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The problem

For any continuous function f , compute (an approximation of)

I [f ] =

∫
Ω
w(x)f (x)dx

where Ω ⊂ Rn and w is a positive function on Ω.
Cubature formula: compute ξj ∈ Rn and weights wj ∈ R such that

σ : f 7→ 〈σ|f 〉 =
r∑

j=1

wj f (ξj)

satisfies:
〈σ|f 〉 = I [f ], ∀f ∈ V ,

where V is a finite dimensional vector space of polynomials.

B. Mourrain Cubature formulae, flat extensions and convex relaxation. 2 / 24



Interest:

I Fast/accurate evaluation of integrals.

I Important ingredient in numerical methods.

I Applications in other domains : graph, algorithms (Lanczos), . . . .

A long history:

I C.F. Gauss (1815), . . . J. Radon (1948),
W. Gröbner (1948), . . .

I A. H. Stroud (1971), I.P. Mysovskikh (1981), R. Cools (1993 ...
2003), . . .

Many case studies on simplex, hyperspheres, hypercubes, for degree 1,
2,3,4,5, . . .
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Solving the cubature of the disk (cf. [Cools’00])
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Example (1D)
V = R[x ]≤2r−1 polynomials of degree ≤ 2r − 1, spanned by
1, x , . . . , x2 r−1.
Problem: Given σ0 = I [1], σ1 = I [x ], . . . , σ2r−1 = I [x2r−1], find ξi ∈ R,
ωi ∈ R s.t.

σk =
r∑

i=1

ωiξ
k
i . (1)

Solution: If (1) is satisfied, then
p(x) = p0 + p1x + · · ·+ prx

r =
∏r

i=1(x − ξi ) is such that
Hσ︷ ︸︸ ︷

σ0 σ1 . . . σr
σ1 σr+1
...

...
σr−1 . . . σ2r−1 σ2r−1




p0

p1
...
pr

 =


∑r

i=1 ωip(ξi )∑r
i=1 ωip(ξi )ξi

...∑r
i=1 ωip(ξi )ξ

r−1
i

 = 0

+ Compute an element p(x) in the kernel of Hσ, its roots ξ1, . . . , ξd
and deduce the coefficients ω1, . . . , ωi s.t. σk =

∑d
i=1 ωiξ

k
i .
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In practice, for 〈f , g〉 =
∑

k

∑
j≤k σk fjgk−j ,

I Compute the orthogonal polynomials pi (x) such that 〈x j , pi 〉 = 0 for
j < i and 〈x i − pi , pi 〉 = 0, which satisfies the recurrence relation

pi+1(x) = (x − αi )pi (x) + γipi−1(x)

where αi = 〈x pi ,pi 〉
〈pi ,pi 〉 , γi =

〈x pi ,pi−1〉
〈pi−1,pi−1〉 = 〈pi ,pi 〉

〈pi−1,pi−1〉 .

I Take the last polynomial p(x) = pr (x) for the quadrature rule.
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What we are going to do

+ Replace the cubature problem by a low-rank structured
matrix-completion problem in a convex set.

+ Relax the low-rank condition by a L1 proxy and solve (a hierarchy of)
convex optimization problems to obtain the minimal L1 solutions.

+ Deduce the cubature formula from the completed matrix.

B. Mourrain Cubature formulae, flat extensions and convex relaxation. 7 / 24



From cubature formulae to structured matrix completion

1 From cubature formulae to structured matrix completion

2 Reduction to a convex optimization problem

3 From moment matrices to cubature formulae

4 Why it is working

5 Illustration
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From cubature formulae to structured matrix completion

I Sequences in KNn
:

σ = (σα)α∈Nn

I Formal power series in K[[z]] = K[[z1, . . . , zn]]:

σ(z) =
∑
α∈Nn

σα
zα

α!

I Linear forms in the dual R∗ where R = K[x] = K[x1, . . . , xn]:

σ : p =
∑
α

pαxα 7→ 〈σ|p〉 =
∑
α

σαpα

I Isomorphism: K[x]∗ ∼ K[[z1, . . . , zn]].
I Structure of K[x]-module: ∀a ∈ K[x],∀σ ∈ K[x]∗,

a ? σ : b 7→ 〈σ|a b〉

Example:
x1 ? zα1

1 zα2
2 · · · zαn

n = α1zα1−1
1 zα2

2 · · · zαn
n = ∂z1(zα1

1 zα2
2 · · · zαn

n ).
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From cubature formulae to structured matrix completion

Dictionary

I p 7→ ∂α1
1 · · · ∂αn

n (p)(0) represented by zα.

