.

S = {aé||i| <d},2.8 = {xi||i| <2d} = #(25) < 2" #8S.




Geometry of the staircase

Worst case.

S=Ur {1 .., 2} #(28) =" (49)2.

Theorem. [RuszaA, 1994]
Set S is included in a n-dimensional parallelotope with C'#5S points iff. #(2.5) <c#S.




LEX order: multilevel block Hankel matrices

Definition. [FAsiNO, TiLLI 2000, SERRA-CAPIZZANO 2002]

A scalar is a multilevel block Hankel matrix of depth 0. Recursively, a multilevel block

Hankel matrix has depth n+ 1 if it is a block Hankel matrix where each block is multilevel
block Hankel of depth n.

Example.

SCALAR-FGLM on (2 + (1 + j) (1 4+ k))(,j.kens with LEX(z < y < 2) returns
I=((z-1)(x=2),(z-1)(y—1),(y = 1)* (x—1) (2 = 1), (2 = 1)?), with

j.
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S:{l,ZC,y,Z,yZ}, HS:L




LEX order: multilevel block Hankel matrices

Definition. [FAsiNO, TiLLI 2000, SERRA-CAPIZZANO 2002]

A scalar is a multilevel block Hankel matrix of depth 0. Recursively, a multilevel block
Hankel matrix has depth n+ 1 if it is a block Hankel matrix where each block is multilevel
block Hankel of depth n.

Example.

SCALAR-FGLM on (2 + (1 + j) (1 4+ k))(,j.kens with LEX(z < y < 2) returns
I=((z-1)(x=2),(z-1)(y—1),(y = 1)* (x—1) (2 = 1), (2 = 1)?), with
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LEX order: multilevel block Hankel matrices

Definition. [FAsiNO, TiLLI 2000, SERRA-CAPIZZANO 2002]

A scalar is a multilevel block Hankel matrix of depth 0. Recursively, a multilevel block

Hankel matrix has depth n+ 1 if it is a block Hankel matrix where each block is multilevel
block Hankel of depth n.

Example.

SCALAR-FGLM on (2 + (1 + j) (1 4+ k))(,j.kens with LEX(z < y < 2) returns
I=((z=1)(z—-2),(z-1)(y—1),(y=1)% (z = 1) (z = 1), (2 = 1)*), with

1 2 3|13 493 4|5 6

3 5|4 64 6|6 7

3 414 55 6|7 8

S:{l,:v,y,z,yz}, HS: 4 6|5 T7TQ@6 7118 10
3 415 6 g4 5|7 8

4 6|6 7T@5 7|8 10

5 6|7 8 Qg7 8|10 11

6 718 108 10|11 13




LEX order: multilevel block Hankel matrices
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Theorem. [BOSTAN, JEANNEROD, SCHOST 2007]

A quasi-Hankel system of size D and displ. rank a can be solved in O(a*~! M(D) log D).

Proposntlon

multilevel block Hankel of depth n system «can be solved in
d“’ "M(dy - d,—1)log(dy - dy—1)), with d; the number of blocks of depth i — 1.

Example.
SCALAR FGLM on (2" + (1 + j) (1 + k))i,j.k)ens with LEX(z < y < z) returns
(x=1)(z—-2),(y—1)(x—1),(y—=1)% (2 —1) (x — 1), (2 — 1)?), with

Highly structured ~~ better complexity bound?




Generating series

Proposition.

A n-dimensional sequence w is linear recurrent over IK with ideal of relations I if and
only if its generating series is

(d1—1,....dn—1)

Q- Qn Z u; z* | mod (x§*, ...,z
N(x) B i=(0,...,0)
Ql(xl) Qn(;[jn) o Ql(xl) Qn(xn) - IK(w),

where I NK[z;| = (F;), d;=deg P; and @), is the reverse polynomial of P;.

Proof Sketch.

o Easily proven for n=1: Q(z) 3.°° u; 2t = (Q(x) Y0 u;z) mod 27, with d degree
of P, [ =(P).

e Induction of n.




Generating series

Proposition.

A n-dimensional sequence w is linear recurrent over IK with ideal of relations I if and
only if its generating series is

(di—1,...,dn—1)
Q1 Qn Z us x* | mod (z§, ..., x4
N(m) B 1=(0,...,0)

Ql(xl) Qn(;(jn) - Ql(fl) Qn($n) c IK(w),

where I NK[z;| = (F;), d;=deg P; and @), is the reverse polynomial of P;.

Problem.

e How can we compute P € K|z4], ..., P, € K[z,]?

e Let d be the degree of I, then dy, ..., d,, <d. Assuming P, ..., P,, and thus Q, ...,
Qn, are know, computing N () requires at most O(n d”~*M(d)) operations in IK.




