Integer multiplication with generalized Fermat primes

Svyatoslav Covanov

CARAMEL Team, LORIA, University of Lorraine Supervised by: Emmanuel Thomé and Jérémie Detrey

Journées nationales du Calcul Formel 2015 (Cluny)

November 4, 2015

1 Fast Fourier Transform

- Naive multiplication
- Multiplying integer using polynomials
- FFT
- Schönhage-Strassen
- Some remarks
- Fürer
 - Factorization of FFT
 - A new ring and a new cut

- Using generalized Fermat primes
 - Number-theoretic transform
 - A Fürer-like number theoretic transform
 - Comparison of complexities

Fast Fourier Transform

- Naive multiplication
- Multiplying integer using polynomials
- FFT
- Schönhage-Strassen
- Some remarks

Fürer

- Factorization of FFT
- A new ring and a new cut

- Using generalized Fermat primes
 - Number-theoretic transform
 - A Fürer-like number theoretic transform
 - Comparison of complexities

How to multiply two numbers $a = (a_0 \cdots a_N)$ and $b = (b_0 \cdots b_N)$ where a and b are given in binary representation?

How to multiply two numbers $a = (a_0 \cdots a_N)$ and $b = (b_0 \cdots b_N)$ where a and b are given in binary representation?

First idea:

Sum all $a_i * b$ using 2-shift. This method has a $O(N^2)$ bit complexity.

How to multiply two numbers $a = (a_0 \cdots a_N)$ and $b = (b_0 \cdots b_N)$ where *a* and *b* are given in binary representation?

First idea:

Sum all $a_i * b$ using 2-shift. This method has a $O(N^2)$ bit complexity.

People believed long enough it was the best complexity we could reach (Kolmogorov). Karatsuba proved that it was wrong...

Input: 2 numbers *a* and *b* of *N* bits.

We decompose the input into 2 polynomials $A = \sum_i a_i x^i$ and $B = \sum_i b_i x^i$ (deg A = deg B = n, $|a_i| = |b_i| = N/(2n) = k$, and $a_i = b_i = 0$ for i > n).

$$A(2^{k}) = a_{0} + 2^{k} \times a_{1} + \dots + a_{2n-1} \times 2^{(2n-1)k} = a$$

$$B(2^{k}) = b_{0} + 2^{k} \times b_{1} + \dots + b_{2n-1} \times 2^{(2n-1)k} = b$$

Input: 2 numbers *a* and *b* of *N* bits.

We decompose the input into 2 polynomials $A = \sum_i a_i x^i$ and $B = \sum_i b_i x^i$ (deg A = deg B = n, $|a_i| = |b_i| = N/(2n) = k$, and $a_i = b_i = 0$ for i > n).

$$A(2^{k}) = a_{0} + 2^{k} \times a_{1} + \dots + a_{2n-1} \times 2^{(2n-1)k} = a$$

$$B(2^{k}) = b_{0} + 2^{k} \times b_{1} + \dots + b_{2n-1} \times 2^{(2n-1)k} = b$$

We work in some ring \mathcal{R} in which we have a 2n-th principal root of unity ω .

Input: 2 numbers *a* and *b* of *N* bits.

We decompose the input into 2 polynomials $A = \sum_i a_i x^i$ and $B = \sum_i b_i x^i$ (deg A = deg B = n, $|a_i| = |b_i| = N/(2n) = k$, and $a_i = b_i = 0$ for i > n).

$$A(2^{k}) = a_{0} + 2^{k} \times a_{1} + \dots + a_{2n-1} \times 2^{(2n-1)k} = a$$

$$B(2^{k}) = b_{0} + 2^{k} \times b_{1} + \dots + b_{2n-1} \times 2^{(2n-1)k} = b$$

We work in some ring \mathcal{R} in which we have a 2n-th principal root of unity ω .

We compute the $A(\omega^i)$ and $B(\omega^i)$.

Input: 2 numbers *a* and *b* of *N* bits.