I p 7→ p(ξ) represented by eξ(z) =
∑

α∈Nn ξα zα

α! = ez·ξ.

I p 7→
∫

Ω p dµ represented by σ(z) =
∑

α∈Nn

∫
Ω ex·zdx .

I σ s.t. σα =
∑r

i=1 ωi ξi
α represented by σ(z) =

∑r
i=1 ωi eξi (z)

where eξi (z) = ez·ξi = ez1ξ1,i+···+znξn,i .

The cubature problem for V = R≤d over R: find

I frequencies ξ1, . . . , ξr ∈ Rn,

I weights ω1, . . . , ωr ∈ R,

such that ∫
Ω

ex·zdx ≡
r∑

i=1

ωi eξi
(z) + O((z)d+1)

(Borel-Laplace transform).
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From cubature formulae to structured matrix completion

Vanishing ideal, Hankel operators and moments
For σ ∈ K[x]∗ = K[[z]],

I Hankel operator:

Hσ : K[x] → K[x]∗

p 7→ p ? σ

where p ? σ : q 7→ 〈σ|p q〉.
I Vanishing ideal:

0→ Iσ → K[x]→ A∗σ → 0

with Iσ := kerHσ, Aσ := K[x]/Iσ.
I Moments of σ ∈ 〈xA〉∗: 〈σ|xα〉 ∈ K for α ∈ A ⊂ Nn.
I Truncated moment matrix: If E1 = 〈xA〉, E2 = 〈xB〉, the matrix of

HE1,E2
σ : E1 → E ∗2

p 7→ p ? σ
is the moment matrix of [〈σ|xα+β〉]α∈A,β∈B .
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Reduction to a convex optimization problem

1 From cubature formulae to structured matrix completion

2 Reduction to a convex optimization problem

3 From moment matrices to cubature formulae

4 Why it is working

5 Illustration

B. Mourrain Cubature formulae, flat extensions and convex relaxation. 12 / 24



Reduction to a convex optimization problem

Semi-Definite Programming Relaxation

If σ =
∑r

i=1 wj eξj with ξj ∈ Rn,wj > 0, then HB,B
σ < 0 and of rank ≤ r .

For given moments i = (i(v))v∈V , consider the convex set:

Hk(i) = {Hσ | σ ∈ R∗2k ,∀v ∈ V 〈σ|v〉 = i(v),Hσ < 0}

Cubature formulae with a minimal number of points as the
solution of

min
H∈Hk (i)

rank(H).

+ Relaxation of this NP-hard problem:

min
H∈Hk (i)

trace (PtHP) (2)

for a well-chosen matrix P.
+ Optimization of a linear functional on a convex set (the cone of
SDP matrices intersected with a linear space) by SDP solvers.
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Reduction to a convex optimization problem

Objective function: trace (PtHP)= nuclear norm of PtHP.
= trace (HPPt) = 〈H,Q〉 where Q = PPt .

Convex optimization problem:

argmin〈H,Q〉 s.t.

– H = (hα,β)α,β∈B < 0,

– H satisfies the Hankel constraints
hα,β = hα′,β′ =: hα+β if α + β = α′ + β′.

– hα = I [xα] for α ∈ A.

Efficient solvers by interior point methods, with polynomial complexity (for
a given precision ε).
Efficient tools: CSDP, SDPA, . . . .
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From moment matrices to cubature formulae

1 From cubature formulae to structured matrix completion

2 Reduction to a convex optimization problem

3 From moment matrices to cubature formulae

4 Why it is working

5 Illustration
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From moment matrices to cubature formulae

Flat extension
Let B ⊂ C , B ′ ⊂ C ′, ∂B = C \ B, ∂B ′ = C ′ \ B ′.
Truncated moment matrix:

HC ,C ′ =
(
〈σ | xα+β〉

)
α∈C ,β∈C ′

Flat extension:

HC,C′ =

[
HB,B′ HB,∂B′

H∂B,B′ H∂B,∂B′

]
,

I rankHC ,C = rankHB,B

I there exist P ∈ CB×∂B′ , P′ ∈ CB′×∂B s.t.

M = Ht P,M′ = HP′,N = Pt HP′. (3)

with H = HB,B′ , M′ = HB,∂B′ , M = H∂B,B′ , N = H∂B,∂B′
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From moment matrices to cubature formulae

When there is a flat extension for C = C ′ = B+

(B+ = B ∪ x1B ∪ . . . ∪ xnB; B connected to 1)

I The tables of multiplication in Aσ = R[x]/Iσ are
Mj := HB,xjB(HB,B)−1.

I Their common eigenvectors vi are, up to a scalar, the Lagrange
interpolation polynomials uξi

.

