Sparse polynomial systems with many positive solutions from bipartite simplicial complexes

Frédéric Bihan, Pierre-Jean Spaenlehauer

LAMA, Univ. Savoie Mont Blanc Inria/LORIA/CNRS, project CARAMEL

Journées Nationales du Calcul Formel 2015, Cluny

 $\mathcal{A} \subset \mathbb{Z}^d$: finite set of points. $\alpha \in \mathcal{A} \quad \leftrightarrow \quad X_1^{\alpha_1} \cdots X_d^{\alpha_d}.$

 $\mathcal{A} \subset \mathbb{Z}^d$: finite set of points. $\alpha \in \mathcal{A} \quad \leftrightarrow \quad X_1^{\alpha_1} \cdots X_d^{\alpha_d}.$

 $f_1, \ldots, f_d \in \mathbb{R}[X_1^{\pm 1}, \ldots, X_d^{\pm 1}]$ with support \mathcal{A} . A solution $f_1(\mathbf{x}) = \cdots = f_d(\mathbf{x}) = 0$ is

- **positive** if $\mathbf{x} \in \mathbb{R}^d$ and $x_i > 0$ for all i;
- **non-degenerate** if the **jacobian matrix** of (f_1, \ldots, f_d) is invertible at **x**

 $\mathcal{A} \subset \mathbb{Z}^d$: finite set of points. $\alpha \in \mathcal{A} \quad \leftrightarrow \quad X_1^{\alpha_1} \cdots X_d^{\alpha_d}.$

 $f_1,\ldots,f_d\in \mathbb{R}[X_1^{\pm 1},\ldots,X_d^{\pm 1}]$ with support \mathcal{A}_{\cdot}

A solution
$$f_1(\mathbf{x}) = \cdots = f_d(\mathbf{x}) = 0$$
 is

- **positive** if $\mathbf{x} \in \mathbb{R}^d$ and $x_i > 0$ for all i;
- **non-degenerate** if the **jacobian matrix** of (f_1, \ldots, f_d) is invertible at **x**

Problem statements

- **1** Given \mathcal{A} , construct f_1, \ldots, f_d such that $f_1(\mathbf{X}) = \cdots = f_d(\mathbf{X}) = 0$ has many non-degenerate positive solutions;
- 2 Given $s \in \mathbb{N}$ construct \mathcal{A} and f_1, \ldots, f_d such that $|\mathcal{A}| = s$ and $f_1(\mathbf{X}) = \cdots = f_d(\mathbf{X}) = 0$ has many non-degenerate positive solutions.

 $\mathcal{A} \subset \mathbb{Z}^d$: finite set of points. $\alpha \in \mathcal{A} \quad \leftrightarrow \quad X_1^{\alpha_1} \cdots X_d^{\alpha_d}.$

 $f_1,\ldots,f_d\in \mathbb{R}[X_1^{\pm 1},\ldots,X_d^{\pm 1}]$ with support \mathcal{A}_{\cdot}

A solution
$$f_1(\mathbf{x}) = \cdots = f_d(\mathbf{x}) = 0$$
 is

- **positive** if $\mathbf{x} \in \mathbb{R}^d$ and $x_i > 0$ for all i;
- **non-degenerate** if the **jacobian matrix** of (f_1, \ldots, f_d) is invertible at **x**

Problem statements

- **1** Given \mathcal{A} , construct f_1, \ldots, f_d such that $f_1(\mathbf{X}) = \cdots = f_d(\mathbf{X}) = 0$ has many non-degenerate positive solutions;
- 2 Given $s \in \mathbb{N}$ construct \mathcal{A} and f_1, \ldots, f_d such that $|\mathcal{A}| = s$ and $f_1(\mathbf{X}) = \cdots = f_d(\mathbf{X}) = 0$ has many non-degenerate positive solutions.

Motivation (d = 1): Descartes' rule of signs (1637)

The number of positive roots of a Laurent polynomial $f \in \mathbb{R}[X^{\pm 1}]$ is bounded by the number of sign differences between consecutive coefficients.

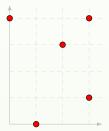
→ all nonzero complex roots of (squarefree) f are positive $<math display="block"> ⇒ A = \{a, a+1, \dots, a+s-1\} \text{ for some } a \in \mathbb{Z}.$

PJ Spaenlehauer

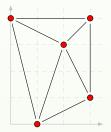
Viro's method (70s): effective construction of **real hypersurfaces** with prescribed topology and support.