We decompose the input into 2 polynomials $A = \sum_i a_i x^i$ and $B = \sum_i b_i x^i$ (deg A = deg B = n, $|a_i| = |b_i| = N/(2n) = k$, and $a_i = b_i = 0$ for i > n).

$$A(2^{k}) = a_{0} + 2^{k} \times a_{1} + \dots + a_{2n-1} \times 2^{(2n-1)k} = a$$

$$B(2^{k}) = b_{0} + 2^{k} \times b_{1} + \dots + b_{2n-1} \times 2^{(2n-1)k} = b$$

We work in some ring \mathcal{R} in which we have a 2n-th principal root of unity ω .

We compute the $A(\omega^i)$ and $B(\omega^i)$. We recover $A \cdot B$ from the points $A(\omega^i) \cdot B(\omega^i)$ with Lagrange interpolation for a polynomial of degree 2n - 1.

Input: 2 numbers *a* and *b* of *N* bits.

We decompose the input into 2 polynomials $A = \sum_i a_i x^i$ and $B = \sum_i b_i x^i$ (deg A = deg B = n, $|a_i| = |b_i| = N/(2n) = k$, and $a_i = b_i = 0$ for i > n).

$$A(2^{k}) = a_{0} + 2^{k} \times a_{1} + \dots + a_{2n-1} \times 2^{(2n-1)k} = a$$

$$B(2^{k}) = b_{0} + 2^{k} \times b_{1} + \dots + b_{2n-1} \times 2^{(2n-1)k} = b$$

We work in some ring \mathcal{R} in which we have a 2n-th principal root of unity ω .

We compute the $A(\omega^i)$ and $B(\omega^i)$. We recover $A \cdot B$ from the points $A(\omega^i) \cdot B(\omega^i)$ with Lagrange interpolation for a polynomial of degree 2n - 1. The DFT algorithm allows one to compute the $A(\omega^i)$ and $B(\omega^i)$.

P is a polynomial of degree 2n - 1 (*n* is a power of 2) and ω is a 2*n*-th principal root of unity in \mathcal{R} (\mathbb{C} or $\mathbb{Z}/p\mathbb{Z}$ for example), which means that $\sum_{j \in [0,2n-1]} \omega^{ij} = 0$ for $i \in [1,2n-1]$.

P is a polynomial of degree 2n - 1 (*n* is a power of 2) and ω is a 2*n*-th principal root of unity in \mathcal{R} (\mathbb{C} or $\mathbb{Z}/p\mathbb{Z}$ for example), which means that $\sum_{j \in [0,2n-1]} \omega^{ij} = 0$ for $i \in [1,2n-1]$.

 $FFT(P, \omega, 2n-1)$

if n = 1 then return $P_0 + P_1 + X(P_0 - P_1)$ end if $P^{even} \leftarrow (P_{2i})_i$ $P^{odd} \leftarrow (P_{2i+1})_i$ $Q^{even} \leftarrow FFT(P^{even}, \omega^2, n-1)$ $Q^{odd} \leftarrow FFT(P^{odd}, \omega^2, n-1)$ $Q \leftarrow Q^{even}(X) + Q^{odd}(\omega X) + X^n \cdot (Q^{odd}(X) - Q^{even}(\omega X))$ return Q *P* is a polynomial of degree 2n - 1 (*n* is a power of 2) and ω is a 2*n*-th principal root of unity in \mathcal{R} (\mathbb{C} or $\mathbb{Z}/p\mathbb{Z}$ for example), which means that $\sum_{j \in [0,2n-1]} \omega^{ij} = 0$ for $i \in [1,2n-1]$.

 $FFT(P, \omega, 2n-1)$

if n = 1 then return $P_0 + P_1 + X(P_0 - P_1)$ end if $P^{even} \leftarrow (P_{2i})_i$ $P^{odd} \leftarrow (P_{2i+1})_i$ $Q^{even} \leftarrow FFT(P^{even}, \omega^2, n-1)$ $Q^{odd} \leftarrow FFT(P^{odd}, \omega^2, n-1)$ $Q \leftarrow Q^{even}(X) + Q^{odd}(\omega X) + X^n \cdot (Q^{odd}(X) - Q^{even}(\omega X))$ return Q

Complexity: $O(n \log n)$ operations in \mathcal{R} , among which multiplications by some powers of ω , additions and subtractions.

