
Integer multiplication with generalized Fermat
primes

Svyatoslav Covanov

CARAMEL Team, LORIA, University of Lorraine
Supervised by: Emmanuel Thomé and Jérémie Detrey

Journées nationales du Calcul Formel 2015 (Cluny)

November 4, 2015



Summary

1 Fast Fourier Transform
Naive multiplication
Multiplying integer
using polynomials
FFT
Schönhage-Strassen
Some remarks

2 Fürer
Factorization of FFT
A new ring and a new
cut

3 Using generalized Fermat
primes

Number-theoretic
transform
A Fürer-like number
theoretic transform
Comparison of
complexities

Svyatoslav Covanov Integer multiplication with generalized Fermat primesNovember 4, 2015 2 / 23



Fast Fourier Transform

1 Fast Fourier Transform
Naive multiplication
Multiplying integer
using polynomials
FFT
Schönhage-Strassen
Some remarks

2 Fürer
Factorization of FFT
A new ring and a new
cut

3 Using generalized Fermat
primes

Number-theoretic
transform
A Fürer-like number
theoretic transform
Comparison of
complexities

Svyatoslav Covanov Integer multiplication with generalized Fermat primesNovember 4, 2015 3 / 23



Fast Fourier Transform Naive multiplication

How to multiply two numbers a = (a0 · · · aN) and b = (b0 · · · bN)
where a and b are given in binary representation?

First idea:
Sum all ai ∗ b using 2-shift. This method has a O(N2) bit complexity.

People believed long enough it was the best complexity we could
reach (Kolmogorov). Karatsuba proved that it was wrong...

Svyatoslav Covanov Integer multiplication with generalized Fermat primesNovember 4, 2015 4 / 23



Fast Fourier Transform Naive multiplication

How to multiply two numbers a = (a0 · · · aN) and b = (b0 · · · bN)
where a and b are given in binary representation?

First idea:
Sum all ai ∗ b using 2-shift. This method has a O(N2) bit complexity.

People believed long enough it was the best complexity we could
reach (Kolmogorov). Karatsuba proved that it was wrong...

Svyatoslav Covanov Integer multiplication with generalized Fermat primesNovember 4, 2015 4 / 23



Fast Fourier Transform Naive multiplication

How to multiply two numbers a = (a0 · · · aN) and b = (b0 · · · bN)
where a and b are given in binary representation?

First idea:
Sum all ai ∗ b using 2-shift. This method has a O(N2) bit complexity.

People believed long enough it was the best complexity we could
reach (Kolmogorov). Karatsuba proved that it was wrong...

Svyatoslav Covanov Integer multiplication with generalized Fermat primesNovember 4, 2015 4 / 23



Fast Fourier Transform Multiplying integer using polynomials

The fastest known algorithm is based on the evaluation-interpolation
paradigm.
Input: 2 numbers a and b of N bits.
We decompose the input into 2 polynomials A =

∑
i aix i and

B =
∑

i bix i (degA = degB = n, |ai | = |bi | = N/(2n) = k , and
ai = bi = 0 for i > n).

A(2k) =a0 + 2k × a1 + · · ·+ a2n−1 × 2(2n−1)k= a

B(2k) =b0 + 2k × b1 + · · ·+ b2n−1 × 2(2n−1)k= b

We work in some ring R in which we have a 2n-th principal root of
unity ω.
We compute the A(ωi) and B(ωi).
We recover A · B from the points A(ωi) · B(ωi) with Lagrange
interpolation for a polynomial of degree 2n − 1.
The DFT algorithm allows one to compute the A(ωi) and B(ωi).

Svyatoslav Covanov Integer multiplication with generalized Fermat primesNovember 4, 2015 5 / 23



Fast Fourier Transform Multiplying integer using polynomials

The fastest known algorithm is based on the evaluation-interpolation
paradigm.
Input: 2 numbers a and b of N bits.
We decompose the input into 2 polynomials A =

∑
i aix i and

B =
∑

i bix i (degA = degB = n, |ai | = |bi | = N/(2n) = k , and
ai = bi = 0 for i > n).

