Cubature formulae, flat extensions and convex relaxation.

B. Mourrain INRIA Méditerranée, Sophia Antipolis Bernard.Mourrain@inria.fr

(collaboration with M. Abril Bucero & C. Bajaj)

The problem

For any continuous function f, compute (an approximation of)

$$I[f] = \int_{\Omega} w(\mathbf{x}) f(\mathbf{x}) d\mathbf{x}$$

where $\Omega \subset \mathbb{R}^n$ and w is a positive function on Ω . **Cubature formula:** compute $\xi_j \in \mathbb{R}^n$ and weights $w_j \in \mathbb{R}$ such that

$$\sigma: f \mapsto \langle \sigma | f \rangle = \sum_{j=1}^{r} w_j f(\xi_j)$$

satisfies:

$$\langle \sigma | f \rangle = I[f], \forall f \in V,$$

where V is a finite dimensional vector space of polynomials.

Interest:

- ► Fast/accurate evaluation of integrals.
- Important ingredient in numerical methods.
- Applications in other domains : graph, algorithms (Lanczos),

A long history:

- C.F. Gauss (1815), ... J. Radon (1948), W. Gröbner (1948), ...
- A. H. Stroud (1971), I.P. Mysovskikh (1981), R. Cools (1993 ... 2003), ...

Many case studies on simplex, hyperspheres, hypercubes, for degree 1, 2,3,4,5, \ldots

Solving the cubature of the disk (cf. [Cools'00])

Degree	N	Quality	References	Degree	N	Quality	References
2	3*	PI	[25]	11	25	PO	[15]
3	4*	PI(3)	[25]			NO	[17] Error
		PB	25		26	PI	[21]
4	6*	PI	[25]			PI	[15]
		?0	[24]		28	PI(3)	[25]
	10	EI	[12]		32	PI	[25]
5	7*	PI(2)	25	13	34	PO	[9]
	8	PO	[3]		35	PB	[9]
		PO	[25]		36	PI	[7] [17]
	9	PI(2)	25		37	PI	[25]
		PB	[25]		41	PI	[25]
	12	EI	[25]			PI	[14]
		EI	[12]	15	44	PI	[25]
		EI	[11]			PI	[17]
6	10^{*}	PO	[23] [26]		48	PI	[25]
		PO	[18]	17	56	PO	[17] Error
	11	PO	[26] [20]		57	PI	See §3, Table 2
	14	EI	[12]		60	PO	[17]
7	12^{*}	PI	[25]		61	PI	[25]
	16	EI	[12]	19	68	NO	[17] Error
		PI	[25]		69	PO	See §3, Table 3
	18	EI	[12]		71	PO	[14]
	20	EI	[12]		72	PI	[17]
8	16	PI	[20] [26]		76	PI	[14] [13]
9	18^{*}	PO	[22]	21	88	PO	See §3, Table 4
	19	PI	[25]		90	PI	[14]
		PI	[19]		99	PI	[14] [4]
		PI	[16]	23	97	PO	[14]
		PI	[20]		108	PI	[14] [13]
	20	PI(3)	[3]	25	127	PI	[14]
		PO	[25]	27	140	PI	[14] [13]
		PO	[3]	31	172	PI	[14] [13]
		PO	[3] [17]				
	21	PI	[3]	Emb	Embedded cubature formulas		
		PI	[25]	Degrees	Degrees N Quality References		
		PO	[25]	5-7	8-1	6 PNI	(2) [5]

TABLE 1: Overview of published cubature formulas for the unit disk.

B. Mourrain

Cubature formulae, flat7extensions3andIconvex relaxation.

Example (1D)

 $V = \mathbb{R}[x]_{\leq 2r-1}$ polynomials of degree $\leq 2r-1$, spanned by $1, x, \ldots, x^{2r-1}$. **Problem:** Given $\sigma_0 = I[1], \sigma_1 = I[x], \ldots, \sigma_{2r-1} = I[x^{2r-1}]$, find $\xi_i \in \mathbb{R}$, $\omega_i \in R$ s.t.