Svyatoslav Covanov

Integer multiplication with generalized F

November 4, 2015

- N: # bits of the integers that we multiply.
- 2n: degree of the polynomials A and B used to represent a and b.
- k: # bits used to encode the coefficients of A and B: a = A(2^k) and b = B(2^k).

- N: # bits of the integers that we multiply.
- 2n: degree of the polynomials A and B used to represent a and b.
- k: # bits used to encode the coefficients of A and B: a = A(2^k) and b = B(2^k).

Examples:

 If R = C, then ω = exp(iπ/n). k = O(log N) is the best choice. Thus, the recursive calls are manipulating O(log N)-sized data during convolution step.

- N: # bits of the integers that we multiply.
- 2n: degree of the polynomials A and B used to represent a and b.
- k: # bits used to encode the coefficients of A and B: a = A(2^k) and b = B(2^k).

Examples:

- If R = C, then ω = exp(iπ/n). k = O(log N) is the best choice. Thus, the recursive calls are manipulating O(log N)-sized data during convolution step.
- If $\mathcal{R} = \mathbb{Z}/(2^e + 1)\mathbb{Z}$, then, $k \simeq e \simeq O(\sqrt{N})$ (smallest k possible).

Then $\omega = 2^j$ with j = e/n. Multiplications by powers of ω are negacyclic permutations.

Case	Degree	Mult. by a root	Recursion	Complexity
C	$O(N/\log N)$	expensive	$O(\log N)$	$N \log N \log \log N \cdots 2^{O(\log^* N)}$
$\mathbb{Z}/(2^e+1)\mathbb{Z}$	$O(\sqrt{N})$	cheap	$O(\sqrt{N})$	$N \log N \log \log N$

In \mathbb{C} , computing an FFT in $\{1, -1, i, -i\}$ is quite easy. But less obvious for superior orders...

1 Fast Fourier Transform

- Naive multiplication
- Multiplying integer using polynomials
- FFT
- Schönhage-Strassen
- Some remarks
- Fürer
 - Factorization of FFT
 - A new ring and a new cut

- 3 Using generalized Fermat primes
 - Number-theoretic transform
 - A Fürer-like number theoretic transform

14 / 23

• Comparison of complexities

Here you can see the butterfly graph for 16-point transform.

Below, the matrix representation:

(a ₀	a_1	a ₂	a3 \
a ₄	a_5	a ₆	a ₇
a ₈	ag	a ₁₀	a ₁₁
a_{12}	a ₁₃	a_{14}	a ₁₅ /

We start by inner transforms.

Below, the matrix representation:

(a ₀	a_1	a ₂	a3 \
a ₄	a ₅	a ₆	a ₇
a ₈	ag	<i>a</i> 10	a ₁₁
\ <i>a</i> 12	a ₁₃	a ₁₄	a ₁₅ /

There are 4 4-points FFT.

Svyatoslav Covanov

Then the outer ones.

Below, the matrix representation:

$\left(a_{0}\right)$	a ₁	a ₂	a3 \
a4	<i>a</i> 5	<i>a</i> 6	a7
a 8	ag	a ₁₀	a ₁₁
\ a ₁₂	a ₁₃	a ₁₄	a ₁₅ /

There are 4 4-points FFT.

Svyatoslav Covanov

- We use a polynomial ring \mathcal{R} of the form $\mathcal{R} = \mathbb{C}[x]/(x^P+1)$ or $\mathcal{R} = \mathbb{Z}[x]/(q^c, x^P+1)\mathbb{Z}$
- There exists a 2*n*-th root of unity ρ such that $\rho^{n/P} = x$ (Lagrange interpolation)
- The computation of 2*n*-points FFT is factored into the computation of log_{2P} 2*n* times *n*/*P* 2*P*-points FFT
- P = Θ(log N) and coefficients of elements of R are stored on Θ(log N) bits