A(2k) =a0 + 2k × a1 + · · ·+ a2n−1 × 2(2n−1)k= a

B(2k) =b0 + 2k × b1 + · · ·+ b2n−1 × 2(2n−1)k= b

We work in some ring R in which we have a 2n-th principal root of
unity ω.

We compute the A(ωi) and B(ωi).
We recover A · B from the points A(ωi) · B(ωi) with Lagrange
interpolation for a polynomial of degree 2n − 1.
The DFT algorithm allows one to compute the A(ωi) and B(ωi).

Svyatoslav Covanov Integer multiplication with generalized Fermat primesNovember 4, 2015 5 / 23



Fast Fourier Transform Multiplying integer using polynomials

The fastest known algorithm is based on the evaluation-interpolation
paradigm.
Input: 2 numbers a and b of N bits.
We decompose the input into 2 polynomials A =

∑
i aix i and

B =
∑

i bix i (degA = degB = n, |ai | = |bi | = N/(2n) = k , and
ai = bi = 0 for i > n).

A(2k) =a0 + 2k × a1 + · · ·+ a2n−1 × 2(2n−1)k= a

B(2k) =b0 + 2k × b1 + · · ·+ b2n−1 × 2(2n−1)k= b

We work in some ring R in which we have a 2n-th principal root of
unity ω.
We compute the A(ωi) and B(ωi).

We recover A · B from the points A(ωi) · B(ωi) with Lagrange
interpolation for a polynomial of degree 2n − 1.
The DFT algorithm allows one to compute the A(ωi) and B(ωi).

Svyatoslav Covanov Integer multiplication with generalized Fermat primesNovember 4, 2015 5 / 23



Fast Fourier Transform Multiplying integer using polynomials

The fastest known algorithm is based on the evaluation-interpolation
paradigm.
Input: 2 numbers a and b of N bits.
We decompose the input into 2 polynomials A =

∑
i aix i and

B =
∑

i bix i (degA = degB = n, |ai | = |bi | = N/(2n) = k , and
ai = bi = 0 for i > n).

A(2k) =a0 + 2k × a1 + · · ·+ a2n−1 × 2(2n−1)k= a

B(2k) =b0 + 2k × b1 + · · ·+ b2n−1 × 2(2n−1)k= b

We work in some ring R in which we have a 2n-th principal root of
unity ω.
We compute the A(ωi) and B(ωi).
We recover A · B from the points A(ωi) · B(ωi) with Lagrange
interpolation for a polynomial of degree 2n − 1.

The DFT algorithm allows one to compute the A(ωi) and B(ωi).

Svyatoslav Covanov Integer multiplication with generalized Fermat primesNovember 4, 2015 5 / 23



Fast Fourier Transform Multiplying integer using polynomials

The fastest known algorithm is based on the evaluation-interpolation
paradigm.
Input: 2 numbers a and b of N bits.
We decompose the input into 2 polynomials A =

∑
i aix i and

B =
∑

i bix i (degA = degB = n, |ai | = |bi | = N/(2n) = k , and
ai = bi = 0 for i > n).

A(2k) =a0 + 2k × a1 + · · ·+ a2n−1 × 2(2n−1)k= a

B(2k) =b0 + 2k × b1 + · · ·+ b2n−1 × 2(2n−1)k= b

We work in some ring R in which we have a 2n-th principal root of
unity ω.
We compute the A(ωi) and B(ωi).
We recover A · B from the points A(ωi) · B(ωi) with Lagrange
interpolation for a polynomial of degree 2n − 1.
The DFT algorithm allows one to compute the A(ωi) and B(ωi).

