
Root finding over finite fields
using Grae�e transforms

Bruno Grenet
LIRMM

Université de Montpellier

Joris van der Hoeven & Grégoire Lecerf
CNRS – LIX

École polytechnique

JNCF — Cluny — November 3., 2015

Statement of the problem

Root finding over finite fields
Given f ∈ Fq[X], compute its roots, that is {α ∈ Fq : f(α) = 0}.

I Assumption (A): f is monic, separable, splits over Fq, f(0) 6= 0:

f(X) =

d∏
i=1

(X− αi), αi ∈ F∗q, αi 6= αj

(easy reduction: f← gcd(f, Xq−1 − 1))
I Motivated by sparse interpolation [van der Hoeven & Lecerf, 2014]

2 / 15
Bruno Grenet – Root finding over finite fields

N

Statement of the problem

Root finding over finite fields
Given f ∈ Fq[X], compute its roots, that is {α ∈ Fq : f(α) = 0}.

I Assumption (A): f is monic, separable, splits over Fq, f(0) 6= 0:

f(X) =

d∏
i=1

(X− αi), αi ∈ F∗q, αi 6= αj

(easy reduction: f← gcd(f, Xq−1 − 1))

I Motivated by sparse interpolation [van der Hoeven & Lecerf, 2014]

2 / 15
Bruno Grenet – Root finding over finite fields

N

Statement of the problem

Root finding over finite fields
Given f ∈ Fq[X], compute its roots, that is {α ∈ Fq : f(α) = 0}.

I Assumption (A): f is monic, separable, splits over Fq, f(0) 6= 0:

f(X) =

d∏
i=1

(X− αi), αi ∈ F∗q, αi 6= αj

(easy reduction: f← gcd(f, Xq−1 − 1))
I Motivated by sparse interpolation [van der Hoeven & Lecerf, 2014]

2 / 15
Bruno Grenet – Root finding over finite fields

N

State of the art & settings

I No deterministic polytime algorithm is known (even under ERH)

I Randomized algorithms: Õ(d log2 q) in average [Rabin (1980)]

I Many factorization algorithms no improvement for root finding
[Cantor-Zassenhaus (1981), Kaltofen-Shoup (1998), Kedlaya-Umans (2011)]

I Better complexity bounds when q− 1 is sufficiently smooth
[Moenck (1977), von zur Gathen (1987), Mignotte-Schnorr (1988),

Rónyai (1989), Shoup (1991, 1992), Źrałek (2010)]

I FFT finite field: p =M · 2m + 1 with M = O(logp)

• Useful in practice
• Adapt old algorithms
• New technique based on Graeffe transforms
• Fast implementations

3 / 15
Bruno Grenet – Root finding over finite fields

N

State of the art & settings

I No deterministic polytime algorithm is known (even under ERH)
I Randomized algorithms: Õ(d log2 q) in average [Rabin (1980)]

I Many factorization algorithms no improvement for root finding
[Cantor-Zassenhaus (1981), Kaltofen-Shoup (1998), Kedlaya-Umans (2011)]

I Better complexity bounds when q− 1 is sufficiently smooth
[Moenck (1977), von zur Gathen (1987), Mignotte-Schnorr (1988),

Rónyai (1989), Shoup (1991, 1992), Źrałek (2010)]

I FFT finite field: p =M · 2m + 1 with M = O(logp)

• Useful in practice
• Adapt old algorithms
• New technique based on Graeffe transforms
• Fast implementations

3 / 15
Bruno Grenet – Root finding over finite fields

N

State of the art & settings

I No deterministic polytime algorithm is known (even under ERH)
I Randomized algorithms: Õ(d log2 q) in average [Rabin (1980)]

I Many factorization algorithms no improvement for root finding
[Cantor-Zassenhaus (1981), Kaltofen-Shoup (1998), Kedlaya-Umans (2011)]

I Better complexity bounds when q− 1 is sufficiently smooth
[Moenck (1977), von zur Gathen (1987), Mignotte-Schnorr (1988),

Rónyai (1989), Shoup (1991, 1992), Źrałek (2010)]

I FFT finite field: p =M · 2m + 1 with M = O(logp)

• Useful in practice
• Adapt old algorithms
• New technique based on Graeffe transforms
• Fast implementations

3 / 15
Bruno Grenet – Root finding over finite fields

N

State of the art & settings

I No deterministic polytime algorithm is known (even under ERH)
I Randomized algorithms: Õ(d log2 q) in average [Rabin (1980)]

I Many factorization algorithms no improvement for root finding
[Cantor-Zassenhaus (1981), Kaltofen-Shoup (1998), Kedlaya-Umans (2011)]