I The points of the cubature are ξi = (ξi ,1, . . . , ξi ,n), where ξi ,j is an
eigenvalue of Mj .

I The decomposition is σ =
∑r

i=1
1

vi (ξi )
〈σ|vi 〉eξi .
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Why it is working

1 From cubature formulae to structured matrix completion

2 Reduction to a convex optimization problem

3 From moment matrices to cubature formulae

4 Why it is working

5 Illustration

B. Mourrain Cubature formulae, flat extensions and convex relaxation. 18 / 24



Why it is working

The geometry of Hk(i)

Hk(i) = {Hσ | σ ∈ R∗2k , ∀v ∈ V 〈σ|v〉 = i(v),Hσ < 0}

Hk
r (i) =

{
Hσ ∈ Hk(i) | rankHσ ≤ r

}
Ekr (i) =

{
Hσ ∈ Hk(i) | σ =

r∑
i=1

wi eξi , ωi > 0, ξi ∈ Rn

}
⊂ Hk

r (i) (cubature with r points)

Proposition

Let k > deg(V )+1
2 and H be an element of Hk(i) with minimal rank r . If

k > r , then H ∈ Ekr (i) and it is either an extremal point of Hk(i) or on a
face of Hk(i), which is included in Ekr (i).

Remark: if σ is interpolatory (weights uniquely determined from the
points) of minimal rank, then Hσ is extremal.
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Why it is working

Theorem

Let P be a proper operator and k > deg(V )+1
2 . Assume that there exists

σ∗ ∈ R∗2k such that Hσ∗ is a minimizer of (2) of rank r with r 6 k . Then
Hσ∗ ∈ Ekr (i) i.e. there exists ωi > 0 and ξi ∈ Rn such that

σ∗ ≡
r∑

i=1

ωieξi .

Assume Ω = {x ∈ Rn | g0
1 = 0, . . . , g0

n1
= 0, g+

1 ≥ 0, . . . , g+
n2
≥ 0} is

compact.
Let Lk(i) = {Hσ ∈ Hk(i) | 〈σ | q g0

i 〉 = 0 for deg(q g0
i ) ≤ 2k , 〈σ |

q2g+
i 〉 ≥ 0 for deg(q2

i g
+
i ) ≤ 2k}.

Theorem

For P generic and k � 0, a minimizer Hσ∗ of minH∈Lk (i) trace (PtHP) is

in Ekr (i) with r 6 k and its associated points are in Ω.
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Illustration

1 From cubature formulae to structured matrix completion

2 Reduction to a convex optimization problem

3 From moment matrices to cubature formulae

4 Why it is working

5 Illustration
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Illustration

Example (1)

Cubature on the square Ω = [−1, 1]× [−1, 1]

Degree N Points Weights
3 4 ±(0.46503, 0.464462) 1.545

±(0.855875, -0.855943) 0.454996
5 7 ±(0.673625, 0.692362) 0.595115

±(0.40546, -0.878538) 0.43343
±(-0.901706, 0.340618) 0.3993

(0, 0) 1.14305
7 12 ±(0.757951, 0.778815) 0.304141

±(0.902107, 0.0795967) 0.203806
±(0.04182, 0.9432) 0.194607
±(0.36885, 0.19394) 0.756312
±(0.875533, -0.873448) 0.0363
±(0.589325, -0.54688) 0.50478
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Illustration

Example (2)
Wachpress barycentric coordinates:

I λi (x) ≥ 0 for x ∈ C

I
∑5

i=1 λi (x) = 1,

I
∑5

i=1 vi · λi (x) = x.

For p ∈ R = R[u0, u1, u2, u3, u4],

I [p] =

∫
x∈Ω

p ◦ λ(x)dx

For B = {1, u0, u1, u2, u3, u4}, the solution of the optimization problem:

min trace(HB+,B+

σ ) (4)

s.t. HB+,B+

σ < 0

yields 5 points and weights:
Points Weights
(0.249888,−0.20028, 0.249993, 0.350146, 0.350193) 0.485759
(0.376647, 0.277438,−0.186609, 0.20327, 0.329016) 0.498813
(0.348358, 0.379898, 0.244967,−0.174627, 0.201363) 0.509684
(−0.18472, 0.277593, 0.376188, 0.329316, 0.201622) 0.490663
(0.242468, 0.379314, 0.348244, 0.200593,−0.170579) 0.51508
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Illustration

Open questions:

I Optimal choice of the matrix P for minimal rank r .

I Control the order k of relaxation.

I Numerical best rank r approximation for sparse representation.

I Low rank structured matrix completion problem.

Thank you for your attention
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