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Statement of the problem

Root finding over finite fields

Given f € Fq[X], compute its roots, that is {« € Fq : f(a) = 0}
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> Assumption (A): f is monic, separable, splits over Iy, f(0) # 0:

d
f(X) = H(X — 0(1), Ky € F;, [0 4] 35 &

i=1

(easy reduction: f gcd(f,Xq*1 —1))
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Statement of the problem

Root finding over finite fields

Given f € Fq[X], compute its roots, that is {« € Fq : f(a) = 0}

> Assumption (A): f is monic, separable, splits over Iy, f(0) # 0:

d
f(X) = H(X — O(i), Ky € F:;, [0 4] 35 &

i=1

(easy reduction: f gcd(f,Xq*1 —1))

» Motivated by sparse interpolation [van der Hoeven & Lecerf, 2014]
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State of the art £ settings

» No deterministic polytime algorithm is known (even under ERH)
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» Many factorization algorithms ~~ no improvement for root finding
[Cantor-Zassenhaus (1981), Kaltofen-Shoup (1998), Kedlaya-Umans (2011)]
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State of the art £ settings

» No deterministic polytime algorithm is known (even under ERH)
» Randomized algorithms: O(d log® q) in average [Rabin (1980)]

» Many factorization algorithms ~~ no improvement for root finding
[Cantor-Zassenhaus (1981), Kaltofen-Shoup (1998), Kedlaya-Umans (2011)]

» Better complexity bounds when q — 1 is sufficiently smooth

[Moenck (1977), von zur Gathen (1987), Mignotte-Schnorr (1988),
Rényai (1989), Shoup (1991, 1992), Zratek (2010)]
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State of the art £ settings

No deterministic polytime algorithm is known (even under ERH)

Randomized algorithms: O(d log? q) in average [Rabin (1980)]

Many factorization algorithms ~~ no improvement for root finding
[Cantor-Zassenhaus (1981), Kaltofen-Shoup (1998), Kedlaya-Umans (2011)]

Better complexity bounds when q — 1 is sufficiently smooth

[Moenck (1977), von zur Gathen (1987), Mignotte-Schnorr (1988),
Rényai (1989), Shoup (1991, 1992), Zratek (2010)]

FFT finite field: p =M -2™ + 1 with M = O(logp)

Useful in practice
Adapt old algorithms

New technique based on Graeffe transforms

Fast implementations
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Rabin’s algorithm

» [[X—a)=XxP""—1

xRy
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Rabin’s algorithm

p_1

> [TX—=XxP"—1=(xX"T —D(X*T +1)

xRy
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Rabin’s algorithm

p_1

> [TX—=XxP"—1=(xX"T —D(X*T +1)

xRy

» With some luck, gcd(f,XpTi1 —1) ¢{1,f}
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Rabin’s algorithm

p_1

=X DX )

With some luck, gcd(f,XpTi1 —1) ¢{1,f}

Push your luck: ged(f, (X -|—T)PZ;1 —1) for
some random T € [,
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> [TX—=XxP"—1=(xX"T —D(X*T +1)

» With some luck, gcd(f,XpTi1 —1) ¢{1,f}

» Push your luck: ged(f, (X -|—T)PZ;1 —1) for
some random T € [,

deg (gcd(f, (X —i—’r)p%] — ])) ~d/2
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Rabin’s algorithm

> [TX—=XxP"—1=(xX"T —D(X*T +1)

» With some luck, gcd(f,XpTi1 —1) ¢{1,f}

» Push your luck: ged(f, (X —Q—T)Pli —1) for
some random T € [,

deg (gcd(f, (X —i—’r)p%] — ])) ~d/2

Randomized algorithm

The roots of f € I, [X] can be computed in
expected time O(d log® p).
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Modified Rabin’s algorithm

(for FFT finite fields)
2t . '
XP—1 1= H (XM2™7 _ &) where £ is primitive of order 2¢.
i=0
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2t
H (XM2™" _£1) \where & is primitive of order 2°¢.
i=0

Modified Rabin’s algorithm

(for FFT finite fields)

ged(f, (X +T)M2™" — £9)

ged(f, (X + 1)