I Better complexity bounds when q− 1 is sufficiently smooth
[Moenck (1977), von zur Gathen (1987), Mignotte-Schnorr (1988),

Rónyai (1989), Shoup (1991, 1992), Źrałek (2010)]

I FFT finite field: p =M · 2m + 1 with M = O(logp)

• Useful in practice
• Adapt old algorithms
• New technique based on Graeffe transforms
• Fast implementations

3 / 15
Bruno Grenet – Root finding over finite fields

N

State of the art & settings

I No deterministic polytime algorithm is known (even under ERH)
I Randomized algorithms: Õ(d log2 q) in average [Rabin (1980)]

I Many factorization algorithms no improvement for root finding
[Cantor-Zassenhaus (1981), Kaltofen-Shoup (1998), Kedlaya-Umans (2011)]

I Better complexity bounds when q− 1 is sufficiently smooth
[Moenck (1977), von zur Gathen (1987), Mignotte-Schnorr (1988),

Rónyai (1989), Shoup (1991, 1992), Źrałek (2010)]

I FFT finite field: p =M · 2m + 1 with M = O(logp)
• Useful in practice
• Adapt old algorithms
• New technique based on Graeffe transforms
• Fast implementations

3 / 15
Bruno Grenet – Root finding over finite fields

N

Rabin’s algorithm

I
∏
α∈F∗

p

(X− α) = Xp−1 − 1

= (X
p−1
2 − 1)(X

p−1
2 + 1)

α
p−1
2 = 1

α
p−1
2 = −1

(α+ τ)
p−1
2

= 1

(α+ τ)
p−1
2

= −1

I With some luck, gcd(f, Xp−1
2 − 1) /∈ {1, f}.

I Push your luck: gcd(f, (X+ τ)
p−1
2 − 1) for

some random τ ∈ Fp

deg
(

gcd(f, (X+ τ)
p−1
2 − 1)

)
' d/2

Randomized algorithm
The roots of f ∈ Fp[X] can be computed in
expected time Õ(d log2 p).

4 / 15
Bruno Grenet – Root finding over finite fields

N

Rabin’s algorithm

I
∏
α∈F∗

p

(X− α) = Xp−1 − 1 = (X
p−1

2 − 1)(X
p−1
2 + 1)

α
p−1
2 = 1

α
p−1
2 = −1

(α+ τ)
p−1
2

= 1

(α+ τ)
p−1
2

= −1

I With some luck, gcd(f, Xp−1
2 − 1) /∈ {1, f}.

I Push your luck: gcd(f, (X+ τ)
p−1
2 − 1) for

some random τ ∈ Fp

deg
(

gcd(f, (X+ τ)
p−1
2 − 1)

)
' d/2

Randomized algorithm
The roots of f ∈ Fp[X] can be computed in
expected time Õ(d log2 p).

4 / 15
Bruno Grenet – Root finding over finite fields

N

Rabin’s algorithm

I
∏
α∈F∗

p

(X− α) = Xp−1 − 1 = (X
p−1

2 − 1)(X
p−1
2 + 1)

α
p−1
2 = 1

α
p−1
2 = −1

(α+ τ)
p−1
2

= 1

(α+ τ)
p−1
2

= −1

I With some luck, gcd(f, Xp−1
2 − 1) /∈ {1, f}.

I Push your luck: gcd(f, (X+ τ)
p−1
2 − 1) for

some random τ ∈ Fp

deg
(

gcd(f, (X+ τ)
p−1
2 − 1)

)
' d/2

Randomized algorithm
The roots of f ∈ Fp[X] can be computed in
expected time Õ(d log2 p).

4 / 15
Bruno Grenet – Root finding over finite fields

N

Rabin’s algorithm

I
∏
α∈F∗

p

(X− α) = Xp−1 − 1 = (X
p−1

2 − 1)(X
p−1
2 + 1)

α
p−1
2 = 1

α
p−1
2 = −1

(α+ τ)
p−1
2

= 1

(α+ τ)
p−1
2

= −1

I With some luck, gcd(f, Xp−1
2 − 1) /∈ {1, f}.

I Push your luck: gcd(f, (X+ τ)
p−1

2 − 1) for
some random τ ∈ Fp

deg
(

gcd(f, (X+ τ)
p−1
2 − 1)

)
' d/2

Randomized algorithm
The roots of f ∈ Fp[X] can be computed in
expected time Õ(d log2 p).