Viro's method (70s): effective construction of **real hypersurfaces** with prescribed topology and support.

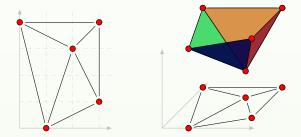
Viro's method (70s): effective construction of **real hypersurfaces** with prescribed topology and support.



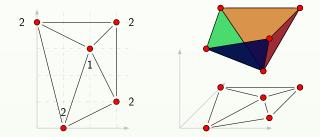
Viro's method (70s): effective construction of **real hypersurfaces** with prescribed topology and support.



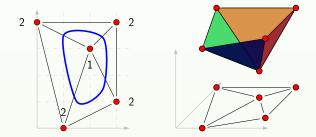
Viro's method (70s): effective construction of **real hypersurfaces** with prescribed topology and support.



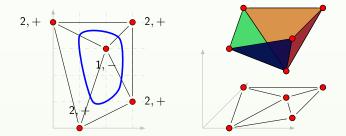
Viro's method (70s): effective construction of **real hypersurfaces** with prescribed topology and support.



Viro's method (70s): effective construction of **real hypersurfaces** with prescribed topology and support.

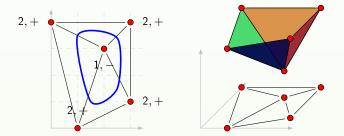


Viro's method (70s): effective construction of **real hypersurfaces** with prescribed topology and support.



Viro's method (70s): effective construction of **real hypersurfaces** with prescribed topology and support.

Example: $f = aX + bY^4 + cX^2Y^3 + dX^3Y + eX^3Y^4 \in \mathbb{R}[X, Y]$, find $a, b, c, d, e \in \mathbb{R}$ s.t. $\{(x, y) \in \mathbb{R}^2_{>0} \mid f(x, y) = 0\}$ is homeomorphic to a circle.

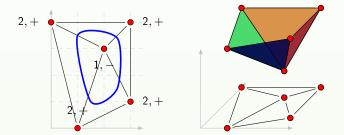


For t > 0 sufficiently small, the curve $t^2 X - t X^2 Y^3 + t^2 Y^3 + t^2 X^3 Y + t^2 X^3 Y^4$ is homeomorphic to a circle in $\mathbb{R}^2_{>0}$.

PJ Spaenlehauer

Viro's method (70s): effective construction of **real hypersurfaces** with prescribed topology and support.

Example: $f = aX + bY^4 + cX^2Y^3 + dX^3Y + eX^3Y^4 \in \mathbb{R}[X, Y]$, find $a, b, c, d, e \in \mathbb{R}$ s.t. $\{(x, y) \in \mathbb{R}^2_{>0} \mid f(x, y) = 0\}$ is homeomorphic to a circle.



For t > 0 sufficiently small, the curve $t^2 X - t X^2 Y^3 + t^2 Y^3 + t^2 X^3 Y + t^2 X^3 Y^4$ is homeomorphic to a circle in $\mathbb{R}^2_{>0}$. Considered as one of the roots of **tropical geometry**. Extensions for **complete intersections** by Bihan, Sturmfels, Itenberg/Roy.

PJ Spaenlehauer

Main results

A variant of Viro's construction for isolated solutions: \rightsquigarrow depends on the signs of minors of a coefficient matrix.

Main results

A variant of Viro's construction for isolated solutions: ~> depends on the signs of minors of a coefficient matrix.

Theorem

If a point configuration in \mathbb{Z}^d admits a **regular**, **balanced**, **and unimodular triangulation**, then there exists a **maximally positive system** with the associated support (+ construction).

Maximally positive system: all toric complex solutions are real, positive, and non-degenerate.

Main results

A variant of Viro's construction for isolated solutions: ~> depends on the signs of minors of a coefficient matrix.

Theorem

If a point configuration in \mathbb{Z}^d admits a **regular**, **balanced**, **and unimodular triangulation**, then there exists a **maximally positive system** with the associated support (+ construction).

Maximally positive system: all toric complex solutions are real, positive, and non-degenerate.