Svyatoslav Covanov Integer multiplication with generalized Fermat primesNovember 4, 2015 5 / 23



Fast Fourier Transform Multiplying integer using polynomials

[a0, . . . , a2n−1] [b0, . . . , b2n−1]

DFT DFT

[x0, . . . , x2n−1] [y0, . . . , y2n−1]

Component
Multiply

[x0y0, . . . , x2n−1y2n−1]

inverse DFT

Svyatoslav Covanov Integer multiplication with generalized Fermat primesNovember 4, 2015 6 / 23



Fast Fourier Transform FFT

P is a polynomial of degree 2n − 1 (n is a power of 2) and ω is a
2n-th principal root of unity in R (C or Z/pZ for example), which
means that

∑
j∈[0,2n−1] ω

ij = 0 for i ∈ [1, 2n − 1].

FFT(P , ω, 2n − 1)
if n = 1 then

return P0 + P1 + X (P0 − P1)
end if
Peven ← (P2i )i
Podd ← (P2i+1)i
Qeven ← FFT(Peven, ω2, n − 1)
Qodd ← FFT(Podd , ω2, n − 1)
Q ← Qeven(X ) + Qodd (ωX ) + X n · (Qodd(X )− Qeven(ωX ))
return Q

Complexity: O(n log n) operations in R, among which
multiplications by some powers of ω, additions and subtractions.

Svyatoslav Covanov Integer multiplication with generalized Fermat primesNovember 4, 2015 7 / 23



Fast Fourier Transform FFT

P is a polynomial of degree 2n − 1 (n is a power of 2) and ω is a
2n-th principal root of unity in R (C or Z/pZ for example), which
means that

∑
j∈[0,2n−1] ω

ij = 0 for i ∈ [1, 2n − 1].

FFT(P , ω, 2n − 1)
if n = 1 then

return P0 + P1 + X (P0 − P1)
end if
Peven ← (P2i )i
Podd ← (P2i+1)i
Qeven ← FFT(Peven, ω2, n − 1)
Qodd ← FFT(Podd , ω2, n − 1)
Q ← Qeven(X ) + Qodd (ωX ) + X n · (Qodd(X )− Qeven(ωX ))
return Q

Complexity: O(n log n) operations in R, among which
multiplications by some powers of ω, additions and subtractions.

Svyatoslav Covanov Integer multiplication with generalized Fermat primesNovember 4, 2015 7 / 23



Fast Fourier Transform FFT

P is a polynomial of degree 2n − 1 (n is a power of 2) and ω is a
2n-th principal root of unity in R (C or Z/pZ for example), which
means that

∑
j∈[0,2n−1] ω

ij = 0 for i ∈ [1, 2n − 1].

FFT(P , ω, 2n − 1)
if n = 1 then

return P0 + P1 + X (P0 − P1)
end if
Peven ← (P2i )i
Podd ← (P2i+1)i
Qeven ← FFT(Peven, ω2, n − 1)
Qodd ← FFT(Podd , ω2, n − 1)
Q ← Qeven(X ) + Qodd (ωX ) + X n · (Qodd(X )− Qeven(ωX ))
return Q

Complexity: O(n log n) operations in R, among which
multiplications by some powers of ω, additions and subtractions.

Svyatoslav Covanov Integer multiplication with generalized Fermat primesNovember 4, 2015 7 / 23



Fast Fourier Transform FFT

P0

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗

⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗

⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗
⊗

Qbitrev(0)

Qbitrev(1)

Qbitrev(2)

Qbitrev(3)

Qbitrev(4)

Qbitrev(5)

Qbitrev(6)

Qbitrev(7)

Qbitrev(8)

Qbitrev(9)

Qbitrev(10)

Qbitrev(11)

Qbitrev(12)

Qbitrev(13)

Qbitrev(14)

Qbitrev(15)

ω0

ω0

ω0

ω0

ω4

ω4

ω4

ω4

ω0

ω0

ω2

ω2

ω4

ω4

ω6

ω6

ω0

ω1

ω2

ω3

ω4

ω5

ω6

ω7

Svyatoslav Covanov Integer multiplication with generalized Fermat primesNovember 4, 2015 8 / 23



Fast Fourier Transform Schönhage-Strassen

1 N: # bits of the integers that we multiply.
2 2n: degree of the polynomials A and B used to represent a and

b.
3 k : # bits used to encode the coefficients of A and B : a = A(2k)

and b = B(2k).

