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Fast Fourier Transform Naive multiplication

How to multiply two numbers a = (ag---ay) and b = (by - - - by)
where a and b are given in binary representation?
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Fast Fourier Transform Naive multiplication

How to multiply two numbers a = (ag---ay) and b = (by - - - by)
where a and b are given in binary representation?

First idea:
Sum all a; % b using 2-shift. This method has a O(N?) bit complexity.
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Fast Fourier Transform Naive multiplication

How to multiply two numbers a = (ag---ay) and b = (by - - - by)
where a and b are given in binary representation?

First idea:
Sum all a; % b using 2-shift. This method has a O(N?) bit complexity.

People believed long enough it was the best complexity we could
reach (Kolmogorov). Karatsuba proved that it was wrong...
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Fast Fourier Transform

Multiplying integer using polynomials

The fastest known algorithm is based on the evaluation-interpolation
paradigm.

Input: 2 numbers a and b of N bits.
We decompose the input into 2 polynomials A= 3" a;x" and

B =73, bix" (degA=degB=n, |a;] = |bi| = N/(2n) = k, and
aj=b; =0 fori>n).

A(2k) =ag + 2k Xay+---+ a1 X 2(2n—1)k: a
B(2k) :bo + 2k X b]_ + -4 bgn_]_ X 2(2n—1)k: b
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We work in some ring R in which we have a 2n-th principal root of
unity w.
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Fast Fourier Transform Multiplying integer using polynomials

The fastest known algorithm is based on the evaluation-interpolation
paradigm.

Input: 2 numbers a and b of N bits.

We decompose the input into 2 polynomials A= 3" a;x" and

B =73, bix" (degA=degB=n, |a;] = |bi| = N/(2n) = k, and
aj=b; =0 fori>n).

A(2k) =ag + 2k Xay+---+ a1 X 2(2n—1)k: a
B(2k) :bo + 2k X b]_ + -4 bgn_]_ X 2(2n—1)k: b
We work in some ring R in which we have a 2n-th principal root of

unity w.
We compute the A(w’) and B(w').
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Fast Fourier Transform Multiplying integer using polynomials

The fastest known algorithm is based on the evaluation-interpolation
paradigm.

Input: 2 numbers a and b of N bits.

We decompose the input into 2 polynomials A= 3" a;x" and

B =73, bix" (degA=degB=n, |a;] = |bi| = N/(2n) = k, and
aj=b; =0 fori>n).

A(2k) =ag + 2k Xay+---+ a1 X 2(2n—1)k: a
B(2k) :bo + 2k X b]_ + -4 bgn_]_ X 2(2n—1)k: b

We work in some ring R in which we have a 2n-th principal root of
unity w.

We compute the A(w’) and B(w').

We recover A - B from the points A(w') - B(w') with Lagrange
interpolation for a polynomial of degree 2n — 1.
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Fast Fourier Transform Multiplying integer using polynomials

The fastest known algorithm is based on the evaluation-interpolation
paradigm.

Input: 2 numbers a and b of N bits.

We decompose the input into 2 polynomials A= 3" a;x" and

B =73, bix" (degA=degB=n, |a;] = |bi| = N/(2n) = k, and
aj=b; =0 fori>n).

A(2k) =ag + 2k Xay+---+ a1 X 2(2n—1)k: a
B(2k) :bo + 2k X b]_ + -4 bgn_]_ X 2(2n—1)k: b

We work in some ring R in which we have a 2n-th principal root of
unity w.

We compute the A(w’) and B(w').

We recover A - B from the points A(w') - B(w') with Lagrange
interpolation for a polynomial of degree 2n — 1.

The DFT algorithm allows one to compute the A(w') and B(w').
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Fast Fourier Transform Multiplying integer using pol

[ao, .- -y a2n—1] [bo, ... b2p—1]

DFT

[xo0, ...V x2n—1] [vo,---Yy2n—1]

Component
Multiply

[xo¥0, - - s X2n—1¥2n—1]
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Fast Fourier Transform FFT

P is a polynomial of degree 2n — 1 (nis a power of 2) and w is a
2n-th principal root of unity in R (C or Z/pZ for example), which
means that 3. 1,5, jyw? =0 for i€ [1,2n—1].
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Fast Fourier Transform FFT

P is a polynomial of degree 2n — 1 (nis a power of 2) and w is a
2n-th principal root of unity in R (C or Z/pZ for example), which
means that 3. 1,5, jyw? =0 for i€ [1,2n—1].