M2m4

—&")

ged(f, (X + T)M2™" _£2)

ged(f, (X + 1)

Msze

—£3)
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i=0

Modified Rabin’s algorithm

(for FFT finite fields)

ged(f, (X +T)M2™" — £9)

ged(f, (X + 1)

M2m4

—&")

degrees
~ d/2¢

ged(f, (X + T)M2™" _£2)

ged(f, (X + 1)

Msze

—£3)
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Modified Rabin’s algorithm

(for FFT finite fields)
2t . '
XP—1 1= H (XM2™7 _ &) where £ is primitive of order 2¢.
i=0

ged(f, (X +T)M2™" — £9)

ged(f, (X + M2 — &)
degrees

- ~ d/2¢
ged(f, (X + T)M2™" _£2)

ged(f, (X + 1)M2™" — g3)

Worthwhile in practice for small { =2,3,...
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The Graeffe transform
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The Graeffe transform

Definition
G2(f)(X) = [[i(X — &?) is the Graeffe transform of f.
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The Graeffe transform

Definition
G2(f)(X) = [[i(X — &?) is the Graeffe transform of f.

{Gp(f)(X) =[Li(X— ocf) is the Graeffe transform of order p of f. }

Remarks:
> Gy,p0, = Gp, 0Gyp,, and in particular Gy¢ = G2 0---0G3
> Gp 1 (HX) =[L(X—al ") = (X-1)¢
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G2

G2

G2

Using Graeffe transforms

Gz Gm

g1

92

Im Im+1
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G2

G2

Using Graeffe transforms

Gz Gm

g1

92

Im Im+1

{1}
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Using Graeffe transforms

Gy G Gy G2 Gm
f g1 92 Im IJm+1
Z(f) Z; Z; L {1}
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Using Graeffe transforms

Gy Gy Gm
g2 gm Im+1
Z; L {1}

> Z,, C{C?":0<i<M—1}where ¢ is a primitive element of F
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Using Graeffe transforms

Gy G Gy G2 Gm
f g1 92 Im IJm+1
Z(f) Z; Z; L {1}

> Zn C{CP":0<i<

» For [?) € Zk+1:

e ged(gi, X* — B) = {

M — 1} where ( is a primitive element of IF;

X— oy (simple root)
(X—o0)(X—0) (multiple root)
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Using Graeffe transforms

Gy G Gy G2 Gm
f g1 92 Im IJm+1
Z(f) Z; Z; L {1}

> Zn C{CP":0<i<

» For [?) € Zk+1:

e ged(gi, X* — B) = {

M — 1} where ( is a primitive element of IF;

X— oy (simple root)
(X—o0)(X—0) (multiple root)

o B =% o o € {C/2, ler2m M2
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Deterministic complexity

Improvements and generalization:
» Modular composition for Graeffe transforms  [Kedlaya-Umans (2008)]
> Fast discrete logarithms in Fg [Pohlig-Hellman (1978)]
» Computation of roots ¢ la Pollard-Strassen [Shoup (1991)]
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Deterministic complexity

Improvements and generalization:

» Modular composition for Graeffe transforms  [Kedlaya-Umans (2008)]

> Fast discrete logarithms in Fg [Pohlig-Hellman (1978)]

» Computation of roots ¢ la Pollard-Strassen [Shoup (1991)]

Theorem

Given f € Fq[X] satisfying (A), the irreducible factorization of
(@ —1) and a primitive element of [Fg, the roots of f can be
computed in time

O(v/S1(q —T)dlog? q) + (dlog? q)' oV

where S1(q — 1) is the largest factor of q — 1.
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Deterministic complexity

Improvements and generalization:

» Modular composition for Graeffe transforms  [Kedlaya-Umans (2008)]

> Fast discrete logarithms in Fg [Pohlig-Hellman (1978)]

» Computation of roots ¢ la Pollard-Strassen [Shoup (1991)]

Theorem

Given f € Fq[X] satisfying (A), the irreducible factorization of
(@ —1) and a primitive element of [Fg, the roots of f can be
computed in time

O(+/S1(q—1)dlog? q) + (dlog? q)' otV

where S1(q — 1) is the largest factor of q — 1.