Examples:
If R = C, then ω = exp(iπ/n). k = O(logN) is the best choice.
Thus, the recursive calls are manipulating O(logN)-sized data
during convolution step.
If R = Z/(2e + 1)Z, then, k ' e ' O(

√
N) (smallest k

possible).
Then ω = 2j with j = e/n. Multiplications by powers of ω are
negacyclic permutations.

Svyatoslav Covanov Integer multiplication with generalized Fermat primesNovember 4, 2015 9 / 23



Fast Fourier Transform Schönhage-Strassen

1 N: # bits of the integers that we multiply.
2 2n: degree of the polynomials A and B used to represent a and

b.
3 k : # bits used to encode the coefficients of A and B : a = A(2k)

and b = B(2k).

Examples:
If R = C, then ω = exp(iπ/n). k = O(logN) is the best choice.
Thus, the recursive calls are manipulating O(logN)-sized data
during convolution step.

If R = Z/(2e + 1)Z, then, k ' e ' O(
√

N) (smallest k
possible).
Then ω = 2j with j = e/n. Multiplications by powers of ω are
negacyclic permutations.

Svyatoslav Covanov Integer multiplication with generalized Fermat primesNovember 4, 2015 9 / 23



Fast Fourier Transform Schönhage-Strassen

1 N: # bits of the integers that we multiply.
2 2n: degree of the polynomials A and B used to represent a and

b.
3 k : # bits used to encode the coefficients of A and B : a = A(2k)

and b = B(2k).

Examples:
If R = C, then ω = exp(iπ/n). k = O(logN) is the best choice.
Thus, the recursive calls are manipulating O(logN)-sized data
during convolution step.
If R = Z/(2e + 1)Z, then, k ' e ' O(

√
N) (smallest k

possible).
Then ω = 2j with j = e/n. Multiplications by powers of ω are
negacyclic permutations.

Svyatoslav Covanov Integer multiplication with generalized Fermat primesNovember 4, 2015 9 / 23



Fast Fourier Transform Schönhage-Strassen

[a0, . . . , a2n−1] [b0, . . . , b2n−1]

DFT DFT

[x0, . . . , x2n−1] [y0, . . . , y2n−1]

Component
Multiply

[x0y0, . . . , x2n−1y2n−1]

inverse DFT

Svyatoslav Covanov Integer multiplication with generalized Fermat primesNovember 4, 2015 10 / 23



Fast Fourier Transform Schönhage-Strassen

Modular Case

[a0, . . . , a2n−1] [b0, . . . , b2n−1]

DFT DFT

[x0, . . . , x2n−1] [y0, . . . , y2n−1]

Component
Multiply

[x0y0, . . . , x2n−1y2n−1]

inverse DFT

Recursion

Svyatoslav Covanov Integer multiplication with generalized Fermat primesNovember 4, 2015 11 / 23



Fast Fourier Transform Schönhage-Strassen

Complex Case

[a0, . . . , a2n−1] [b0, . . . , b2n−1]

DFT DFT

[x0, . . . , x2n−1] [y0, . . . , y2n−1]

Component
Multiply

[x0y0, . . . , x2n−1y2n−1]

inverse DFT

Recursion

> <

Svyatoslav Covanov Integer multiplication with generalized Fermat primesNovember 4, 2015 12 / 23



Fast Fourier Transform Some remarks

C

Z/(2e + 1)Z

O(logN)

O(
√

N)

Coefficients
size?

Coefficients
size?

DFT, Convolution

Convolution

Expensive
multiplications?

Expensive
multiplications?

Case Degree Mult. by a root Recursion Complexity
C O(N/ log N) expensive O(log N) N log N log log N · · · 2O(log∗ N)

Z/(2e + 1)Z O(
√

N) cheap O(
√

N) N log N log log N

In C, computing an FFT in {1,−1, i ,−i} is quite easy. But less
obvious for superior orders...