Fewnomial systems

There exists a system of 5 equations in 5 variables, involving 11 monomials, with at least 38 positive solutions (+ construction).

 \rightsquigarrow under some assumption, then there exist systems of d equations in d variables, involving at most 2d + 1 monomials and having asymptotically

$$\frac{(\sqrt{2}+1)^d}{\sqrt{d}} \cdot \frac{2^{1/4}(4+2\sqrt{2})}{(12-8\sqrt{2})\sqrt{\pi}}$$

positive non-degenerate solutions.

PJ Spaenlehauer

Sturmfels '94

If a point configuration \mathcal{A} in \mathbb{Z}^d admits a **regular unimodular triangulation**, then there exist systems with support \mathcal{A} such that all toric complex solutions are real.

This work: if balanced, then the solutions can be made positive.

Sturmfels '94

If a point configuration \mathcal{A} in \mathbb{Z}^d admits a **regular unimodular triangulation**, then there exist systems with support \mathcal{A} such that all toric complex solutions are real.

This work: if balanced, then the solutions can be made positive.

Itenberg/Roy construction: based on **signed Newton polytopes**, mixed systems. Soprunova/Sottile: constructions on **Wronski systems** with lower bounds on their number of solutions.

Real solutions of **fewnomial systems**: Bihan, Grenet, Koiran, Phillipson, Portier, Rojas, Roy, Sottile, Sturmfels, Tavenas,...

Balanced simplicial complexes: Izmestiev, Joswig, Stanley, Witte, Ziegler,...

Sturmfels '94

If a point configuration \mathcal{A} in \mathbb{Z}^d admits a **regular unimodular triangulation**, then there exist systems with support \mathcal{A} such that all toric complex solutions are real.

This work: if balanced, then the solutions can be made positive.

Itenberg/Roy construction: based on **signed Newton polytopes**, mixed systems. Soprunova/Sottile: constructions on **Wronski systems** with lower bounds on their number of solutions.

Real solutions of **fewnomial systems**: Bihan, Grenet, Koiran, Phillipson, Portier, Rojas, Roy, Sottile, Sturmfels, Tavenas,...

Balanced simplicial complexes: Izmestiev, Joswig, Stanley, Witte, Ziegler,...

Bihan's conjecture

If $\mathcal{A} \subset \mathbb{Z}^d$ is the support of a maximally positive polynomial system, then it has a basis of affine relations whose coefficients are in $\{-2, -1, 0, 1, 2\}$.

Affine relation: $(b_{\alpha})_{\alpha \in \mathcal{A}} \in \mathbb{Z}^{|\mathcal{A}|}$ s.t. $\sum_{\alpha \in \mathcal{A}} b_{\alpha} \alpha = 0$ and $\sum_{\alpha \in \mathcal{A}} b_{\alpha} = 0$.

C: full rank $d \times (d + 1)$ real matrix. What are the conditions on A such that

$$C \cdot \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_d \\ 1 \end{bmatrix} = 0$$

has one positive solution?

C: full rank $d \times (d + 1)$ real matrix. What are the conditions on A such that

$$C \cdot \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_d \\ 1 \end{bmatrix} = 0$$

1

has one positive solution?

Cramer's rule: signs of maximal minors must alternate. → Property invariant by permutation of the columns. C: full rank $d \times (d + 1)$ real matrix. What are the conditions on A such that

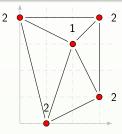
$$C \cdot \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_d \\ 1 \end{bmatrix} = 0$$

has one positive solution?

Cramer's rule: signs of maximal minors must alternate. → Property invariant by permutation of the columns.

Up to an invertible monomial map, extends to any vector of d + 1 monomials s.t. the convex hull of the exponent vectors is a d-simplex.

Variant of Viro's method



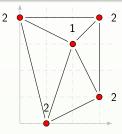
$$\begin{bmatrix} 0 & 1 & -1 & -1 & 0 \\ 1 & 0 & -1 & -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} t^2 X \\ t X^2 Y^3 \\ t^2 Y^4 \\ t^2 X^3 Y \\ t^2 X^3 Y^4 \end{bmatrix} = 0$$

has 4 **positive sols** for t > 0 sufficiently small.