> Refines Shoup’s complexity bounds

» Note: If g =M-2™+1, M = O(log q), complexity O(d log® q).
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Tangent Graeffe transform

Definition

The tangent Graeffe transform of order 7 of f € F,[X] is

Gr(f + ef’) € (Fplel/(e?))IXI.
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Tangent Graeffe transform

Definition

The tangent Graeffe transform of order 7 of f € F,[X] is

Gr(f + ef’) € (Fplel/(e?))IXI.

Remarks:
> (f+ef)(X) =f(X+¢)
> Go(f +ef’) = Go(f) + eg with g(X2) = f(X)f'(—X) + f(—X)f'(X)
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Tangent Graeffe transform

Definition

The tangent Graeffe transform of order 7 of f € F,[X] is

Gr(f + ef’) € (Fplel/(e?))IXI.

Remarks:
> (f+ef)(X) =f(X+¢)
> Go(f +ef’) = Go(f) + eg with g(X2) = f(X)f'(—X) + f(—X)f'(X)

Lemma

Let g+ €g = G,¢(f + ef’). A nonzero root  of g is simple iff
g(B) # 0. The corresponding root of f is « = 2¢Bg’(B)/g(B).
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Randomized algorithm

Goal: Ensure many simple roots.

> Replace f by f(X) = f(X + 1) for a random T € F,.
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Randomized algorithm

Goal: Ensure many simple roots.

> Replace f by f(X) = f(X + 1) for a random T € F,.

Lemma

If 2¢ Gzz( <) has no multiple root with prob. > 1/2.
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Randomized algorithm

Goal: Ensure many simple roots.

> Replace f by f(X) = f(X + 1) for a random T € F,.

Lemma

If 2¢ < Gzz( <) has no multiple root with prob. > 1/2.

Gz Gz Gz GZ
fX+T+e) = - — ge+eGe — - — gm + EGm
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Randomized algorithm

Goal: Ensure many simple roots.

> Replace f by f(X) = f(X + 1) for a random T € F,.

Lemma

If 2¢ < Gzz( <) has no multiple root with prob. > 1/2.

Gz Gz Gz GZ
fX+T+e) = - — ge+eGe — - — gm + EGm

Lm
N
{E€:0<e< M}
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Randomized algorithm

Goal: Ensure many simple roots.

> Replace f by f(X) = f(X + 1) for a random T € F,.

Lemma

If 2¢ < Gzz( <) has no multiple root with prob. > 1/2.

Gz Gz Gz GZ
fX+T+e) = - — ge+eGe — - — gm + EGm

v, Zm
N
{E€:0<e< M}
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Randomized algorithm

Goal: Ensure many simple roots.

> Replace f by f(X) = f(X + 1) for a random T € F,.

Lemma

If 2¢ < Gzz( <) has no multiple root with prob. > 1/2.

Gz Gz Gz GZ
fX+T+e) = - — ge+eGe — - — gm + EGm

iy iz Zm
Only simple roots N
{E€:0<e< M}
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Randomized algorithm

Goal: Ensure many simple roots.

> Replace f by f(X) = f(X + 1) for a random T € F,.

Lemma

If 2¢ < Gzz( <) has no multiple root with prob. > 1/2.

Gz Gz Gz GZ
fX+T+e) = - — ge+eGe — - — gm + EGm

recursive call:
f/ HocEZO(X _ (X)

iy iz Zm
Only simple roots N
{E€:0<e< M}
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Randomized complexity

Theorem

Given f € F, [X] satisfying (A) and a primitive element of F7, the

randomized algorithm runs in expected time C)(dlogzp), for
p=M- 2™+4+1 with M = O(logp).
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Randomized complexity

Theorem

Given f € F, [X] satisfying (A) and a primitive element of F7, the

randomized algorithm runs in expected time C)(dlogzp), for
p=M- 2™+4+1 with M = O(logp).