Svyatoslav Covanov Integer multiplication with generalized Fermat primesNovember 4, 2015 13 / 23



Fast Fourier Transform Some remarks

C

Z/(2e + 1)Z

O(logN)

O(
√

N)

Coefficients
size?

Coefficients
size?

DFT, Convolution

Convolution

Expensive
multiplications?

Expensive
multiplications?

Case Degree Mult. by a root Recursion Complexity
C O(N/ log N) expensive O(log N) N log N log log N · · · 2O(log∗ N)

Z/(2e + 1)Z O(
√

N) cheap O(
√

N) N log N log log N

In C, computing an FFT in {1,−1, i ,−i} is quite easy. But less
obvious for superior orders...

Svyatoslav Covanov Integer multiplication with generalized Fermat primesNovember 4, 2015 13 / 23



Fürer

1 Fast Fourier Transform
Naive multiplication
Multiplying integer
using polynomials
FFT
Schönhage-Strassen
Some remarks

2 Fürer
Factorization of FFT
A new ring and a new
cut

3 Using generalized Fermat
primes

Number-theoretic
transform
A Fürer-like number
theoretic transform
Comparison of
complexities

Svyatoslav Covanov Integer multiplication with generalized Fermat primesNovember 4, 2015 14 / 23



Fürer Factorization of FFT

Here you can see the butterfly graph for 16-point transform.

a0 a4 a8 a12a1 a5 a9 a13a2 a6 a10 a14a3 a7 a11 a15

Below, the matrix repre-
sentation:

a0 a1 a2 a3
a4 a5 a6 a7
a8 a9 a10 a11
a12 a13 a14 a15



Svyatoslav Covanov Integer multiplication with generalized Fermat primesNovember 4, 2015 15 / 23



Fürer Factorization of FFT

We start by inner transforms.

a0 a4 a8 a12a1 a5 a9 a13a2 a6 a10 a14a3 a7 a11 a15

Below, the matrix repre-
sentation:

a0 a1 a2 a3
a4 a5 a6 a7
a8 a9 a10 a11
a12 a13 a14 a15



There are 4 4-points FFT.
Svyatoslav Covanov Integer multiplication with generalized Fermat primesNovember 4, 2015 16 / 23



Fürer Factorization of FFT

Then the outer ones.

a0 a4 a8 a12a1 a5 a9 a13a2 a6 a10 a14a3 a7 a11 a15

Below, the matrix repre-
sentation:

a0 a1 a2 a3
a4 a5 a6 a7
a8 a9 a10 a11
a12 a13 a14 a15



There are 4 4-points FFT.

Svyatoslav Covanov Integer multiplication with generalized Fermat primesNovember 4, 2015 17 / 23



Fürer A new ring and a new cut

We use a polynomial ring R of the form R = C[x ]/(xP + 1) or
R = Z[x ]/(qc , xP + 1)Z
There exists a 2n-th root of unity ρ such that ρn/P = x
(Lagrange interpolation)
The computation of 2n-points FFT is factored into the
computation of log2P 2n times n/P 2P-points FFT
P = Θ(logN) and coefficients of elements of R are stored on
Θ(logN) bits

Case Degree Mult. by a root Recursion Complexity
C O(N/ log N) expensive O(log N) N log N log log N · · · 2O(log∗ N)

Z/(2e + 1)Z O(
√

N) cheap O(
√

N) N log N log log N
C[x ]/(xP + 1) O(N/ log2 N) it depends O(log2 N) N log N 2O(log∗ N)

Z[x ]/(qc , xP + 1)Z O(N/ log2 N) it depends O(log2 N) N log N 2O(log∗ N)

Svyatoslav Covanov Integer multiplication with generalized Fermat primesNovember 4, 2015 18 / 23



Fürer A new ring and a new cut

We use a polynomial ring R of the form R = C[x ]/(xP + 1) or
R = Z[x ]/(qc , xP + 1)Z
There exists a 2n-th root of unity ρ such that ρn/P = x
(Lagrange interpolation)
The computation of 2n-points FFT is factored into the
computation of log2P 2n times n/P 2P-points FFT
P = Θ(logN) and coefficients of elements of R are stored on
Θ(logN) bits

