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Fast Fourier Transform Naive multiplication

How to multiply two numbers a = (a0 · · · aN) and b = (b0 · · · bN)
where a and b are given in binary representation?

First idea:
Sum all ai ∗ b using 2-shift. This method has a O(N2) bit complexity.

People believed long enough it was the best complexity we could
reach (Kolmogorov). Karatsuba proved that it was wrong...
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Fast Fourier Transform Multiplying integer using polynomials

The fastest known algorithm is based on the evaluation-interpolation
paradigm.
Input: 2 numbers a and b of N bits.
We decompose the input into 2 polynomials A =

∑
i aix i and

B =
∑

i bix i (degA = degB = n, |ai | = |bi | = N/(2n) = k , and
ai = bi = 0 for i > n).

A(2k) =a0 + 2k × a1 + · · ·+ a2n−1 × 2(2n−1)k= a

B(2k) =b0 + 2k × b1 + · · ·+ b2n−1 × 2(2n−1)k= b

We work in some ring R in which we have a 2n-th principal root of
unity ω.
We compute the A(ωi) and B(ωi).
We recover A · B from the points A(ωi) · B(ωi) with Lagrange
interpolation for a polynomial of degree 2n − 1.
The DFT algorithm allows one to compute the A(ωi) and B(ωi).
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Fast Fourier Transform Multiplying integer using polynomials

[a0, . . . , a2n−1] [b0, . . . , b2n−1]

DFT DFT

[x0, . . . , x2n−1] [y0, . . . , y2n−1]

Component
Multiply

[x0y0, . . . , x2n−1y2n−1]

inverse DFT
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Fast Fourier Transform FFT

P is a polynomial of degree 2n − 1 (n is a power of 2) and ω is a
2n-th principal root of unity in R (C or Z/pZ for example), which
means that

∑
j∈[0,2n−1] ω

ij = 0 for i ∈ [1, 2n − 1].

FFT(P , ω, 2n − 1)
if n = 1 then

return P0 + P1 + X (P0 − P1)
end if
Peven ← (P2i )i
Podd ← (P2i+1)i
Qeven ← FFT(Peven, ω2, n − 1)
Qodd ← FFT(Podd , ω2, n − 1)
Q ← Qeven(X ) + Qodd (ωX ) + X n · (Qodd(X )− Qeven(ωX ))
return Q

Complexity: O(n log n) operations in R, among which
multiplications by some powers of ω, additions and subtractions.
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Fast Fourier Transform FFT
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Fast Fourier Transform Schönhage-Strassen

1 N: # bits of the integers that we multiply.
2 2n: degree of the polynomials A and B used to represent a and

b.
3 k : # bits used to encode the coefficients of A and B : a = A(2k)

and b = B(2k).

Examples:
If R = C, then ω = exp(iπ/n). k = O(logN) is the best choice.
Thus, the recursive calls are manipulating O(logN)-sized data
during convolution step.
If R = Z/(2e + 1)Z, then, k ' e ' O(

√
N) (smallest k

possible).
Then ω = 2j with j = e/n. Multiplications by powers of ω are
negacyclic permutations.
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Fast Fourier Transform Schönhage-Strassen

[a0, . . . , a2n−1] [b0, . . . , b2n−1]

DFT DFT

[x0, . . . , x2n−1] [y0, . . . , y2n−1]

Component
Multiply

[x0y0, . . . , x2n−1y2n−1]

inverse DFT
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Fast Fourier Transform Schönhage-Strassen

Modular Case

[a0, . . . , a2n−1] [b0, . . . , b2n−1]

DFT DFT

[x0, . . . , x2n−1] [y0, . . . , y2n−1]

Component
Multiply

[x0y0, . . . , x2n−1y2n−1]

inverse DFT

Recursion
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Fast Fourier Transform Schönhage-Strassen

Complex Case

[a0, . . . , a2n−1] [b0, . . . , b2n−1]

DFT DFT

[x0, . . . , x2n−1] [y0, . . . , y2n−1]

Component
Multiply

[x0y0, . . . , x2n−1y2n−1]

inverse DFT

Recursion

> <
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Fast Fourier Transform Some remarks

C

Z/(2e + 1)Z

O(logN)

O(
√

N)

Coefficients
size?

Coefficients
size?

DFT, Convolution

Convolution

Expensive
multiplications?

Expensive
multiplications?