$$\sigma_k = \sum_{i=1}^r \omega_i \xi_i^k. \tag{1}$$

Solution: If (1) is satisfied, then $p(x) = p_0 + p_1 x + \dots + p_r x^r = \prod_{i=1}^r (x - \xi_i) \text{ is such that}$ $\overbrace{\begin{array}{c}\sigma_0 & \sigma_1 & \dots & \sigma_r\\\sigma_1 & & \sigma_{r+1}\\\vdots & & \vdots\\\sigma_{r-1} & \dots & \sigma_{2r-1} & \sigma_{2r-1}\end{array}}^r \left[\begin{array}{c}p_0\\p_1\\\vdots\\p_r\end{array} \right] = \left[\begin{array}{c}\sum_{i=1}^r \omega_i p(\xi_i)\\\sum_{i=1}^r \omega_i p(\xi_i)\xi_i\\\vdots\\\sum_{i=1}^r \omega_i p(\xi_i)\xi_i^{r-1}\end{array} \right] = 0$

Compute an element p(x) in the kernel of H_{σ} , its roots ξ_1, \ldots, ξ_d and deduce the coefficients $\omega_1, \ldots, \omega_i$ s.t. $\sigma_k = \sum_{i=1}^d \omega_i \xi_i^k$.

B. Mourrain

In practice, for $\langle f, g \rangle = \sum_k \sum_{j \le k} \sigma_k f_j g_{k-j}$,

Compute the orthogonal polynomials p_i(x) such that ⟨x^j, p_i⟩ = 0 for j < i and ⟨xⁱ − p_i, p_i⟩ = 0, which satisfies the recurrence relation

$$p_{i+1}(x) = (x - \alpha_i)p_i(x) + \gamma_i p_{i-1}(x)$$

where
$$\alpha_i = \frac{\langle x \, p_i, p_i \rangle}{\langle p_i, p_i \rangle}$$
, $\gamma_i = \frac{\langle x \, p_i, p_{i-1} \rangle}{\langle p_{i-1}, p_{i-1} \rangle} = \frac{\langle p_i, p_i \rangle}{\langle p_{i-1}, p_{i-1} \rangle}$.

• Take the last polynomial $p(x) = p_r(x)$ for the quadrature rule.

What we are going to do

Replace the cubature problem by a **low-rank structured matrix-completion problem** in a **convex set**.

Relax the low-rank condition by a L_1 proxy and solve (a hierarchy of) **convex optimization problems** to obtain the minimal L_1 solutions.

Deduce the cubature formula from the completed matrix.

- 2 Reduction to a convex optimization problem
- 3 From moment matrices to cubature formulae
- Why it is working
- **5** Illustration

• Sequences in $\mathbb{K}^{\mathbb{N}^n}$:

$$\sigma = (\sigma_{\alpha})_{\alpha \in \mathbb{N}^n}$$

• Formal power series in $\mathbb{K}[[\mathbf{z}]] = \mathbb{K}[[z_1, \dots, z_n]]$:

$$\sigma(\mathbf{z}) = \sum_{\alpha \in \mathbb{N}^n} \sigma_\alpha \frac{\mathbf{z}^\alpha}{\alpha!}$$

▶ Linear forms in the dual R^* where $R = \mathbb{K}[\mathbf{x}] = \mathbb{K}[x_1, \dots, x_n]$:

$$\sigma: \pmb{p} = \sum_{lpha} \pmb{p}_{lpha} \mathbf{x}^{lpha} \mapsto \langle \sigma | \pmb{p}
angle = \sum_{lpha} \sigma_{lpha} \pmb{p}_{lpha}$$

Isomorphism: K[x]* ~ K[[z₁,..., z_n]].
Structure of K[x]-module: ∀a ∈ K[x], ∀σ ∈ K[x]*, a ★ σ : b ↦ ⟨σ|a b⟩

Example:

$$x_1 \star \mathbf{z}_1^{\alpha_1} \mathbf{z}_2^{\alpha_2} \cdots \mathbf{z}_n^{\alpha_n} = \alpha_1 \mathbf{z}_1^{\alpha_1 - 1} \mathbf{z}_2^{\alpha_2} \cdots \mathbf{z}_n^{\alpha_n} = \partial_{\mathbf{z}_1} (\mathbf{z}_1^{\alpha_1} \mathbf{z}_2^{\alpha_2} \cdots \mathbf{z}_n^{\alpha_n}).$$