Positively decorable simplicial complex

A simplicial complex $\Gamma \subset \mathbb{R}^d$ on *s* vertices is called **positively decorable**, if there exists a $d \times s$ matrix *C* (with columns indexed by vertices of Γ) such every $d \times (d+1)$ submatrix corresponding to a *d*-simplex has full rank and has **a positive kernel vector**.

Variant of Viro's method



$$\begin{bmatrix} 0 & 1 & -1 & -1 & 0 \\ 1 & 0 & -1 & -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} t^2 X \\ t X^2 Y^3 \\ t^2 Y^4 \\ t^2 X^3 Y \\ t^2 X^3 Y^4 \end{bmatrix} = 0$$

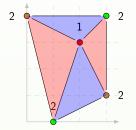
has 4 **positive sols** for t > 0 sufficiently small.

Positively decorable simplicial complex

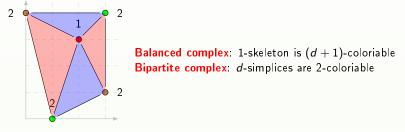
A simplicial complex $\Gamma \subset \mathbb{R}^d$ on *s* vertices is called **positively decorable**, if there exists a $d \times s$ matrix *C* (with columns indexed by vertices of Γ) such every $d \times (d+1)$ submatrix corresponding to a *d*-simplex has full rank and has **a positive kernel vector**.

Theorem

Let $\mathcal{A} \subset \mathbb{Z}^n$ be a finite point configuration, $\Gamma \subset \mathbb{R}^d$ a simplicial complex included in a regular triangulation of Γ . If Γ is **positively decorated**, then for t > 0 sufficiently small, the number of positive sols of the associated system is bounded below by the number of *d*-simplices.

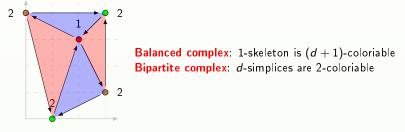


Balanced complex: 1-skeleton is (d + 1)-coloriable **Bipartite complex**: *d*-simplices are 2-coloriable



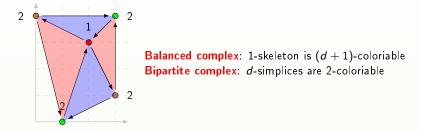
Proposition		
${f balanced}$ \Rightarrow easy to check	positively decorable ⇒ not easy to check	bipartite easy to check

M. Joswig: for triangulations, balanced \Leftrightarrow bipartite. (but not the case for general simplicial complex).



Proposition		
${f balanced}$ \Rightarrow easy to check	positively decorable ⇒ not easy to check	bipartite easy to check

M. Joswig: for triangulations, balanced \Leftrightarrow bipartite. (but not the case for general simplicial complex).



Proposition							
ron	ACITI	<u>on</u>					
	USILI						

balanced	\Rightarrow	positively decorable	\Rightarrow	bipartite
easy to check		not easy to check		easy to check

M. Joswig: for triangulations, balanced \Leftrightarrow bipartite. (but not the case for general simplicial complex).

Question

bipartite $\stackrel{?}{\Rightarrow}$ positively decorable?

Theorem

If a finite point configuration $\mathcal{A} \subset \mathbb{R}^d$ admits a regular balanced unimodular triangulation, then there exists a maximally positive system with support \mathcal{A} .

Proof.

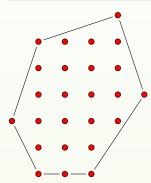
Kouchnirenko's theorem.

Theorem

If a finite point configuration $\mathcal{A} \subset \mathbb{R}^d$ admits a regular balanced unimodular triangulation, then there exists a maximally positive system with support \mathcal{A} .

Proof.

Kouchnirenko's theorem.

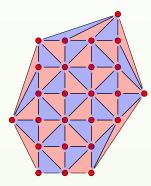


Theorem

If a finite point configuration $\mathcal{A} \subset \mathbb{R}^d$ admits a regular balanced unimodular triangulation, then there exists a maximally positive system with support \mathcal{A} .

Proof.

Kouchnirenko's theorem.

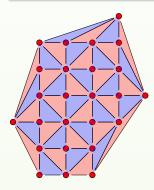


Theorem

If a finite point configuration $\mathcal{A} \subset \mathbb{R}^d$ admits a regular balanced unimodular triangulation, then there exists a maximally positive system with support \mathcal{A} .