- We use a polynomial ring \mathcal{R} of the form $\mathcal{R} = \mathbb{C}[x]/(x^P + 1)$ or $\mathcal{R} = \mathbb{Z}[x]/(q^c, x^P + 1)\mathbb{Z}$
- There exists a 2*n*-th root of unity ρ such that $\rho^{n/P} = x$ (Lagrange interpolation)
- The computation of 2*n*-points FFT is factored into the computation of log_{2P} 2*n* times *n*/*P* 2*P*-points FFT
- P = Θ(log N) and coefficients of elements of R are stored on Θ(log N) bits

Case	Degree	Mult. by a root	Recursion	Complexity
C	$O(N/\log N)$	expensive	$O(\log N)$	$N \log N \log \log N \cdots 2^{O(\log^* N)}$
$\mathbb{Z}/(2^e+1)\mathbb{Z}$	$O(\sqrt{N})$	cheap	$O(\sqrt{N})$	N log N log log N
$\mathbb{C}[x]/(x^P+1)$	$O(N/\log^2 N)$	it depends	$O(\log^2 N)$	$N \log N 2^{O(\log^* N)}$
$\mathbb{Z}[x]/(q^c, x^P+1)\mathbb{Z}$	$O(N/\log^2 N)$	it depends	$O(\log^2 N)$	$N \log N 2^{O(\log^* N)}$

1) Fast Fourier Transform

- Naive multiplication
- Multiplying integer using polynomials
- FFT
- Schönhage-Strassen
- Some remarks
- Fürei
 - Factorization of FFT
 - A new ring and a new cut

Using generalized Fermat primes

- Number-theoretic transform
- A Fürer-like number theoretic transform
- Comparison of complexities

Let us multiply integers by associating to them 2 polynomials of degree 2n - 1 for which the coefficients are embedded in a finite field $\mathcal{R} = \mathbb{Z}/q\mathbb{Z}$.

Let us multiply integers by associating to them 2 polynomials of degree 2n-1 for which the coefficients are embedded in a finite field $\mathcal{R} = \mathbb{Z}/q\mathbb{Z}$.

The prime q must verify: 2n | q - 1. Thus, there exists a 2n-th principal root of unity.

Let us multiply integers by associating to them 2 polynomials of degree 2n-1 for which the coefficients are embedded in a finite field $\mathcal{R} = \mathbb{Z}/q\mathbb{Z}$.

The prime q must verify: $2n \mid q - 1$. Thus, there exists a 2n-th principal root of unity.

- N: # bits of the integers that we multiply.
- 2n: degree of the polynomials A and B used to represent a and b.
- k: # bits used to encode the coefficients of A and B: a = A(2^k) and b = B(2^k); this number is given by roughly ¹/₂ log₂ q.

Let us multiply integers by associating to them 2 polynomials of degree 2n-1 for which the coefficients are embedded in a finite field $\mathcal{R} = \mathbb{Z}/q\mathbb{Z}$.

The prime q must verify: $2n \mid q - 1$. Thus, there exists a 2n-th principal root of unity.

• N: # bits of the integers that we multiply.

2n: degree of the polynomials A and B used to represent a and b.

• **k**: # bits used to encode the coefficients of A and B: $a = A(2^k)$ and $b = B(2^k)$; this number is given by roughly $\frac{1}{2}\log_2 q$.

A choice of q such that $k = O(\log N)$ is optimal.

- q is chosen such that q = b^P + 1. There exists b such that b < P ⋅ (log P)^{1+ϵ} for any ϵ > 0. Thus, log₂ q ≈ P log P.
- Let ρ be a 2*n*-th root of unity in $\mathbb{Z}/q\mathbb{Z}$ such that $\rho^{n/P} = b$.

- q is chosen such that q = b^P + 1. There exists b such that b < P ⋅ (log P)^{1+ϵ} for any ϵ > 0. Thus, log₂ q ≈ P log P.
- Let ρ be a 2*n*-th root of unity in $\mathbb{Z}/q\mathbb{Z}$ such that $\rho^{n/P} = b$.

Working in radix b is like working with "polynomials" of degree P whose coefficients are bounded by b.

 q is chosen such that q = b^P + 1. There exists b such that b < P ⋅ (log P)^{1+ϵ} for any ϵ > 0. Thus, log₂ q ≈ P log P.