B. Mourrain

Dictionary

- ▶ $p \mapsto \partial_1^{\alpha_1} \cdots \partial_n^{\alpha_n}(p)(0)$ represented by \mathbf{z}^{α} .
- $p \mapsto p(\xi)$ represented by $\mathbf{e}_{\xi}(\mathbf{z}) = \sum_{\alpha \in \mathbb{N}^n} \xi^{\alpha} \frac{\mathbf{z}^{\alpha}}{\alpha!} = e^{\mathbf{z} \cdot \xi}.$
- $p \mapsto \int_{\Omega} p \, d\mu$ represented by $\sigma(\mathbf{z}) = \sum_{\alpha \in \mathbb{N}^n} \int_{\Omega} e^{\mathbf{x} \cdot \mathbf{z}} dx$.
- σ s.t. $\sigma_{\alpha} = \sum_{i=1}^{r} \omega_i \xi_i^{\alpha}$ represented by $\sigma(\mathbf{z}) = \sum_{i=1}^{r} \omega_i \mathbf{e}_{\xi_i}(\mathbf{z})$ where $\mathbf{e}_{\xi_i}(\mathbf{z}) = e^{\mathbf{z} \cdot \xi_i} = e^{z_1 \xi_{1,i} + \dots + z_n \xi_{n,i}}$.

The cubature problem for $V = R_{\leq d}$ over \mathbb{R} : find

- frequencies $\xi_1, \ldots, \xi_r \in \mathbb{R}^n$,
- weights $\omega_1, \ldots, \omega_r \in \mathbb{R}$,

such that

$$\int_{\Omega} e^{x \cdot z} dx \equiv \sum_{i=1}^{r} \omega_i \, e_{\xi_i}(z) + O((z)^{d+1})$$

(Borel-Laplace transform).

Vanishing ideal, Hankel operators and moments For $\sigma \in \mathbb{K}[\mathbf{x}]^* = \mathbb{K}[[\mathbf{z}]]$,

Hankel operator:

$$\begin{array}{rcl} H_{\sigma} : \mathbb{K}[\mathbf{x}] & \to & \mathbb{K}[\mathbf{x}]^* \\ p & \mapsto & p \star \sigma \end{array}$$

where $p \star \sigma : q \mapsto \langle \sigma | p q \rangle$.

Vanishing ideal:

$$0 o I_{\sigma} o \mathbb{K}[\mathbf{x}] o \mathcal{A}_{\sigma}^* o 0$$

with $I_{\sigma} := \ker H_{\sigma}$, $\mathcal{A}_{\sigma} := \mathbb{K}[\mathbf{x}]/I_{\sigma}$.

- Moments of $\sigma \in \langle \mathbf{x}^{\mathcal{A}} \rangle^*$: $\langle \sigma | \mathbf{x}^{\alpha} \rangle \in \mathbb{K}$ for $\alpha \in \mathcal{A} \subset \mathbb{N}^n$.
- Truncated moment matrix: If $E_1 = \langle \mathbf{x}^A \rangle$, $E_2 = \langle \mathbf{x}^B \rangle$, the matrix of

$$\begin{array}{rcl} H^{E_1,E_2}_{\sigma}:E_1 & \to & E_2^* \\ p & \mapsto & p\star\sigma \end{array} \text{ is the moment matrix of } [\langle \sigma | \mathbf{x}^{\alpha+\beta} \rangle]_{\alpha\in A,\beta\in B}. \end{array}$$

2 Reduction to a convex optimization problem

3 From moment matrices to cubature formulae

- Why it is working
- **5** Illustration

Semi-Definite Programming Relaxation

If
$$\sigma = \sum_{i=1}^{r} w_j \mathbf{e}_{\xi_j}$$
 with $\xi_j \in \mathbb{R}^n, w_j > 0$, then $H_{\sigma}^{B,B} \succeq 0$ and of rank $\leq r$.

For given moments $\mathbf{i} = (\mathbf{i}(v))_{v \in V}$, consider the **convex** set:

$$\mathcal{H}^{k}(\mathbf{i}) = \{H_{\sigma} \mid \sigma \in R^{*}_{2k}, \forall v \in V \ \langle \sigma | v \rangle = \mathbf{i}(v), H_{\sigma} \succeq 0\}$$

? Cubature formulae with a minimal number of points as the solution of

 $\min_{H\in\mathcal{H}^k(\mathsf{i})}\mathrm{rank}(H).$

Relaxation of this NP-hard problem:

$$\min_{H \in \mathcal{H}^{k}(\mathbf{i})} \operatorname{trace}\left(P^{t}HP\right)$$
(2)

for a well-chosen matrix *P*. © Optimization of a linear functional on a convex set (the cone of SDP matrices intersected with a linear space) by SDP solvers.