FFT(P, w, 2n —1)

if n =1 then
return Py + P; + X(Py — P1)
end if
peven (le_)’_
Podd — (Pyjt1)i
Qeven s FFT(Peven, w2' n— 1)
Qo9 « FFT(P°¥, w? n—1)
Q «— Qeven(X) 4 QOdd(wX) L Xn. (QOdd(X) _ Qeven(wx))
return Q
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Fast Fourier Transform FFT

P is a polynomial of degree 2n — 1 (nis a power of 2) and w is a
2n-th principal root of unity in R (C or Z/pZ for example), which
means that 3. 1,5, jyw? =0 for i€ [1,2n—1].

FFT(P, w, 2n —1)

if n =1 then
return Py + P; + X(Py — P1)
end if
peven (le_)’_
Podd — (Pyjt1)i
Qeven s FFT(Peven, w2' n— 1)
Qo9 « FFT(P°¥, w? n—1)
Q «— Qeven(X) 4 QOdd(wX) L Xn. (Qodd(X) _ Qeven(wx))
return Q

Complexity: O(nlog n) operations in R, among which
multiplications by some powers of w, additions and subtractions.
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Fast Fourier Transform FFT

> Qbitrev(o)

> Qbitrev( 1)

> Qbitrev(2)
> Qbitrev(3)

> Qbitrev(4)

> Qbitrev(S)
> Qbitrev(())
> Qbitrev(?)

> Qbitrev(8)

> Qbitrev(o)
> Qbitre\l(lo)

Qbitrev 11)
> Qbitrev 12)

> Qbitrev 14)

(
(
> Qbitrev(13)
(
(

> Qbitrev(15)
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Fast Fourier Transform Schénhage-Strassen

© N: # bits of the integers that we multiply.
@ 2n: degree of the polynomials A and B used to represent a and

b.
© k: # bits used to encode the coefficients of A and B: a = A(2¥)
and b = B(2%).
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Fast Fourier Transform Schénhage-Strassen

© N: # bits of the integers that we multiply.
@ 2n: degree of the polynomials A and B used to represent a and

b.
© k: # bits used to encode the coefficients of A and B: a = A(2¥)
and b = B(2%).
Examples:

e If R =C, then w = exp(im/n). k = O(log N) is the best choice.
Thus, the recursive calls are manipulating O(log N)-sized data
during convolution step.
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Fast Fourier Transform Schénhage-Strassen

© N: # bits of the integers that we multiply.
@ 2n: degree of the polynomials A and B used to represent a and

b.
© k: # bits used to encode the coefficients of A and B: a = A(2*)
and b = B(2%).
Examples:

e If R =C, then w = exp(im/n). k = O(log N) is the best choice.
Thus, the recursive calls are manipulating O(log N)-sized data
during convolution step.

o If R =7/(2° +1)Z, then, k ~ e ~ O(/N) (smallest k
possible).

Then w = 2 with j = e/n. Multiplications by powers of w are
negacyclic permutations.
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Fast Fourier Transform Scl hage-Strassen

[ao, .- -y a2n—1] [bo, ... b2p—1]

DFT

[xo0, ...V x2n—1] [vo,---Yy2n—1]

Component
Multiply

[xo¥0, - - s X2n—1¥2n—1]
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Svyatoslav Covanov

Fast Fourier Transform Schénhage-Strassen

Modular Case
[ao,---iazn—ﬂ «---—- - > [bo, ..., ban_1]

DFT

|
Recursion
X0, - - x2n—1] \ o, - --Yy2n—1l

[xo¥0, - - s X2n—1¥Y2n—1]
inverse DFT
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Fast Fourier Transform Schénhage-Strassen

Complex Case

lao, .- jazp—1] <-------~ > [bo, ..., ban_1]

[Xo7~~{xzn1] I vo, .-V y2n—1l]

[xo¥0, - - - s X2n—1¥2n—1]

y
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Fast Fourier Transform Some remarks