Proof.

Kouchnirenko's theorem.



Holds true for several classical families of \mathcal{A} :

- order polytopes (e.g. multilinear systems)
- multi-homogeneous systems
- the hypersimplex
- All of them satisfy Bihan's conjecture.

Khovanskii's problem

Given $d, k \in \mathbb{N}$, how many non-degenerate positive sols for real systems of d equations, d unknowns involving at most d + k + 1 monomials? $\Xi_{d,k}$: max of nb. of positive non-degenerate sols over all such systems.

Khovanskii's problem

Given $d, k \in \mathbb{N}$, how many non-degenerate positive sols for real systems of d equations, d unknowns involving at most d + k + 1 monomials? $\Xi_{d,k}$: max of nb. of **positive non-degenerate sols** over all such systems.

Bihan/Sottile: $\Xi_{d,k} \leq \frac{e^2+3}{4} 2^{\binom{k}{2}} d^k$.

 $\mathsf{Bihan}/\mathsf{Rojas}/\mathsf{Sottile}: \ \equiv_{d,k} \ge \left(\lfloor d/k
floor + 1
ight)^k$

Univariate polynomials with disjoint variables: $\Xi_{d,k} \ge (\lfloor k/d \rfloor + 1)^d$.

Problem: Does there exist a system with d = k and more than 2^d positive solutions?

Cyclic polytope C(s, d): convex hull of s points $(a_i, a_i^2, \ldots, a_i^d) \in \mathbb{R}^d$.

A bipartite simplicial complex with many simplices

We propose to use a **bipartite simplicial complex** included in a triangulation of the cyclic polytope C(2d + 1, d). As *d* grows, this simplicial complex has

$$\Theta\left(rac{\left(\sqrt{2}+1
ight)^d}{\sqrt{d}}
ight)$$

simplices of dimension *d*.

but not balanced! Needs computational methods to positively decorate it.

Computational aspects: positive matrix completion

How to **positively decorate** a (non-balanced) simplicial complex $\Gamma \subset \mathbb{R}^d$?

Computational aspects: positive matrix completion

How to **positively decorate** a (non-balanced) simplicial complex $\Gamma \subset \mathbb{R}^d$?

Positive matrix completion

A simplicial complex $\Gamma \subset \mathbb{R}^d$ is **positively decorable** iff there exists a $k \times \ell$ matrix M of rank k - d such that

$$M_{i,j} iggl\{ > 0 ext{ if } \mathbf{s}_i \in \Delta_j \ = 0 ext{ otherwise}, \end{cases}$$

where $\mathbf{s}_1, \ldots, \mathbf{s}_k$ are the vertices of Γ , and $\Delta_1, \ldots, \Delta_\ell$ are its *d*-simplices. If such a matrix exists, then a **basis of its left kernel** is a $d \times k$ matrix which positively decorates Γ .

Computational aspects: positive matrix completion

How to **positively decorate** a (non-balanced) simplicial complex $\Gamma \subset \mathbb{R}^d$?

Positive matrix completion

A simplicial complex $\Gamma \subset \mathbb{R}^d$ is **positively decorable** iff there exists a $k \times \ell$ matrix M of rank k - d such that

$$M_{i,j} iggl\{ > 0 ext{ if } \mathbf{s}_i \in \Delta_j \ = 0 ext{ otherwise}, \end{cases}$$

where $\mathbf{s}_1, \ldots, \mathbf{s}_k$ are the vertices of Γ , and $\Delta_1, \ldots, \Delta_\ell$ are its *d*-simplices. If such a matrix exists, then a **basis of its left kernel** is a $d \times k$ matrix which positively decorates Γ .

Cyclic polytope + NewtonSLRA (Schost/S.) ~> a system of 5 eqs, 5 unknowns, 11 monomials, and 38 positive solutions!

$$\Rightarrow \Xi_{5,5} \geq 38.$$

(previously, $32 \le \Xi_{5,5} \le 8311244$).