Case Degree Mult. by a root Recursion Complexity
C O(N/ log N) expensive O(log N) N log N log log N · · · 2O(log∗ N)

Z/(2e + 1)Z O(
√

N) cheap O(
√

N) N log N log log N
C[x ]/(xP + 1) O(N/ log2 N) it depends O(log2 N) N log N 2O(log∗ N)

Z[x ]/(qc , xP + 1)Z O(N/ log2 N) it depends O(log2 N) N log N 2O(log∗ N)

Svyatoslav Covanov Integer multiplication with generalized Fermat primesNovember 4, 2015 18 / 23



Using generalized Fermat primes

1 Fast Fourier Transform
Naive multiplication
Multiplying integer
using polynomials
FFT
Schönhage-Strassen
Some remarks

2 Fürer
Factorization of FFT
A new ring and a new
cut

3 Using generalized Fermat
primes

Number-theoretic
transform
A Fürer-like number
theoretic transform
Comparison of
complexities

Svyatoslav Covanov Integer multiplication with generalized Fermat primesNovember 4, 2015 19 / 23



Using generalized Fermat primes Number-theoretic transform

Let us multiply integers by associating to them 2 polynomials of
degree 2n − 1 for which the coefficients are embedded in a finite field
R = Z/qZ.

The prime q must verify: 2n | q − 1. Thus, there exists a 2n-th
principal root of unity.

1 N: # bits of the integers that we multiply.
2 2n: degree of the polynomials A and B used to represent a and

b.
3 k : # bits used to encode the coefficients of A and B : a = A(2k)

and b = B(2k); this number is given by roughly 1
2 log2 q.

A choice of q such that k = O(logN) is optimal.

Svyatoslav Covanov Integer multiplication with generalized Fermat primesNovember 4, 2015 20 / 23



Using generalized Fermat primes Number-theoretic transform

Let us multiply integers by associating to them 2 polynomials of
degree 2n − 1 for which the coefficients are embedded in a finite field
R = Z/qZ.
The prime q must verify: 2n | q − 1. Thus, there exists a 2n-th
principal root of unity.

1 N: # bits of the integers that we multiply.
2 2n: degree of the polynomials A and B used to represent a and

b.
3 k : # bits used to encode the coefficients of A and B : a = A(2k)

and b = B(2k); this number is given by roughly 1
2 log2 q.

A choice of q such that k = O(logN) is optimal.

Svyatoslav Covanov Integer multiplication with generalized Fermat primesNovember 4, 2015 20 / 23



Using generalized Fermat primes Number-theoretic transform

Let us multiply integers by associating to them 2 polynomials of
degree 2n − 1 for which the coefficients are embedded in a finite field
R = Z/qZ.
The prime q must verify: 2n | q − 1. Thus, there exists a 2n-th
principal root of unity.

1 N: # bits of the integers that we multiply.
2 2n: degree of the polynomials A and B used to represent a and

b.
3 k : # bits used to encode the coefficients of A and B : a = A(2k)

and b = B(2k); this number is given by roughly 1
2 log2 q.

A choice of q such that k = O(logN) is optimal.

Svyatoslav Covanov Integer multiplication with generalized Fermat primesNovember 4, 2015 20 / 23



Using generalized Fermat primes Number-theoretic transform

Let us multiply integers by associating to them 2 polynomials of
degree 2n − 1 for which the coefficients are embedded in a finite field
R = Z/qZ.
The prime q must verify: 2n | q − 1. Thus, there exists a 2n-th
principal root of unity.

1 N: # bits of the integers that we multiply.
2 2n: degree of the polynomials A and B used to represent a and

b.
3 k : # bits used to encode the coefficients of A and B : a = A(2k)

and b = B(2k); this number is given by roughly 1
2 log2 q.