4 / 15
Bruno Grenet – Root finding over finite fields

N

Rabin’s algorithm

I
∏
α∈F∗

p

(X− α) = Xp−1 − 1 = (X
p−1

2 − 1)(X
p−1
2 + 1)

α
p−1
2 = 1

α
p−1
2 = −1

(α+ τ)
p−1
2

= 1

(α+ τ)
p−1
2

= −1

I With some luck, gcd(f, Xp−1
2 − 1) /∈ {1, f}.

I Push your luck: gcd(f, (X+ τ)
p−1
2 − 1) for

some random τ ∈ Fp

deg
(

gcd(f, (X+ τ)
p−1
2 − 1)

)
' d/2

Randomized algorithm
The roots of f ∈ Fp[X] can be computed in
expected time Õ(d log2 p).

4 / 15
Bruno Grenet – Root finding over finite fields

N

Rabin’s algorithm

I
∏
α∈F∗

p

(X− α) = Xp−1 − 1 = (X
p−1

2 − 1)(X
p−1
2 + 1)

α
p−1
2 = 1

α
p−1
2 = −1

(α+ τ)
p−1
2

= 1

(α+ τ)
p−1
2

= −1

I With some luck, gcd(f, Xp−1
2 − 1) /∈ {1, f}.

I Push your luck: gcd(f, (X+ τ)
p−1
2 − 1) for

some random τ ∈ Fp

deg
(

gcd(f, (X+ τ)
p−1
2 − 1)

)
' d/2

Randomized algorithm
The roots of f ∈ Fp[X] can be computed in
expected time Õ(d log2 p).

4 / 15
Bruno Grenet – Root finding over finite fields

N

Rabin’s algorithm

I
∏
α∈F∗

p

(X− α) = Xp−1 − 1 = (X
p−1

2 − 1)(X
p−1
2 + 1)

α
p−1
2 = 1

α
p−1
2 = −1

(α+ τ)
p−1
2

= 1

(α+ τ)
p−1
2

= −1

I With some luck, gcd(f, Xp−1
2 − 1) /∈ {1, f}.

I Push your luck: gcd(f, (X+ τ)
p−1
2 − 1) for

some random τ ∈ Fp

deg
(

gcd(f, (X+ τ)
p−1
2 − 1)

)
' d/2

Randomized algorithm
The roots of f ∈ Fp[X] can be computed in
expected time Õ(d log2 p).

4 / 15
Bruno Grenet – Root finding over finite fields

N

Modified Rabin’s algorithm
(for FFT finite fields)

Xp−1 − 1 =

2`−1∏
i=0

(XM2
m−`

− ξi), where ξ is primitive of order 2`.

ξ0

ξ1

ξ2

ξ3

gcd(f, (X+ τ)M2
m−`

− ξ0)

gcd(f, (X+ τ)M2
m−`

− ξ1)

gcd(f, (X+ τ)M2
m−`

− ξ2)

gcd(f, (X+ τ)M2
m−`

− ξ3)

degrees
' d/2`

Worthwhile in practice for small ` = 2, 3, . . .

5 / 15
Bruno Grenet – Root finding over finite fields

N

Modified Rabin’s algorithm
(for FFT finite fields)

Xp−1 − 1 =

2`−1∏
i=0

(XM2
m−`

− ξi), where ξ is primitive of order 2`.

ξ0

ξ1

ξ2

ξ3

gcd(f, (X+ τ)M2
m−`

− ξ0)

gcd(f, (X+ τ)M2
m−`

− ξ1)

gcd(f, (X+ τ)M2
m−`

− ξ2)

gcd(f, (X+ τ)M2
m−`

− ξ3)

degrees
' d/2`

Worthwhile in practice for small ` = 2, 3, . . .

5 / 15
Bruno Grenet – Root finding over finite fields

N

Modified Rabin’s algorithm
(for FFT finite fields)

Xp−1 − 1 =

2`−1∏
i=0

(XM2
m−`

− ξi), where ξ is primitive of order 2`.

ξ0

ξ1

ξ2

ξ3

gcd(f, (X+ τ)M2
m−`

− ξ0)

gcd(f, (X+ τ)M2
m−`

− ξ1)

gcd(f, (X+ τ)M2
m−`

− ξ2)

gcd(f, (X+ τ)M2
m−`

− ξ3)

degrees
' d/2`

Worthwhile in practice for small ` = 2, 3, . . .

5 / 15
Bruno Grenet – Root finding over finite fields

N

Modified Rabin’s algorithm
(for FFT finite fields)

Xp−1 − 1 =

2`−1∏
i=0

(XM2
m−`

− ξi), where ξ is primitive of order 2`.

ξ0

ξ1

ξ2

ξ3

gcd(f, (X+ τ)M2
m−`

− ξ0)

gcd(f, (X+ τ)M2
m−`

− ξ1)

gcd(f, (X+ τ)M2
m−`

− ξ2)

gcd(f, (X+ τ)M2
m−`

− ξ3)

degrees
' d/2`

Worthwhile in practice for small ` = 2, 3, . . .