> Same asymptotic as Rabin’s algorithm
> Better efficiency in practice

» Primitive elements easy to compute in practice
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Heuristic algorithm

Heuristic

If 2¢ ~p/d, G,e(f(X+ 7)) has Q(d) simple roots with
probability > 1/2, for a random T € [,.

Justification: holds for a random f rather than f(X + 7).
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Heuristic algorithm

Heuristic

If 2¢ ~p/d, G,e(f(X+ 7)) has Q(d) simple roots with
probability > 1/2, for a random T € [,.

Justification: holds for a random f rather than f(X + 7).

G B
f(X+T+¢) ge + €9y
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Heuristic algorithm

Heuristic

If 2¢ ~p/d, G,e(f(X+ 7)) has Q(d) simple roots with
probability > 1/2, for a random T € [,.

Justification: holds for a random f rather than f(X + 7).

G B
f(X+T+¢) ge + €9y

Zy
N
((¢:0<e<M-2Y
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Heuristic algorithm

Heuristic

If 2¢ ~p/d, G,e(f(X+ 7)) has Q(d) simple roots with
probability > 1/2, for a random T € [,.

Justification: holds for a random f rather than f(X + 7).

G B
f(X+T+¢) ge + €9y

only simple roots
Zo 2 2 Zy

N
{£¢:0<e<M-2Y
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Heuristic algorithm

Heuristic

If 2¢ ~p/d, G,e(f(X+ 7)) has Q(d) simple roots with
probability > 1/2, for a random T € [,.

Justification: holds for a random f rather than f(X + 7).

G B
f(X+T+¢) ge + €9y

recursive call:
f/ HocEZO(X - 0()

only simple roots
Zo 2 2 Zy

N
{£¢:0<e<M-2Y
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Heuristic complexity

Theorem

Suppose that f is chosen at random in Fp [X] or that the heuristic
holds. Given a primitive element of [, the heuristic algorithm
runs in expected time O(d log? p), for p = M - 2™ + 1 with

M = O(logp).
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Time (seconds)

Timings

p=7-22°+1

—e— FLINT
25 T —e—NTL

—e—MMX (randomized alg.)
—e— MMmX (heuristic alg.)

20
15 1

10 +

8 10 12 14 16 18
Degree in log scale
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Time (seconds)

Timings

p=5.2>> 41
—e— FLINT
400 + —e—Mmmx (randomized alg.)
—e—Mmmx (Rabin’s alg.)
—e— MMX (heuristic alg.)
300
200 +
100 +
0 e

8 10 12 14 16 18
Degree in log scale
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Conclusion

> Revisit classical algorithms for FFT finite fields

Bruno Grenet — Root finding over finite fields

15/15
A /



Conclusion

> Revisit classical algorithms for FFT finite fields
» New approach using Graeffe transforms

e Good deterministic complexity bounds
e Good probabilistic complexity bounds
e Good running times
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Conclusion

Revisit classical algorithms for FFT finite fields
New approach using Graeffe transforms

e Good deterministic complexity bounds
e Good probabilistic complexity bounds
e Good running times

Source code in C++, in MATHEMAGIX

Root finding is not the bottleneck for sparse interpolation anymore
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Revisit classical algorithms for FFT finite fields
New approach using Graeffe transforms

e Good deterministic complexity bounds
e Good probabilistic complexity bounds
e Good running times

Source code in C++, in MATHEMAGIX
Root finding is not the bottleneck for sparse interpolation anymore
Open questions:

e Deterministic alg.: use of tangent Graeffe transforms
e Heuristic alg.: Graeffe transform of order 2! is the bottleneck
e Prove the heuristic
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Conclusion

Revisit classical algorithms for FFT finite fields
New approach using Graeffe transforms

e Good deterministic complexity bounds
e Good probabilistic complexity bounds
e Good running times

Source code in C++, in MATHEMAGIX
Root finding is not the bottleneck for sparse interpolation anymore
Open questions:

e Deterministic alg.: use of tangent Graeffe transforms
e Heuristic alg.: Graeffe transform of order 2! is the bottleneck
e Prove the heuristic

Merci de votre attention !
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