A choice of q such that k = O(logN) is optimal.

Svyatoslav Covanov Integer multiplication with generalized Fermat primesNovember 4, 2015 20 / 23



Using generalized Fermat primes A Fürer-like number theoretic transform

q is chosen such that q = bP + 1. There exists b such that
b < P · (logP)1+ε for any ε > 0. Thus, log2 q ≈ P logP .
Let ρ be a 2n-th root of unity in Z/qZ such that ρn/P = b.

Working in radix b is like working with "polynomials" of degree P
whose coefficients are bounded by b.

Naive Way New way
x x X (b) = x0 + x1 · b + x2 · b2 · · · xP−1 · bP−1

y y Y (b) = y0 + y1 · b + y2 · b2 · · · yP−1 · bP−1

x ∗ y z = x · y and x ∗ y = z mod q Z = X · Y mod (XP + 1) and x ∗ y = Z (b)

Svyatoslav Covanov Integer multiplication with generalized Fermat primesNovember 4, 2015 21 / 23



Using generalized Fermat primes A Fürer-like number theoretic transform

q is chosen such that q = bP + 1. There exists b such that
b < P · (logP)1+ε for any ε > 0. Thus, log2 q ≈ P logP .
Let ρ be a 2n-th root of unity in Z/qZ such that ρn/P = b.

Working in radix b is like working with "polynomials" of degree P
whose coefficients are bounded by b.

Naive Way New way
x x X (b) = x0 + x1 · b + x2 · b2 · · · xP−1 · bP−1

y y Y (b) = y0 + y1 · b + y2 · b2 · · · yP−1 · bP−1

x ∗ y z = x · y and x ∗ y = z mod q Z = X · Y mod (XP + 1) and x ∗ y = Z (b)

Svyatoslav Covanov Integer multiplication with generalized Fermat primesNovember 4, 2015 21 / 23



Using generalized Fermat primes A Fürer-like number theoretic transform

q is chosen such that q = bP + 1. There exists b such that
b < P · (logP)1+ε for any ε > 0. Thus, log2 q ≈ P logP .
Let ρ be a 2n-th root of unity in Z/qZ such that ρn/P = b.

Working in radix b is like working with "polynomials" of degree P
whose coefficients are bounded by b.

Naive Way New way
x x X (b) = x0 + x1 · b + x2 · b2 · · · xP−1 · bP−1

y y Y (b) = y0 + y1 · b + y2 · b2 · · · yP−1 · bP−1

x ∗ y z = x · y and x ∗ y = z mod q Z = X · Y mod (XP + 1) and x ∗ y = Z (b)

Svyatoslav Covanov Integer multiplication with generalized Fermat primesNovember 4, 2015 21 / 23



Using generalized Fermat primes Comparison of complexities

Using Fürer’s algorithm, we got:

Case Degree Mult. by a root Recursion Complexity
C O(N/ log N) expensive O(log N) N log N log log N · · · 2O(log∗ N)

Z/(2e + 1)Z O(
√

N) cheap O(
√

N) N log N log log N
C[x ]/(xP + 1) O(N/ log2 N) it depends O(log2 N) N log N 2O(log∗ N)

Z[x ]/(qc , xP + 1)Z O(N/ log2 N) it depends O(log2 N) N log N 2O(log∗ N)

Using the last trick, we get the following data:

Case Degree Mult. by a root Recursion Complexity
C O(N/ log N) expensive O(log N) N log N log log N · · · 2O(log∗ N)

Z/(2e + 1)Z O(
√

N) cheap O(
√

N) N log N log log N
C[x ]/(xP + 1) O(N/ log2 N) it depends O(log2 N) N log N 2O(log∗ N)

Z[x ]/(qc , xP + 1)Z O(N/ log2 N) it depends O(log2 N) N log N 2O(log∗ N)

Z/(bP + 1)Z O(N/(log N log log N)) it depends O(log N log log N) N log N 2O(log∗ N)

Svyatoslav Covanov Integer multiplication with generalized Fermat primesNovember 4, 2015 22 / 23