5 / 15
Bruno Grenet – Root finding over finite fields

N

The Grae�e transform

Let f(X) =
∏
i(X− αi) ∈ Fp[X].

f(X)f(−X) =
∏
i

(X− αi)(−X− αi) = (−1)d
∏
i

(X2 − α2i)

Definition
G2(f)(X) =

∏
i(X− α2i) is the Graeffe transform of f.

Gρ(f)(X) =
∏
i(X−αρi) is the Graeffe transform of order ρ of f.

Remarks:
I Gρ1ρ2

= Gρ1
◦Gρ2

, and in particular G2` = G2 ◦ · · · ◦G2
I Gp−1(f)(X) =

∏
i(X− αp−1i) = (X− 1)d

6 / 15
Bruno Grenet – Root finding over finite fields

N

The Grae�e transform

Let f(X) =
∏
i(X− αi) ∈ Fp[X].

f(X)f(−X) =
∏
i

(X− αi)(−X− αi) = (−1)d
∏
i

(X2 − α2i)

Definition
G2(f)(X) =

∏
i(X− α2i) is the Graeffe transform of f.

Gρ(f)(X) =
∏
i(X−αρi) is the Graeffe transform of order ρ of f.

Remarks:
I Gρ1ρ2

= Gρ1
◦Gρ2

, and in particular G2` = G2 ◦ · · · ◦G2
I Gp−1(f)(X) =

∏
i(X− αp−1i) = (X− 1)d

6 / 15
Bruno Grenet – Root finding over finite fields

N

The Grae�e transform

Let f(X) =
∏
i(X− αi) ∈ Fp[X].

f(X)f(−X) =
∏
i

(X− αi)(−X− αi) = (−1)d
∏
i

(X2 − α2i)

Definition
G2(f)(X) =

∏
i(X− α2i) is the Graeffe transform of f.

Gρ(f)(X) =
∏
i(X−αρi) is the Graeffe transform of order ρ of f.

Remarks:
I Gρ1ρ2

= Gρ1
◦Gρ2

, and in particular G2` = G2 ◦ · · · ◦G2
I Gp−1(f)(X) =

∏
i(X− αp−1i) = (X− 1)d

6 / 15
Bruno Grenet – Root finding over finite fields

N

The Grae�e transform

Let f(X) =
∏
i(X− αi) ∈ Fp[X].

f(X)f(−X) =
∏
i

(X− αi)(−X− αi) = (−1)d
∏
i

(X2 − α2i)

Definition
G2(f)(X) =

∏
i(X− α2i) is the Graeffe transform of f.

Gρ(f)(X) =
∏
i(X−αρi) is the Graeffe transform of order ρ of f.

Remarks:
I Gρ1ρ2

= Gρ1
◦Gρ2

, and in particular G2` = G2 ◦ · · · ◦G2
I Gp−1(f)(X) =

∏
i(X− αp−1i) = (X− 1)d

6 / 15
Bruno Grenet – Root finding over finite fields

N

Using Grae�e transforms

f g1 g2 . . . gm gm+1

Z(f) Z1 Z2 . . . Zm {1}

G2 G2 G2 G2 GM

I Zm ⊆ {ζi2
m

: 0 6 i 6M− 1} where ζ is a primitive element of F∗p
I For β ∈ Zk+1,

• gcd(gk, X2 − β) =
{
X− αi (simple root)
(X− αi)(X− αj) (multiple root)

• If β = ζe, αi, αj ∈ {ζe/2, ζ(e+2
mM)/2}

7 / 15
Bruno Grenet – Root finding over finite fields

N

Using Grae�e transforms

f g1 g2 . . . gm gm+1

Z(f) Z1 Z2 . . . Zm {1}

G2 G2 G2 G2 GM

I Zm ⊆ {ζi2
m

: 0 6 i 6M− 1} where ζ is a primitive element of F∗p
I For β ∈ Zk+1,

• gcd(gk, X2 − β) =
{
X− αi (simple root)
(X− αi)(X− αj) (multiple root)

• If β = ζe, αi, αj ∈ {ζe/2, ζ(e+2
mM)/2}

7 / 15
Bruno Grenet – Root finding over finite fields

N

Using Grae�e transforms

f g1 g2 . . . gm gm+1

Z(f) Z1 Z2 . . . Zm {1}

G2 G2 G2 G2 GM

I Zm ⊆ {ζi2
m

: 0 6 i 6M− 1} where ζ is a primitive element of F∗p
I For β ∈ Zk+1,

• gcd(gk, X2 − β) =
{
X− αi (simple root)
(X− αi)(X− αj) (multiple root)