Case Degree Mult. by a root Recursion Complexity
C O(N/ log N) expensive O(log N) N log N log log N · · · 2O(log∗ N)

Z/(2e + 1)Z O(
√

N) cheap O(
√

N) N log N log log N

In C, computing an FFT in {1,−1, i ,−i} is quite easy. But less
obvious for superior orders...
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Fürer Factorization of FFT

Here you can see the butterfly graph for 16-point transform.

a0 a4 a8 a12a1 a5 a9 a13a2 a6 a10 a14a3 a7 a11 a15

Below, the matrix repre-
sentation:

a0 a1 a2 a3
a4 a5 a6 a7
a8 a9 a10 a11
a12 a13 a14 a15


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Fürer Factorization of FFT

We start by inner transforms.

a0 a4 a8 a12a1 a5 a9 a13a2 a6 a10 a14a3 a7 a11 a15

Below, the matrix repre-
sentation:

a0 a1 a2 a3
a4 a5 a6 a7
a8 a9 a10 a11
a12 a13 a14 a15



There are 4 4-points FFT.
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Fürer Factorization of FFT

Then the outer ones.

a0 a4 a8 a12a1 a5 a9 a13a2 a6 a10 a14a3 a7 a11 a15

Below, the matrix repre-
sentation:
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Fürer A new ring and a new cut

We use a polynomial ring R of the form R = C[x ]/(xP + 1) or
R = Z[x ]/(qc , xP + 1)Z
There exists a 2n-th root of unity ρ such that ρn/P = x
(Lagrange interpolation)
The computation of 2n-points FFT is factored into the
computation of log2P 2n times n/P 2P-points FFT
P = Θ(logN) and coefficients of elements of R are stored on
Θ(logN) bits

Case Degree Mult. by a root Recursion Complexity
C O(N/ log N) expensive O(log N) N log N log log N · · · 2O(log∗ N)

Z/(2e + 1)Z O(
√

N) cheap O(
√

N) N log N log log N
C[x ]/(xP + 1) O(N/ log2 N) it depends O(log2 N) N log N 2O(log∗ N)

Z[x ]/(qc , xP + 1)Z O(N/ log2 N) it depends O(log2 N) N log N 2O(log∗ N)
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Using generalized Fermat primes
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Using generalized Fermat primes Number-theoretic transform

Let us multiply integers by associating to them 2 polynomials of
degree 2n − 1 for which the coefficients are embedded in a finite field
R = Z/qZ.

The prime q must verify: 2n | q − 1. Thus, there exists a 2n-th
principal root of unity.

1 N: # bits of the integers that we multiply.
2 2n: degree of the polynomials A and B used to represent a and

b.
3 k : # bits used to encode the coefficients of A and B : a = A(2k)

and b = B(2k); this number is given by roughly 1
2 log2 q.

A choice of q such that k = O(logN) is optimal.
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Using generalized Fermat primes A Fürer-like number theoretic transform

q is chosen such that q = bP + 1. There exists b such that
b < P · (logP)1+ε for any ε > 0. Thus, log2 q ≈ P logP .
Let ρ be a 2n-th root of unity in Z/qZ such that ρn/P = b.

Working in radix b is like working with "polynomials" of degree P
whose coefficients are bounded by b.

Naive Way New way
x x X (b) = x0 + x1 · b + x2 · b2 · · · xP−1 · bP−1

y y Y (b) = y0 + y1 · b + y2 · b2 · · · yP−1 · bP−1

x ∗ y z = x · y and x ∗ y = z mod q Z = X · Y mod (XP + 1) and x ∗ y = Z (b)
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y y Y (b) = y0 + y1 · b + y2 · b2 · · · yP−1 · bP−1

x ∗ y z = x · y and x ∗ y = z mod q Z = X · Y mod (XP + 1) and x ∗ y = Z (b)
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Using generalized Fermat primes Comparison of complexities

Using Fürer’s algorithm, we got:

Case Degree Mult. by a root Recursion Complexity
C O(N/ log N) expensive O(log N) N log N log log N · · · 2O(log∗ N)

Z/(2e + 1)Z O(
√

N) cheap O(
√

N) N log N log log N
C[x ]/(xP + 1) O(N/ log2 N) it depends O(log2 N) N log N 2O(log∗ N)

Z[x ]/(qc , xP + 1)Z O(N/ log2 N) it depends O(log2 N) N log N 2O(log∗ N)

Using the last trick, we get the following data:

Case Degree Mult. by a root Recursion Complexity
C O(N/ log N) expensive O(log N) N log N log log N · · · 2O(log∗ N)

Z/(2e + 1)Z O(
√

N) cheap O(
√

N) N log N log log N
C[x ]/(xP + 1) O(N/ log2 N) it depends O(log2 N) N log N 2O(log∗ N)

Z[x ]/(qc , xP + 1)Z O(N/ log2 N) it depends O(log2 N) N log N 2O(log∗ N)

Z/(bP + 1)Z O(N/(log N log log N)) it depends O(log N log log N) N log N 2O(log∗ N)
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Conclusion

Removing the polynomial layer improves the complexity of the
algorithm.

With a careful complexity analysis, we get the following complexity
estimate: N logN · 4log∗ N (the same as the one obtained by Harvey,
Lecerf and Van der Hoeven with Mersenne primes).

An efficient implementation has to be done.

Some limitations: efficient multiplication of two polynomials modulo
XP + 1 (bilinear rank), strategy for choosing a good prime, an
algorithm for the decompositions...
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