Algorithms for the denominator

GENERATING SERIES Algorithm.

Input: A sequence u = (u;);eNn.
Output: The n univariate polynomials P, ..., P,,.

Compute Ql = {Pl, PLQ, ceny Pl,ml} with SCALAR-FGLM for LEX($1 < [1’2, ceny ZEn])
For k& from 2 to n do

Compute Gy :={ Py, Pr.2, ..., Pi.m, } for LEX(zg < [21, ..k —1, Tly1, Tn)).
Return Py, ..., P,.

A subsequence (u; n,... N, )ien is linear recurrent with P in its ideal of relations.

I Better idea!




Algorithms for the denominator

Idea.

A subsequence (u; n,.... N, )ieN is linear recurrent with P, in its ideal of relations.
P is the lcm of relations of such sequences.
— Make a linear combination of such sequences to have P, has minimal relation.

Example.
/1 1 1 1 \
1 -1 1 —1 -
u=((-1) 9)(1’3)@\12:(1 111 ---)has ideal (2% —1,y%—1).
1 -1 1 —1 -

e For N even, subsequence (u; n)ien=(1)ien has ideal (z —1).
e For N odd, subsequence (u; n)ien=((—1)");en has ideal (x+1).

e For ay, as € K*, with probability 1/2, wlog. Ny is even, N is odd and sequence

(a1 us, Ny +@2ui Ny)ieN = (a1 + a2 (_1>i)i€N

has ideal (2% —1).




Algorithms for the denominator

Theorem.

Let w = (u;);enn be a n-dimensional linear recurrent sequence of order d over K.
FAST GENERATING SERIES Algorithm computes the n univariate polynomials in
O(n M(d) log d) operations in IK and at most 27 d? queries to the table.

FAST GENERATING SERIES Algorithm.

Input: A sequence u = (u;);eNn.
Output: The n univariate polynomials P, ..., P,,.

For k& from 1 to n do
For / from 1 to d do
Pick at random oy € K.
Pick at random Ng’l, ...,Ng,k_l,Ng’k+1, ...,Ng’nE {O,CZ— 1}.

Compute P, = BI\/I((ZZZ:1 QPUN, 1, .oosiyo, Non)ieNs ).
Return P, ..., P,.

Proof Sketch.

Each subsequence requires d rows of 2 d elements, hence at most 2n d? queries.
Each call to BM is in O(M(d) log d) operations in K.




Application to SPARSE-FGLM and Coding Theory

SPARSE-FGLM on Cyclic-n.

Input: A Grobner basis G; of I C K[x]| O-dim. wrt. <; and order <s.
Output: A Grébner basis Gy of I wrt. <.

Compute multiplication matrices 77, ..., T, wrt. x1, ..., x, in Klx]/I.

Pick at random a vector r = (rg, ...) = ([$]wu)ses, with S the staircase of G;.
Compute Go with SCALAR-FGLM on w= ((r, T} ---T'"-1));enn for <o.
If deg ((G2)) =#S then return Gs.

Else error “Not Gorenstein”

Cyclic-n | D | #Ranks | #Queries / (2"~ D)
— n equations in n variables of Cyclic-5 | 70| 76 0.5
d 1 Cyclic-6 | 156 | 167 0.3
cgree L, ..., n. Cyclic-7 | 924 [ 953 0.3

Coding Theory: n-dimensional cyclic codes.

: .. #Queries / #FErrors e Rarpdom ijﬁ)gg
— Sparse interpolation in 100 | | Y e s
Fplw]/(z} 7 =1, .,ah " = 1) at . F e
points (a',...,a"), (a) =T}, . » ~
— Goal: recover the support of the 4
error polynomial. 000 -6 -0 —-——@-————®

100.3 - &

| . #Errors

| | | |
50 100 150 200 300 400




Conclusion and Perspectives

Conclusion.

e Definition of linear recurrent n-dimensional sequences with constant coefficients.
e Algorithms to compute the ideal of relations.
e Estimation of the number of table queries for these algorithms.

e Computation of the generating series.

Prospectives.

e Extension of these algorithms for the holonomic (P-recursive) n-dimensional
sequences.

o Is SCALAR-FGLM a matrix version of BMS?




Thank you for your attention!




Building a n-dimensional linear recurrent sequence

Theorem.

Let G C K|x] be a Grobner basis of an ideal J and let S be its staircase. Given {[s],|s €
S}, one can make a unique linear recurrent sequence u = (u;);eNn.

Furthermore, I the ideal of relations of w satisfies J C I.

Proof Sketch.
For any i € N”, let u; = [NF(z*, G)]4.

Example.