• If β = ζe, αi, αj ∈ {ζe/2, ζ(e+2
mM)/2}

7 / 15
Bruno Grenet – Root finding over finite fields

N

Using Grae�e transforms

f g1 g2 . . . gm gm+1

Z(f) Z1 Z2 . . . Zm {1}

G2 G2 G2 G2 GM

I Zm ⊆ {ζi2
m

: 0 6 i 6M− 1} where ζ is a primitive element of F∗p

I For β ∈ Zk+1,

• gcd(gk, X2 − β) =
{
X− αi (simple root)
(X− αi)(X− αj) (multiple root)

• If β = ζe, αi, αj ∈ {ζe/2, ζ(e+2
mM)/2}

7 / 15
Bruno Grenet – Root finding over finite fields

N

Using Grae�e transforms

f g1 g2 . . . gm gm+1

Z(f) Z1 Z2 . . . Zm {1}

G2 G2 G2 G2 GM

I Zm ⊆ {ζi2
m

: 0 6 i 6M− 1} where ζ is a primitive element of F∗p
I For β ∈ Zk+1,

• gcd(gk, X2 − β) =
{
X− αi (simple root)
(X− αi)(X− αj) (multiple root)

• If β = ζe, αi, αj ∈ {ζe/2, ζ(e+2
mM)/2}

7 / 15
Bruno Grenet – Root finding over finite fields

N

Using Grae�e transforms

f g1 g2 . . . gm gm+1

Z(f) Z1 Z2 . . . Zm {1}

G2 G2 G2 G2 GM

I Zm ⊆ {ζi2
m

: 0 6 i 6M− 1} where ζ is a primitive element of F∗p
I For β ∈ Zk+1,

• gcd(gk, X2 − β) =
{
X− αi (simple root)
(X− αi)(X− αj) (multiple root)

• If β = ζe, αi, αj ∈ {ζe/2, ζ(e+2
mM)/2}

7 / 15
Bruno Grenet – Root finding over finite fields

N

Deterministic complexity

Improvements and generalization:
I Modular composition for Graeffe transforms [Kedlaya-Umans (2008)]

I Fast discrete logarithms in F∗q [Pohlig-Hellman (1978)]

I Computation of roots à la Pollard-Strassen [Shoup (1991)]

Theorem
Given f ∈ Fq[X] satisfying (A), the irreducible factorization of
(q− 1) and a primitive element of F∗q, the roots of f can be
computed in time

Õ(
√
S1(q− 1)d log2 q) + (d log2 q)1+o(1)

where S1(q− 1) is the largest factor of q− 1.

I Refines Shoup’s complexity bounds
I Note: If q =M · 2m + 1, M = O(logq), complexity Õ(d log2 q).

8 / 15
Bruno Grenet – Root finding over finite fields

N

Deterministic complexity

Improvements and generalization:
I Modular composition for Graeffe transforms [Kedlaya-Umans (2008)]

I Fast discrete logarithms in F∗q [Pohlig-Hellman (1978)]

I Computation of roots à la Pollard-Strassen [Shoup (1991)]

Theorem
Given f ∈ Fq[X] satisfying (A), the irreducible factorization of
(q− 1) and a primitive element of F∗q, the roots of f can be
computed in time

Õ(
√
S1(q− 1)d log2 q) + (d log2 q)1+o(1)

where S1(q− 1) is the largest factor of q− 1.

I Refines Shoup’s complexity bounds
I Note: If q =M · 2m + 1, M = O(logq), complexity Õ(d log2 q).

8 / 15
Bruno Grenet – Root finding over finite fields

N

Deterministic complexity

Improvements and generalization:
I Modular composition for Graeffe transforms [Kedlaya-Umans (2008)]

I Fast discrete logarithms in F∗q [Pohlig-Hellman (1978)]

I Computation of roots à la Pollard-Strassen [Shoup (1991)]

Theorem
Given f ∈ Fq[X] satisfying (A), the irreducible factorization of
(q− 1) and a primitive element of F∗q, the roots of f can be
computed in time

Õ(
√
S1(q− 1)d log2 q) + (d log2 q)1+o(1)

where S1(q− 1) is the largest factor of q− 1.

I Refines Shoup’s complexity bounds
I Note: If q =M · 2m + 1, M = O(logq), complexity Õ(d log2 q).

8 / 15
Bruno Grenet – Root finding over finite fields

N

Tangent Grae�e transform

Definition
The tangent Graeffe transform of order π of f ∈ Fp[X] is

Gπ(f+ εf
′) ∈ (Fp[ε]/〈ε2〉)[X].