• Let ρ be a 2*n*-th root of unity in $\mathbb{Z}/q\mathbb{Z}$ such that $\rho^{n/P} = b$.

Working in radix b is like working with "polynomials" of degree P whose coefficients are bounded by b.

	Naive Way	New way
x	x	$X(b) = x_0 + x_1 \cdot b + x_2 \cdot b^2 \cdots x_{P-1} \cdot b^{P-1}$
У	У	$Y(b) = y_0 + y_1 \cdot b + y_2 \cdot b^2 \cdots y_{P-1} \cdot b^{P-1}$
x * y	$z = x \cdot y$ and $x * y = z \mod q$	$Z = X \cdot Y \mod (X^P + 1)$ and $x * y = Z(b)$

Using Fürer's algorithm, we got:

Case	Degree	Mult. by a root	Recursion	Complexity
C	$O(N/\log N)$	expensive	$O(\log N)$	$N \log N \log \log N \cdots 2^{O(\log^* N)}$
$\mathbb{Z}/(2^e+1)\mathbb{Z}$	$O(\sqrt{N})$	cheap	$O(\sqrt{N})$	N log N log log N
$\mathbb{C}[x]/(x^P+1)$	$O(N/\log^2 N)$	it depends	$O(\log^2 N)$	$N \log N 2^{O(\log^* N)}$
$\mathbb{Z}[x]/(q^c, x^P+1)\mathbb{Z}$	$O(N/\log^2 N)$	it depends	$O(\log^2 N)$	$N \log N 2^{O(\log^* N)}$

Using Fürer's algorithm, we got:

Case	Degree	Mult. by a root	Recursion	Complexity
C	$O(N/\log N)$	expensive	$O(\log N)$	$N \log N \log \log N \cdots 2^{O(\log^* N)}$
$\mathbb{Z}/(2^e+1)\mathbb{Z}$	$O(\sqrt{N})$	cheap	$O(\sqrt{N})$	N log N log log N
$\mathbb{C}[x]/(x^P+1)$	$O(N/\log^2 N)$	it depends	$O(\log^2 N)$	$N \log N 2^{O(\log^* N)}$
$\mathbb{Z}[x]/(q^c, x^P+1)\mathbb{Z}$	$O(N/\log^2 N)$	it depends	$O(\log^2 N)$	$N \log N 2^{O(\log^* N)}$

Using the last trick, we get the following data:

Case	Degree	Mult. by a root	Recursion	Complexity
C	$O(N/\log N)$	expensive	$O(\log N)$	$N \log N \log \log N \cdots 2^{O(\log^* N)}$
$\mathbb{Z}/(2^e+1)\mathbb{Z}$	$O(\sqrt{N})$	cheap	$O(\sqrt{N})$	N log N log log N
$\mathbb{C}[x]/(x^P+1)$	$O(N/\log^2 N)$	it depends	$O(\log^2 N)$	$N \log N 2^{O(\log^* N)}$
$\mathbb{Z}[x]/(q^c, x^P+1)\mathbb{Z}$	$O(N/\log^2 N)$	it depends	$O(\log^2 N)$	$N \log N 2^{O(\log^* N)}$
$\mathbb{Z}/(b^P+1)\mathbb{Z}$	$O(N/(\log N \log \log N))$	it depends	$O(\log N \log \log N)$	$N \log N 2^{O(\log^* N)}$

With a careful complexity analysis, we get the following complexity estimate: $N \log N \cdot 4^{\log^* N}$ (the same as the one obtained by Harvey, Lecerf and Van der Hoeven with Mersenne primes).

With a careful complexity analysis, we get the following complexity estimate: $N \log N \cdot 4^{\log^* N}$ (the same as the one obtained by Harvey, Lecerf and Van der Hoeven with Mersenne primes).

An efficient implementation has to be done.

With a careful complexity analysis, we get the following complexity estimate: $N \log N \cdot 4^{\log^* N}$ (the same as the one obtained by Harvey, Lecerf and Van der Hoeven with Mersenne primes).

An efficient implementation has to be done.

Some limitations: efficient multiplication of two polynomials modulo $X^P + 1$ (bilinear rank), strategy for choosing a good prime, an algorithm for the decompositions...