Coefficients Expensive [ .
size? O(log N) multiplications? | DFT, Convolution ‘

z)(2¢ + 1)z | —Cocfficients 15 /5 Expensive Convolution

size? multiplications?
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Fast Fourier Transform Some remarks

Coefficients Expensive I -
size? O(log V) multiplications? | DFT, Convolution ‘
e Coefficients Expensive :|
/@2 + 1z size? O(VN) multiplications? Convolution
Case Degree Mult. by a root | Recursion Complexity
C O(N/log N) expensive O(log N) | N logN loglogN - -- 20(log™ V)
z/2¢+1)Z | O(VN) cheap O(V'N) N log N loglog N

In C, computing an FFT in {1,—1,i,—i} is quite easy. But less
obvious for superior orders...
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Fiirer

© Fiirer

@ Factorization of FFT
@ A new ring and a new
cut
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Here you can see the butterfly graph for 16-point transform.
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We start by inner transforms.
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There are 4 4-points FFT.




Then the outer ones.
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Firer A new ring and a new cut

@ We use a polynomial ring R of the form R = C[x]/(x" + 1) or
R =Z[x]/(q%,x" +1)Z

@ There exists a 2n-th root of unity p such that p"/P = x
(Lagrange interpolation)

@ The computation of 2n-points FFT is factored into the
computation of log,, 2n times n/P 2P-points FFT

o P = 0O(log N) and coefficients of elements of R are stored on
O(log N) bits
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Firer A new ring and a new cut

@ We use a polynomial ring R of the form R = C[x]/(x" + 1) or
R =Z[x]/(q%,x" +1)Z

@ There exists a 2n-th root of unity p such that p"/P = x
(Lagrange interpolation)

@ The computation of 2n-points FFT is factored into the
computation of log,, 2n times n/P 2P-points FFT

o P = 0O(log N) and coefficients of elements of R are stored on

O(log N) bits
Case Degree Mult. by a root | Recursion Complexity
C O(N/log N) expensive O(log N) | N log N loglog N ---200ee™ V)
Z)(2°+1)Z O(V'N) cheap O(V'N) N log N loglog N
C[x]/(x" +1) O(N/log? N) it depends O(log” N) N log N 200" N)
Z[x]/(q%,x7 + 1)Z | O(N/log? N) it depends O(log® N) N log N 20(og™N)
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Using generalized Fermat primes

© Using generalized Fermat

primes

@ Number-theoretic
transform

@ A Fiirer-like number
theoretic transform

@ Comparison of
complexities
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Using generalized Fermat primes Number-theoretic transform

Let us multiply integers by associating to them 2 polynomials of
degree 2n — 1 for which the coefficients are embedded in a finite field
R =17Z/qZ.
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Using generalized Fermat primes Number-theoretic transform

Let us multiply integers by associating to them 2 polynomials of
degree 2n — 1 for which the coefficients are embedded in a finite field

R =17Z/qZ.
The prime g must verify: 2n | g — 1. Thus, there exists a 2n-th
principal root of unity.

Svyatoslav Covanov Integer multiplication with generalized F November 4, 2015 20 / 23



Using generalized Fermat primes Number-theoretic transform

Let us multiply integers by associating to them 2 polynomials of
degree 2n — 1 for which the coefficients are embedded in a finite field

R =17Z/qZ.
The prime g must verify: 2n | g — 1. Thus, there exists a 2n-th
principal root of unity.

© N: # bits of the integers that we multiply.

© 2n: degree of the polynomials A and B used to represent a and
b.

© k: # bits used to encode the coefficients of A and B: a = A(2¥)
and b = B(2*); this number is given by roughly 1 log, q.
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Using generalized Fermat primes Number-theoretic transform

Let us multiply integers by associating to them 2 polynomials of
degree 2n — 1 for which the coefficients are embedded in a finite field
R =17Z/qZ.

The prime g must verify: 2n | g — 1. Thus, there exists a 2n-th
principal root of unity.

© N: # bits of the integers that we multiply.

© 2n: degree of the polynomials A and B used to represent a and
b.

© k: # bits used to encode the coefficients of A and B: a = A(2¥)
and b = B(2*); this number is given by roughly 1 log, q.