Remarks:
I (f+ εf ′)(X) = f(X+ ε)

I G2(f+ εf
′) = G2(f) + εg with g(X2) = f(X)f ′(−X) + f(−X)f ′(X)

Lemma
Let g+ εg = G2`(f+ εf

′). A nonzero root β of g is simple iff
g(β) 6= 0. The corresponding root of f is α = 2`βg ′(β)/g(β).

9 / 15
Bruno Grenet – Root finding over finite fields

N

Tangent Grae�e transform

Definition
The tangent Graeffe transform of order π of f ∈ Fp[X] is

Gπ(f+ εf
′) ∈ (Fp[ε]/〈ε2〉)[X].

Remarks:
I (f+ εf ′)(X) = f(X+ ε)

I G2(f+ εf
′) = G2(f) + εg with g(X2) = f(X)f ′(−X) + f(−X)f ′(X)

Lemma
Let g+ εg = G2`(f+ εf

′). A nonzero root β of g is simple iff
g(β) 6= 0. The corresponding root of f is α = 2`βg ′(β)/g(β).

9 / 15
Bruno Grenet – Root finding over finite fields

N

Tangent Grae�e transform

Definition
The tangent Graeffe transform of order π of f ∈ Fp[X] is

Gπ(f+ εf
′) ∈ (Fp[ε]/〈ε2〉)[X].

Remarks:
I (f+ εf ′)(X) = f(X+ ε)

I G2(f+ εf
′) = G2(f) + εg with g(X2) = f(X)f ′(−X) + f(−X)f ′(X)

Lemma
Let g+ εg = G2`(f+ εf

′). A nonzero root β of g is simple iff
g(β) 6= 0. The corresponding root of f is α = 2`βg ′(β)/g(β).

9 / 15
Bruno Grenet – Root finding over finite fields

N

Randomized algorithm

Goal: Ensure many simple roots.
I Replace f by fτ(X) = f(X+ τ) for a random τ ∈ Fp.

Lemma
If 2` 6 p−1

d(d−1) , G2`(fτ) has no multiple root with prob. > 1/2.

f(X+ τ+ ε) . . . g` + εg` . . . gm + εgm

Z0 Z` . . . Zm⊂

{ξe : 0 6 e < M}

G2 G2 G2 G2

Only simple roots

recursive call:
f/
∏
α∈Z0(X− α)

10 / 15
Bruno Grenet – Root finding over finite fields
N

Randomized algorithm

Goal: Ensure many simple roots.
I Replace f by fτ(X) = f(X+ τ) for a random τ ∈ Fp.

Lemma
If 2` 6 p−1

d(d−1) , G2`(fτ) has no multiple root with prob. > 1/2.

f(X+ τ+ ε) . . . g` + εg` . . . gm + εgm

Z0 Z` . . . Zm⊂

{ξe : 0 6 e < M}

G2 G2 G2 G2

Only simple roots

recursive call:
f/
∏
α∈Z0(X− α)

10 / 15
Bruno Grenet – Root finding over finite fields
N

Randomized algorithm

Goal: Ensure many simple roots.
I Replace f by fτ(X) = f(X+ τ) for a random τ ∈ Fp.

Lemma
If 2` 6 p−1

d(d−1) , G2`(fτ) has no multiple root with prob. > 1/2.

f(X+ τ+ ε) . . . g` + εg` . . . gm + εgm

Z0 Z` . . . Zm⊂

{ξe : 0 6 e < M}

G2 G2 G2 G2

Only simple roots

recursive call:
f/
∏
α∈Z0(X− α)

10 / 15
Bruno Grenet – Root finding over finite fields
N

Randomized algorithm

Goal: Ensure many simple roots.
I Replace f by fτ(X) = f(X+ τ) for a random τ ∈ Fp.

Lemma
If 2` 6 p−1

d(d−1) , G2`(fτ) has no multiple root with prob. > 1/2.

f(X+ τ+ ε) . . . g` + εg` . . . gm + εgm

Z0 Z` . . . Zm⊂

{ξe : 0 6 e < M}

G2 G2 G2 G2

Only simple roots

recursive call:
f/
∏
α∈Z0(X− α)

10 / 15
Bruno Grenet – Root finding over finite fields
N

Randomized algorithm

Goal: Ensure many simple roots.
I Replace f by fτ(X) = f(X+ τ) for a random τ ∈ Fp.