Using generalized Fermat primes Comparison of complexities

Using Fürer’s algorithm, we got:

Case Degree Mult. by a root Recursion Complexity
C O(N/ log N) expensive O(log N) N log N log log N · · · 2O(log∗ N)

Z/(2e + 1)Z O(
√

N) cheap O(
√

N) N log N log log N
C[x ]/(xP + 1) O(N/ log2 N) it depends O(log2 N) N log N 2O(log∗ N)

Z[x ]/(qc , xP + 1)Z O(N/ log2 N) it depends O(log2 N) N log N 2O(log∗ N)

Using the last trick, we get the following data:

Case Degree Mult. by a root Recursion Complexity
C O(N/ log N) expensive O(log N) N log N log log N · · · 2O(log∗ N)

Z/(2e + 1)Z O(
√

N) cheap O(
√

N) N log N log log N
C[x ]/(xP + 1) O(N/ log2 N) it depends O(log2 N) N log N 2O(log∗ N)

Z[x ]/(qc , xP + 1)Z O(N/ log2 N) it depends O(log2 N) N log N 2O(log∗ N)

Z/(bP + 1)Z O(N/(log N log log N)) it depends O(log N log log N) N log N 2O(log∗ N)

Svyatoslav Covanov Integer multiplication with generalized Fermat primesNovember 4, 2015 22 / 23



Conclusion

Removing the polynomial layer improves the complexity of the
algorithm.

With a careful complexity analysis, we get the following complexity
estimate: N logN · 4log∗ N (the same as the one obtained by Harvey,
Lecerf and Van der Hoeven with Mersenne primes).

An efficient implementation has to be done.

Some limitations: efficient multiplication of two polynomials modulo
XP + 1 (bilinear rank), strategy for choosing a good prime, an
algorithm for the decompositions...

Svyatoslav Covanov Integer multiplication with generalized Fermat primesNovember 4, 2015 23 / 23



Conclusion

Removing the polynomial layer improves the complexity of the
algorithm.

With a careful complexity analysis, we get the following complexity
estimate: N logN · 4log∗ N (the same as the one obtained by Harvey,
Lecerf and Van der Hoeven with Mersenne primes).

An efficient implementation has to be done.

Some limitations: efficient multiplication of two polynomials modulo
XP + 1 (bilinear rank), strategy for choosing a good prime, an
algorithm for the decompositions...

Svyatoslav Covanov Integer multiplication with generalized Fermat primesNovember 4, 2015 23 / 23



Conclusion

Removing the polynomial layer improves the complexity of the
algorithm.

With a careful complexity analysis, we get the following complexity
estimate: N logN · 4log∗ N (the same as the one obtained by Harvey,
Lecerf and Van der Hoeven with Mersenne primes).

An efficient implementation has to be done.

Some limitations: efficient multiplication of two polynomials modulo
XP + 1 (bilinear rank), strategy for choosing a good prime, an
algorithm for the decompositions...

Svyatoslav Covanov Integer multiplication with generalized Fermat primesNovember 4, 2015 23 / 23



Conclusion

Removing the polynomial layer improves the complexity of the
algorithm.

With a careful complexity analysis, we get the following complexity
estimate: N logN · 4log∗ N (the same as the one obtained by Harvey,
Lecerf and Van der Hoeven with Mersenne primes).

An efficient implementation has to be done.

Some limitations: efficient multiplication of two polynomials modulo
XP + 1 (bilinear rank), strategy for choosing a good prime, an
algorithm for the decompositions...

Svyatoslav Covanov Integer multiplication with generalized Fermat primesNovember 4, 2015 23 / 23


	Fast Fourier Transform
	Naive multiplication
	Multiplying integer using polynomials
	FFT
	Schönhage-Strassen
	Some remarks

	Fürer
	Factorization of FFT
	A new ring and a new cut

	Using generalized Fermat primes
	Number-theoretic transform
	A Fürer-like number theoretic transform
	Comparison of complexities

	Conclusion