B. Mourrain

Objective function: trace (P^tHP) = nuclear norm of P^tHP . = trace $(HPP^t) = \langle H, Q \rangle$ where $Q = PP^t$.

Convex optimization problem:

 $\begin{aligned} & \operatorname{argmin}\langle H, Q \rangle \text{ s.t.} \\ & - H = (h_{\alpha,\beta})_{\alpha,\beta \in B} \succcurlyeq 0, \\ & - H \text{ satisfies the Hankel constraints} \\ & h_{\alpha,\beta} = h_{\alpha',\beta'} =: h_{\alpha+\beta} \text{ if } \alpha + \beta = \alpha' + \beta'. \\ & - h_{\alpha} = I[\mathbf{x}^{\alpha}] \text{ for } \alpha \in A. \end{aligned}$

Efficient solvers by interior point methods, with polynomial complexity (for a given precision ϵ). Efficient tools: CSDP, SDPA,

- 2 Reduction to a convex optimization problem
- **3** From moment matrices to cubature formulae
 - Why it is working
 - **5** Illustration

Flat extension

Let $B \subset C$, $B' \subset C'$, $\partial B = C \setminus B$, $\partial B' = C' \setminus B'$. Truncated moment matrix:

$$H^{C,C'} = \left(\langle \sigma \mid \mathbf{x}^{\alpha+\beta} \rangle \right)_{\alpha \in C, \beta \in C'}$$

Flat extension:

$$\mathbf{H}^{\mathbf{C},\mathbf{C}'} = \begin{bmatrix} \mathbf{H}^{\mathbf{B},\mathbf{B}'} & H^{B,\partial B'} \\ \hline H^{\partial B,B'} & H^{\partial B,\partial B'} \end{bmatrix},$$

B. Mourrain

When there is a flat extension for $C = C' = B^+$

$$(B^+ = B \cup x_1 B \cup \ldots \cup x_n B; B \text{ connected to } 1)$$

- ► The tables of multiplication in $\mathcal{A}_{\sigma} = \mathbb{R}[\mathbf{x}]/I_{\sigma}$ are $M_j := H^{B,x_jB}(H^{B,B})^{-1}$.
- Their common eigenvectors v_i are, up to a scalar, the Lagrange interpolation polynomials u_{ξi}.
- The points of the cubature are ξ_i = (ξ_{i,1},...,ξ_{i,n}), where ξ_{i,j} is an eigenvalue of M_j.
- The decomposition is $\sigma = \sum_{i=1}^{r} \frac{1}{\mathbf{v}_i(\xi_i)} \langle \sigma | \mathbf{v}_i \rangle \mathbf{e}_{\xi_i}$.

- 2 Reduction to a convex optimization problem
- 3 From moment matrices to cubature formulae
- Why it is working

5 Illustration

The geometry of $\mathcal{H}^k(\mathbf{i})$

$$\begin{aligned} \mathcal{H}^{k}(\mathbf{i}) &= \{H_{\sigma} \mid \sigma \in R_{2k}^{*}, \forall v \in V \ \langle \sigma | v \rangle = \mathbf{i}(v), H_{\sigma} \succcurlyeq 0\} \\ \mathcal{H}^{k}_{r}(\mathbf{i}) &= \{H_{\sigma} \in \mathcal{H}^{k}(\mathbf{i}) \mid \operatorname{rank} H_{\sigma} \leq r\} \\ \mathcal{E}^{k}_{r}(\mathbf{i}) &= \{H_{\sigma} \in \mathcal{H}^{k}(\mathbf{i}) \mid \sigma = \sum_{i=1}^{r} w_{i} \, \mathbf{e}_{\xi_{i}}, \omega_{i} > 0, \xi_{i} \in \mathbb{R}^{n}\} \\ &\subset \mathcal{H}^{k}_{r}(\mathbf{i}) \qquad (\text{cubature with r points}) \end{aligned}$$

Proposition

Let $k \ge \frac{\deg(V)+1}{2}$ and H be an element of $\mathcal{H}^{k}(\mathbf{i})$ with minimal rank r. If $k \ge r$, then $H \in \mathcal{E}_{r}^{k}(\mathbf{i})$ and it is either an extremal point of $\mathcal{H}^{k}(\mathbf{i})$ or on a face of $\mathcal{H}^{k}(\mathbf{i})$, which is included in $\mathcal{E}_{r}^{k}(\mathbf{i})$.