Lemma
If 2` 6 p−1

d(d−1) , G2`(fτ) has no multiple root with prob. > 1/2.

f(X+ τ+ ε) . . . g` + εg` . . . gm + εgm

Z0 Z` . . . Zm⊂

{ξe : 0 6 e < M}

G2 G2 G2 G2

Only simple roots

recursive call:
f/
∏
α∈Z0(X− α)

10 / 15
Bruno Grenet – Root finding over finite fields
N

Randomized algorithm

Goal: Ensure many simple roots.
I Replace f by fτ(X) = f(X+ τ) for a random τ ∈ Fp.

Lemma
If 2` 6 p−1

d(d−1) , G2`(fτ) has no multiple root with prob. > 1/2.

f(X+ τ+ ε) . . . g` + εg` . . . gm + εgm

Z0 Z` . . . Zm⊂

{ξe : 0 6 e < M}

G2 G2 G2 G2

Only simple roots

recursive call:
f/
∏
α∈Z0(X− α)

10 / 15
Bruno Grenet – Root finding over finite fields
N

Randomized algorithm

Goal: Ensure many simple roots.
I Replace f by fτ(X) = f(X+ τ) for a random τ ∈ Fp.

Lemma
If 2` 6 p−1

d(d−1) , G2`(fτ) has no multiple root with prob. > 1/2.

f(X+ τ+ ε) . . . g` + εg` . . . gm + εgm

Z0 Z` . . . Zm⊂

{ξe : 0 6 e < M}

G2 G2 G2 G2

Only simple roots

recursive call:
f/
∏
α∈Z0(X− α)

10 / 15
Bruno Grenet – Root finding over finite fields
N

Randomized complexity

Theorem
Given f ∈ Fp[X] satisfying (A) and a primitive element of F∗p, the
randomized algorithm runs in expected time Õ(d log2 p), for
p =M · 2m + 1 with M = O(logp).

I Same asymptotic as Rabin’s algorithm
I Better efficiency in practice
I Primitive elements easy to compute in practice

11 / 15
Bruno Grenet – Root finding over finite fields

N

Randomized complexity

Theorem
Given f ∈ Fp[X] satisfying (A) and a primitive element of F∗p, the
randomized algorithm runs in expected time Õ(d log2 p), for
p =M · 2m + 1 with M = O(logp).

I Same asymptotic as Rabin’s algorithm
I Better efficiency in practice
I Primitive elements easy to compute in practice

11 / 15
Bruno Grenet – Root finding over finite fields

N

Heuristic algorithm

Heuristic
If 2` ' p/d, G2`(f(X+ τ)) has Ω(d) simple roots with
probability > 1/2, for a random τ ∈ Fp.

Justification: holds for a random f rather than f(X+ τ).

f(X+ τ+ ε) g` + εg`

Z`Z0 ⊂

{ξe : 0 6 e < M · 2`}

G2`

only simple roots

recursive call:
f/
∏
α∈Z0(X− α)

12 / 15
Bruno Grenet – Root finding over finite fields

N

Heuristic algorithm

Heuristic
If 2` ' p/d, G2`(f(X+ τ)) has Ω(d) simple roots with
probability > 1/2, for a random τ ∈ Fp.

Justification: holds for a random f rather than f(X+ τ).

f(X+ τ+ ε) g` + εg`

Z`Z0 ⊂

{ξe : 0 6 e < M · 2`}

G2`

only simple roots

recursive call:
f/
∏
α∈Z0(X− α)

12 / 15
Bruno Grenet – Root finding over finite fields

N

Heuristic algorithm

Heuristic
If 2` ' p/d, G2`(f(X+ τ)) has Ω(d) simple roots with
probability > 1/2, for a random τ ∈ Fp.

Justification: holds for a random f rather than f(X+ τ).

f(X+ τ+ ε) g` + εg`

Z`Z0 ⊂

{ξe : 0 6 e < M · 2`}

G2`

only simple roots

recursive call:
f/
∏
α∈Z0(X− α)

12 / 15
Bruno Grenet – Root finding over finite fields

N

Heuristic algorithm

Heuristic
If 2` ' p/d, G2`(f(X+ τ)) has Ω(d) simple roots with
probability > 1/2, for a random τ ∈ Fp.

Justification: holds for a random f rather than f(X+ τ).

f(X+ τ+ ε) g` + εg`

Z`Z0 ⊂

{ξe : 0 6 e < M · 2`}

G2`

only simple roots

recursive call:
f/
∏
α∈Z0(X− α)

12 / 15
Bruno Grenet – Root finding over finite fields

N

Heuristic algorithm

Heuristic
If 2` ' p/d, G2`(f(X+ τ)) has Ω(d) simple roots with
probability > 1/2, for a random τ ∈ Fp.