PJ Spaenlehauer

A system with 38 positive solutions

	Γ	$\tfrac{14036}{26031}$	$\frac{-29047}{45845}$	$\frac{22485}{134218}$	$\tfrac{-20647}{80496}$	$\frac{14312}{69515}$	$\tfrac{-39015}{127243}$	$\frac{-6739}{42098}$	$\tfrac{19359}{360623}$	$\frac{16000}{83529}$	$\tfrac{1804}{131469}$	$\frac{4862}{44061}$ -	1
		$\frac{19937}{61149}$	$\frac{-8379}{77942}$	$\frac{-2105}{18949}$	$\frac{5635}{122379}$	$\frac{9229}{59989}$	$\tfrac{5391}{113671}$	$\frac{17593}{33547}$	$\frac{-50525}{112808}$	$\tfrac{-13843}{33458}$	$\tfrac{18357}{116882}$	$\frac{-54686}{132521}$	
<i>C</i> =		$\tfrac{6391}{94296}$	$\tfrac{-3329}{144100}$	$\tfrac{7957}{156078}$	$\frac{-5685}{48451}$	$\tfrac{-14459}{74653}$	$\tfrac{30218}{245615}$	$\tfrac{-12227}{25927}$	$\tfrac{49127}{145204}$	$\tfrac{-14117}{47609}$	$\frac{29515}{59658}$	$\frac{-42328}{83609}$	
		$\frac{-12249}{145219}$	$\tfrac{-13663}{97873}$	$\tfrac{-25831}{90582}$	26287 33739	$\tfrac{6818}{23407}$	$\tfrac{-14579}{44765}$	$rac{-11126}{58889}$	$\frac{2247}{122770}$	$\frac{11139}{100537}$	$\frac{14421}{74818}$	$\tfrac{-60016}{644607}$	
	L	$\frac{15984}{47945}$	$\tfrac{-22523}{72834}$	$\tfrac{-10734}{41165}$	$\tfrac{8531}{24837}$	$\tfrac{-21257}{47591}$	$\tfrac{22017}{37075}$	$\tfrac{5346}{284353}$	$\frac{19757}{194173}$	$\frac{5740}{83029}$	$\frac{-62271}{466111}$	<u>5591</u> 37902 -	

$$C \cdot \begin{bmatrix} 1 \\ t X_1 X_2 X_3 X_4 X_5 \\ t^{2^6} X_1^2 X_2^{2^2} X_3^{2^3} X_4^{2^4} X_5^{2^5} \\ t^{3^6} X_1^3 X_2^{3^2} X_3^{3^3} X_4^{3^4} X_5^{3^5} \\ \vdots \\ t^{10^6} X_1^{10} X_2^{10^2} X_3^{10^3} X_4^{10^4} X_5^{10^5} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Limits and open problems

Limits:

There exist A s.t. the max nb. of pos. sols cannot be reached by this method. Restricted at the moment to unmixed systems.

Limits:

There exist A s.t. the max nb. of pos. sols cannot be reached by this method. Restricted at the moment to unmixed systems.

Theory:

Is the bipartite simplicial complex from the cyclic polytope always decorable? \rightsquigarrow if yes, then $\limsup(\Xi_{d,d})^{1/d} \ge \sqrt{2} + 1$

In general, existence of a bipartite simpl. complex which is not decorable?

 \rightsquigarrow if no, simpler proofs for lower bounds on the number of solutions. "for t>0 sufficiently small": explicit t_0 ? Bihan's conjecture.

Limits:

There exist A s.t. the max nb. of pos. sols cannot be reached by this method. Restricted at the moment to unmixed systems.

Theory:

Is the bipartite simplicial complex from the cyclic polytope always decorable? \rightsquigarrow if yes, then $\limsup(\Xi_{d,d})^{1/d} \ge \sqrt{2} + 1$

In general, existence of a bipartite simpl. complex which is not decorable?

 \rightsquigarrow if no, simpler proofs for lower bounds on the number of solutions. "for t>0 sufficiently small": explicit t_0 ? Bihan's conjecture.

Computations:

Given a finite set of points \mathcal{A} in \mathbb{Z}^d , compute (if it exists) a regular unimodular triangulation of its convex hull.

If unimodular is not possible, find a bipartite simplicial complex with vertices \mathcal{A} with as many *d*-simplices a possible.

(Hybrid symbolic-numeric) computational tools for the positive matrix completion problem.

Thank you!

arXiv:1510.05622

PJ Spaenlehauer