From ugp=a+#0,u; =b and .J = (2?), we build the table

(a b 00 ).




Building a n-dimensional linear recurrent sequence

Theorem.

Let G C K|x] be a Grobner basis of an ideal J and let S be its staircase. Given {[s],|s €
S}, one can make a unique linear recurrent sequence u = (u;);eNn.

Furthermore, I the ideal of relations of w satisfies J C I.

Proof Sketch.

For any i € N”, let u; = [NF(z*, G)]4.

Example.

From ugp=a+#0,u; =b and .J = (2?), we build the table
(a b 00 )

Its ideal of relation contains a polynomial of degree 1, if 3(a, 3) # (0, 0) € IK? such that
aa+ Bb=0and ab+ S0=0.




Building a n-dimensional linear recurrent sequence

Theorem.

Let G C K|x] be a Grobner basis of an ideal J and let S be its staircase. Given {[s],|s €
S}, one can make a unique linear recurrent sequence u = (u;);eNn.

Furthermore, I the ideal of relations of w satisfies J C I.

Proof Sketch.
For any i € N”, let u; = [NF(z*, G)]4.

Example.

From ugp=a+#0,u; =b and .J = (2?), we build the table
(a b 00 )

Its ideal of relation contains a polynomial of degree 1, if 3(a, 3) # (0, 0) € IK? such that
aa+ Bb=0and ab+ S0=0.




Building a n-dimensional linear recurrent sequence

Theorem.

Let G C K|x] be a Grobner basis of an ideal J and let S be its staircase. Given {[s],|s €
S}, one can make a unique linear recurrent sequence u = (u;);eNn.

Furthermore, I the ideal of relations of w satisfies J C I.

Proof Sketch.

For any i € N”, let u; = [NF(z*, G)]4.

Example.

From ugp=a+#0,u; =b and .J = (2?), we build the table
(a b 00 )

Its ideal of relation contains a polynomial of degree 1, if 3(a, 3) # (0, 0) € IK? such that
aa+ Bb=0and ab+ S0=0.

— Thus, if b+0, then [ = (2%)=J.

— If b=0, then [ = (x).




Gorenstein ideal

Theorem.

Let G C K|x] be a Grobner basis of an ideal J and let S be its staircase. Given {[s],|s €
S}, one can make a unique linear recurrent sequence u = (u;);eNn.

Furthermore, I the ideal of relations of w satisfies J C I and is Gorenstein (i.e. R =
K[x]| /I is R-isomorphic to its dual) [BRACHAT, et al. 2010]).

Example.

From upo=a+0,u1,0=>b,up1=c and J = (2% zy, y?), we build the table

Its ideal of relation contains a polynomial of degree 1, if 3(a, 3,7) # (0,0,0) € K? such
that ca+ Bb+~vc=0, ab+ 0+~40=0and ac+ 0+ ~v0=0.

-
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Gorenstein ideal

Theorem.

Let G C K|x] be a Grobner basis of an ideal J and let S be its staircase. Given {[s],|s €
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Theorem.

Let G C K|x] be a Grobner basis of an ideal J and let S be its staircase. Given {[s],|s €
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Gorenstein ideal

Theorem.

Let G C K|x] be a Grobner basis of an ideal J and let S be its staircase. Given {[s],|s €
S}, one can make a unique linear recurrent sequence u = (u;);eNn.

Furthermore, I the ideal of relations of w satisfies J C I and is Gorenstein (i.e. R =
K[x]| /I is R-isomorphic to its dual) [BRACHAT, et al. 2010]).

Example.

From upo=a+0,u1,0=>b,up1=c and J = (2% zy, y?), we build the table

Its ideal of relation contains a polynomial of degree 1, if 3(a, 3,7) # (0,0,0) € K? such
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Gorenstein ideal

Theorem.

Let G C K|x] be a Grobner basis of an ideal J and let S be its staircase. Given {[s],|s €
S}, one can make a unique linear recurrent sequence u = (u;);eNn.

Furthermore, I the ideal of relations of w satisfies J C I and is Gorenstein (i.e. R =
K[x]| /I is R-isomorphic to its dual) [BRACHAT, et al. 2010]).

Example.

From upo=a+0,u1,0=>b,up1=c and J = (2% zy, y?), we build the table

Its ideal of relation contains a polynomial of degree 1, if 3(a, 3,7) # (0,0,0) € K? such
that aa+ b+ vc=0, ab+B0+~v0=0and ac+ 0+ v0=0.

— Thus, if b#0 and ¢#0, then [ = (2 —Zy,y%) 2 J.

— If b=0 (resp. ¢=0, b=c=0), then I = (z,y?), (resp. I = (2% y), [ =(x,v)).
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