Remark: if σ is *interpolatory* (weights uniquely determined from the points) of minimal rank, then H_{σ} is **extremal**.

B. Mourrain

Theorem

Let P be a proper operator and $k \ge \frac{\deg(V)+1}{2}$. Assume that there exists $\sigma^* \in R_{2k}^*$ such that H_{σ^*} is a minimizer of (2) of rank r with $r \le k$. Then $H_{\sigma^*} \in \mathcal{E}_r^k(\mathbf{i})$ i.e. there exists $\omega_i > 0$ and $\xi_i \in \mathbb{R}^n$ such that

$$\sigma^* \equiv \sum_{i=1}^r \omega_i \mathbf{e}_{\xi_i}.$$

Assume
$$\Omega = \{ \mathbf{x} \in \mathbb{R}^n \mid g_1^0 = 0, \dots, g_{n_1}^0 = 0, g_1^+ \ge 0, \dots, g_{n_2}^+ \ge 0 \}$$
 is compact.
Let $\mathcal{L}^k(\mathbf{i}) = \{ H_\sigma \in \mathcal{H}^k(\mathbf{i}) \mid \langle \sigma \mid q g_i^0 \rangle = 0 \text{ for } \deg(q g_i^0) \le 2k, \langle \sigma \mid q^2 g_i^+ \rangle \ge 0 \text{ for } \deg(q_i^2 g_i^+) \le 2k \}.$

Theorem

For P generic and $k \gg 0$, a minimizer H_{σ^*} of $\min_{H \in \mathcal{L}^k(\mathbf{i})} \operatorname{trace}(P^t H P)$ is in $\mathcal{E}_r^k(\mathbf{i})$ with $r \leq k$ and its associated points are in Ω .

2 Reduction to a convex optimization problem

3 From moment matrices to cubature formulae

Why it is working

Illustration

Example (1)

Cubature on the square $\Omega = [-1,1] \times [-1,1]$

Degree	Ν	Points	Weights
3	4	±(0.46503, 0.464462)	1.545
		\pm (0.855875, -0.855943)	0.454996
5	7	\pm (0.673625, 0.692362)	0.595115
		\pm (0.40546, -0.878538)	0.43343
		\pm (-0.901706, 0.340618)	0.3993
		(0, 0)	1.14305
7	12	$\pm (0.757951, 0.778815)$	0.304141
		$\pm (0.902107, 0.0795967)$	0.203806
		\pm (0.04182, 0.9432)	0.194607
		\pm (0.36885, 0.19394)	0.756312
		\pm (0.875533, -0.873448)	0.0363
		\pm (0.589325, -0.54688)	0.50478

Illustration

Example (2)

Wachpress barycentric coordinates:

• $\lambda_i(\mathbf{x}) \geq 0$ for $\mathbf{x} \in C$

$$\sum_{i=1}^{5} \lambda_i(\mathbf{x}) = 1,$$

$$\triangleright \sum_{i=1}^{5} v_i \cdot \lambda_i(\mathbf{x}) = \mathbf{x}.$$

For $p \in R = \mathbb{R}[u_0, u_1, u_2, u_3, u_4]$,

$$I[p] = \int_{\mathbf{x}\in\Omega} p \circ \lambda(\mathbf{x}) d\mathbf{x}$$

For $B = \{1, u_0, u_1, u_2, u_3, u_4\}$, the solution of the optimization problem:

min trace
$$(H_{\sigma}^{B^+,B^+})$$
 (4)
s.t. $H_{\sigma}^{B^+,B^+} \geq 0$

yields 5 points and weights:

Points	Weights
(0.249888, -0.20028, 0.249993, 0.350146, 0.350193)	0.485759
(0.376647, 0.277438, -0.186609, 0.20327, 0.329016)	0.498813
(0.348358, 0.379898, 0.244967, -0.174627, 0.201363)	0.509684
(-0.18472, 0.277593, 0.376188, 0.329316, 0.201622)	0.490663
(0.242468, 0.379314, 0.348244, 0.200593, -0.170579)	0.51508

B. Mourrain

Open questions:

- Optimal choice of the matrix P for minimal rank r.
- Control the order *k* of relaxation.
- ▶ Numerical best rank *r* approximation for sparse representation.
- Low rank structured matrix completion problem.

Thank you for your attention