Justification: holds for a random f rather than f(X+ τ).

f(X+ τ+ ε) g` + εg`

Z`Z0 ⊂

{ξe : 0 6 e < M · 2`}

G2`

only simple roots

recursive call:
f/
∏
α∈Z0(X− α)

12 / 15
Bruno Grenet – Root finding over finite fields

N

Heuristic complexity

Theorem
Suppose that f is chosen at random in Fp[X] or that the heuristic
holds. Given a primitive element of F∗p, the heuristic algorithm
runs in expected time Õ(d log2 p), for p =M · 2m + 1 with
M = O(logp).

13 / 15
Bruno Grenet – Root finding over finite fields

N

Timings

p = 7 · 226 + 1

8 10 12 14 16 18
0

5

10

15

20

25

Degree in log scale

Ti
m

e
(s

ec
on

ds
)

flint
ntl
mmx (randomized alg.)
mmx (heuristic alg.)

14 / 15
Bruno Grenet – Root finding over finite fields

N

Timings

p = 5 · 255 + 1

8 10 12 14 16 18
0

100

200

300

400

Degree in log scale

Ti
m

e
(s

ec
on

ds
)

flint
mmx (randomized alg.)
mmx (Rabin’s alg.)
mmx (heuristic alg.)

14 / 15
Bruno Grenet – Root finding over finite fields

N

Conclusion

I Revisit classical algorithms for FFT finite fields

I New approach using Graeffe transforms

• Good deterministic complexity bounds
• Good probabilistic complexity bounds
• Good running times

I Source code in C++, in Mathemagix
I Root finding is not the bottleneck for sparse interpolation anymore
I Open questions:

• Deterministic alg.: use of tangent Graeffe transforms
• Heuristic alg.: Graeffe transform of order 2l is the bottleneck
• Prove the heuristic

Merci de votre attention !

15 / 15
Bruno Grenet – Root finding over finite fields

N

Conclusion

I Revisit classical algorithms for FFT finite fields
I New approach using Graeffe transforms

• Good deterministic complexity bounds
• Good probabilistic complexity bounds
• Good running times

I Source code in C++, in Mathemagix
I Root finding is not the bottleneck for sparse interpolation anymore
I Open questions:

• Deterministic alg.: use of tangent Graeffe transforms
• Heuristic alg.: Graeffe transform of order 2l is the bottleneck
• Prove the heuristic

Merci de votre attention !

15 / 15
Bruno Grenet – Root finding over finite fields

N

Conclusion

I Revisit classical algorithms for FFT finite fields
I New approach using Graeffe transforms

• Good deterministic complexity bounds
• Good probabilistic complexity bounds
• Good running times

I Source code in C++, in Mathemagix

I Root finding is not the bottleneck for sparse interpolation anymore
I Open questions:

• Deterministic alg.: use of tangent Graeffe transforms
• Heuristic alg.: Graeffe transform of order 2l is the bottleneck
• Prove the heuristic

Merci de votre attention !

15 / 15
Bruno Grenet – Root finding over finite fields

N

Conclusion

I Revisit classical algorithms for FFT finite fields
I New approach using Graeffe transforms

• Good deterministic complexity bounds
• Good probabilistic complexity bounds
• Good running times

I Source code in C++, in Mathemagix
I Root finding is not the bottleneck for sparse interpolation anymore

I Open questions:

• Deterministic alg.: use of tangent Graeffe transforms
• Heuristic alg.: Graeffe transform of order 2l is the bottleneck
• Prove the heuristic

Merci de votre attention !

15 / 15
Bruno Grenet – Root finding over finite fields

N

Conclusion

I Revisit classical algorithms for FFT finite fields
I New approach using Graeffe transforms

• Good deterministic complexity bounds
• Good probabilistic complexity bounds
• Good running times

I Source code in C++, in Mathemagix
I Root finding is not the bottleneck for sparse interpolation anymore
I Open questions:

• Deterministic alg.: use of tangent Graeffe transforms
• Heuristic alg.: Graeffe transform of order 2l is the bottleneck
• Prove the heuristic

Merci de votre attention !

15 / 15
Bruno Grenet – Root finding over finite fields

N

Conclusion

I Revisit classical algorithms for FFT finite fields
I New approach using Graeffe transforms

• Good deterministic complexity bounds
• Good probabilistic complexity bounds
• Good running times

I Source code in C++, in Mathemagix
I Root finding is not the bottleneck for sparse interpolation anymore
I Open questions:

• Deterministic alg.: use of tangent Graeffe transforms
• Heuristic alg.: Graeffe transform of order 2l is the bottleneck
• Prove the heuristic

Merci de votre attention !

15 / 15
Bruno Grenet – Root finding over finite fields

N

