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Problem statement

A C Z7: finite set of points. aceA & X[ X
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Problem statement

A C Z7: finite set of points. aceA & X[ X
fi,...,fq € ]R[Xlﬂ, e ,Xjﬂ] with support A.
A solution fi(x) =--- = fg(x) =0 is

m positive if x € RY and x; > 0 for all /;

m non-degenerate if the jacobian matrix of (f1,..., fy) is invertible at x
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Problem statement

A C Z7: finite set of points. aceA & X[ X
fi,...,fq € ]R[Xlil7 e ,Xdﬂ] with support A.
A solution fi(x) =--- = fg(x) =0 is

m positive if x € RY and x; > 0 for all /;

m non-degenerate if the jacobian matrix of (f1,..., fy) is invertible at x

Problem statements

Given A, construct fi,. .., fy such that f1(X) =--- = f4(X) = 0 has
many non-degenerate positive solutions;

Given s € N construct A and f1, ..., fy such that | A| = s and
fi(X) = --- = f4(X) = 0 has many non-degenerate positive solutions.
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Problem statement

A C Z7: finite set of points. aceA & X[ X
fi,...,fq € ]R[Xlil7 e ,Xdﬂ] with support A.
A solution fi(x) =--- = fg(x) =0 is

m positive if x € RY and x; > 0 for all /;

m non-degenerate if the jacobian matrix of (f1,..., fy) is invertible at x
Given A, construct fi,. .., fy such that f1(X) =--- = f4(X) = 0 has
many non-degenerate positive solutions;
Given s € N construct A and f1, ..., fy such that | A| = s and
fi(X) = --- = f4(X) = 0 has many non-degenerate positive solutions.

Motivation (d = 1): Descartes’ rule of signs (1637)

The number of positive roots of a Laurent polynomial f € R[X*'] is bounded
by the number of sign differences between consecutive coefficients.

~~ all nonzero complex roots of (squarefree) f are positive
= A={a,a+1,...,a+s— 1} for some a € Z.
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Viro's method (70s): effective construction of real hypersurfaces with
prescribed topology and support.
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Viro's method (70s): effective construction of real hypersurfaces with
prescribed topology and support.

Example: f = aX + bY* + cX?Y3 +dX3Y + eX3Y* € R[X, Y], find
a,b,c,d,e € Rs.t. {(x,y) € R%q | f(x,y) =0} is homeomorphic to a circle.
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For t > 0 sufficiently small, the curve
X -t XY 42 Y3+ 2X3Y + t2X3 Y* is homeomorphic to a circle in R% 4.
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Context

Viro's method (70s): effective construction of real hypersurfaces with
prescribed topology and support.

Example: f = aX + bY* + cX?Y3 +dX3Y + eX3Y* € R[X, Y], find
a,b,c,d,e € Rs.t. {(x,y) € R3¢ | f(x,y) = 0} is homeomorphic to a circle.

2,+ e——® 2,+

/o 2,+ ‘/4\‘7

For t > 0 sufficiently small, the curve

X -t XY 42 Y3+ 2X3Y + t2X3 Y* is homeomorphic to a circle in R% 4.
Considered as one of the roots of tropical geometry.

Extensions for complete intersections by Bihan, Sturmfels, Itenberg/Roy.
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Main results

A variant of Viro’s construction for isolated solutions:
~» depends on the signs of minors of a coefficient matrix.
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Main results

A variant of Viro’s construction for isolated solutions:
~» depends on the signs of minors of a coefficient matrix.

If a point configuration in Z? admits a regular, balanced, and unimodular
triangulation, then there exists a maximally positive system with the
associated support (+ construction).

Maximally positive system: all toric complex solutions are real, positive, and
non-degenerate.
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Main results

A variant of Viro’s construction for isolated solutions:
~» depends on the signs of minors of a coefficient matrix.

If a point configuration in Z? admits a regular, balanced, and unimodular
triangulation, then there exists a maximally positive system with the
associated support (+ construction).

Maximally positive system: all toric complex solutions are real, positive, and
non-degenerate.

Fewnomial systems

There exists a system of 5 equations in 5 variables, involving 11 monomials,
with at least 38 positive solutions (+ construction).

~~» under some assumption, then there exist systems of d equations in d
variables, involving at most 2d 4+ 1 monomials and having asymptotically

(V2+1)7 244 +2V72)
Vd  (12-8V2)/7

positive non-degenerate solutions.
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Related works

If a point configuration A in Z? admits a regular unimodular triangulation,
then there exist systems with support A such that all toric complex solutions
are real.

This work: if balanced, then the solutions can be made positive.
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Related works

If a point configuration A in Z9 admits a regular unimodular triangulation,
then there exist systems with support A such that all toric complex solutions
are real.

This work: if balanced, then the solutions can be made positive.

Itenberg/Roy construction: based on signed Newton polytopes, mixed systems.

Soprunova/Sottile: constructions on Wronski systems with lower bounds on
their number of solutions.

Real solutions of fewnomial systems: Bihan, Grenet, Koiran, Phillipson,
Portier, Rojas, Roy, Sottile, Sturmfels, Tavenas,. ..