A choice of g such that k = O(log N) is optimal.
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Using generalized Fermat primes A Fiirer-like number theoretic transform

@ g is chosen such that g = b” + 1. There exists b such that
b < P - (log P)*¢ for any ¢ > 0. Thus, log, g ~ P log P.

@ Let p be a 2n-th root of unity in Z/qZ such that p"/* = b.
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@ g is chosen such that g = b” + 1. There exists b such that
b < P - (log P)*¢ for any ¢ > 0. Thus, log, g ~ P log P.

@ Let p be a 2n-th root of unity in Z/qZ such that p"/* = b.

Working in radix b is like working with "polynomials" of degree P
whose coefficients are bounded by b.
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Using generalized Fermat primes A Fiirer-like number theoretic transform

@ g is chosen such that g = b” + 1. There exists b such that
b < P - (log P)*¢ for any ¢ > 0. Thus, log, g ~ P log P.

@ Let p be a 2n-th root of unity in Z/qZ such that p"/* = b.

Working in radix b is like working with "polynomials" of degree P
whose coefficients are bounded by b.

Naive Way New way
X X X(b)=xg+x1-b+xy-b%-xp_1- b1
y y Y(b)=yo+y1-b+y,-b*---yp_1- b1
x*y|z=x-yandxxy=2z modq|Z=X-Y mod (X" +1)and xxy = Z(b)

Svyatoslav Covanov Integer multiplication with generalized F November 4, 2015 21 /23



Using generalized Fermat primes Comparison of complexities

Using Fiirer's algorithm, we got:

Case Degree Mult. by a root | Recursion Complexity
C O(N/log N) expensive O(log N) | N log N loglogN - -- 20(leg™ N)
Z/(2¢ +1)Z O(V/N) cheap O(V'N) N log N loglog N
Clx]/(x" + 1) O(N/log? N) it depends O(log” N) N log N 200&™ V)
Z[x1/(q,x7 + 1)Z | O(N/log® N) it depends O(log” N) N log N 200" V)
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Using generalized Fermat primes Comparison of complexities

Using Fiirer's algorithm, we got:

Case Degree Mult. by a root | Recursion Complexity
C O(N/log N) expensive O(log N) | N log N loglogN - -- 20(leg™ N)
Z/(2¢ +1)Z O(V'N) cheap O(V'N) N log N loglog N
Clx]/(x" + 1) O(N/log? N) it depends O(log” N) N log N 200&™ V)
Z[x1/(q,x7 + 1)Z | O(N/log® N) it depends O(log” N) N log N 200" V)

Using the last trick, we get the following data:

Case Degree Mult. by a root Recursion Complexity
c O(N/log N) expensive O(log N) N log N loglog N - - - 20T0g™ N)
Z/(2° +1)Z O(V/'N) cheap O(V/'N) N log N loglog N
Cl/(xP+1) O(N/log” N) it depends O(log? N) N log N 200" )
Z[x]/(q°,.x" + 1)Z O(N/ log? N) it depends 0O(log? N) N log N 200oe™N)
7/(b” +1)z O(N/(log N loglog N)) it depends O(log N loglog ) N log N 200log™ V)
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Removing the polynomial layer improves the complexity of the
algorithm.
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Removing the polynomial layer improves the complexity of the
algorithm.

With a careful complexity analysis, we get the following complexity
estimate: Nlog N - 4'°8" N (the same as the one obtained by Harvey,

Lecerf and Van der Hoeven with Mersenne primes).
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Removing the polynomial layer improves the complexity of the
algorithm.

With a careful complexity analysis, we get the following complexity
estimate: Nlog N - 4'°8" N (the same as the one obtained by Harvey,
Lecerf and Van der Hoeven with Mersenne primes).

An efficient implementation has to be done.
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Removing the polynomial layer improves the complexity of the
algorithm.

With a careful complexity analysis, we get the following complexity
estimate: Nlog N - 4'°8" N (the same as the one obtained by Harvey,
Lecerf and Van der Hoeven with Mersenne primes).

An efficient implementation has to be done.

Some limitations: efficient multiplication of two polynomials modulo
XP +1 (bilinear rank), strategy for choosing a good prime, an
algorithm for the decompositions...
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