Balanced simplicial complexes: lzmestiev, Joswig, Stanley, Witte, Ziegler,. ..
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Related works

If a point configuration A in Z? admits a regular unimodular triangulation,
then there exist systems with support A such that all toric complex solutions
are real.

This work: if balanced, then the solutions can be made positive.

Itenberg/Roy construction: based on signed Newton polytopes, mixed systems.

Soprunova/Sottile: constructions on Wronski systems with lower bounds on
their number of solutions.

Real solutions of fewnomial systems: Bihan, Grenet, Koiran, Phillipson,
Portier, Rojas, Roy, Sottile, Sturmfels, Tavenas,. ..

Balanced simplicial complexes: lzmestiev, Joswig, Stanley, Witte, Ziegler,. ..

Bihan’s conjecture

If A C Z9is the support of a maximally positive polynomial system, then it has
a basis of affine relations whose coefficients are in {—2,—1,0,1,2}.

Affine relation: (ba)aca € Z* st. 3 ,baa=02and 3, ba =0.
5



Linear systems

C: full rank d x (d + 1) real matrix.
What are the conditions on A such that

X1
Xz

has one positive solution?
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Linear systems

C: full rank d x (d + 1) real matrix.
What are the conditions on A such that

X1
Xz

Xy
has one positive solution?

Cramer’s rule: signs of maximal minors must alternate.
~» Property invariant by permutation of the columns.
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Linear systems

C: full rank d x (d + 1) real matrix.
What are the conditions on A such that

X1
Xz

Xy
has one positive solution?

Cramer’s rule: signs of maximal minors must alternate.
~» Property invariant by permutation of the columns.

Up to an invertible monomial map, extends to any vector of d + 1 monomials
s.t. the convex hull of the exponent vectors is a d-simplex.
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Variant of Viro's method

2 e ——0 2
1

\./ th
2y3

01 -1 -1 o] |XY

10 -1 -1 1) | FN |70
2X3Y
/o 2 2xX3y*
e has 4 positive sols for t > 0 sufficiently small.

Positively decorable simplicial complex

A simplicial complex I' C R9 on s vertices is called positively decorable, if there
exists a d X s matrix C (with columns indexed by vertices of I') such every

d x (d + 1) submatrix corresponding to a d-simplex has full rank and has a
positive kernel vector.
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Variant of Viro's method
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has 4 positive sols for t > 0 sufficiently small.

Positively decorable simplicial complex

A simplicial complex I' C R9 on s vertices is called positively decorable, if there
exists a d X s matrix C (with columns indexed by vertices of I') such every

d x (d + 1) submatrix corresponding to a d-simplex has full rank and has a
positive kernel vector.

v

Theorem

Let A C Z" be a finite point configuration, I C RY a simplicial complex
included in a regular triangulation of I'. If T is positively decorated, then for

t > 0 sufficiently small, the number of positive sols of the associated system is
bounded below by the number of d-simplices.
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Balanced and bipartite simplicial complexes
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Q/
Balanced complex: 1-skeleton is (d + 1)-coloriable
Bipartite complex: d-simplices are 2-coloriable
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Balanced and bipartite simplicial complexes

Balanced complex: 1-skeleton is (d + 1)-coloriable
Bipartite complex: d-simplices are 2-coloriable

Proposition

balanced = positively decorable = bipartite
easy to check not easy to check easy to check

M. Joswig: for triangulations, balanced < bipartite.
(but not the case for general simplicial complex).
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Balanced and bipartite simplicial complexes

2 0g———>0 2

\1
C/
Balanced complex: 1-skeleton is (d + 1)-coloriable
Bipartite complex: d-simplices are 2-coloriable
/. 2
l¢)

Proposition

balanced = positively decorable = bipartite
easy to check not easy to check easy to check

M. Joswig: for triangulations, balanced < bipartite.
(but not the case for general simplicial complex).

bipartite = positively decorable?
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Regular balanced unimodular triangulations

If a finite point configuration A C RY admits a regular balanced unimodular
triangulation, then there exists a maximally positive system with support A.

Kouchnirenko’s theorem. O I
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Regular balanced unimodular triangulations

If a finite point configuration A C RY admits a regular balanced unimodular
triangulation, then there exists a maximally positive system with support A.

Kouchnirenko’s theorem. O l

)
o//él
|\|/|\| Holds true for several classical families of A:
T A 4 m order polytopes (e.g. multilinear systems)
AN TN |
e—eo—o—o—o m multi-homogeneous systems
/|\|/|\|/ m the hypersimplex

X|/|\|/ All of them satisfy Bihan's conjecture.
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Fewnomial systems

Khovanskii's problem

Given d, k € N, how many non-degenerate positive sols for real systems of d
equations, d unknowns involving at most d + k + 1 monomials?
=4,k: max of nb. of positive non-degenerate sols over all such systems.
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Fewnomial systems

Khovanskii's problem

Given d, k € N, how many non-degenerate positive sols for real systems of d
equations, d unknowns involving at most d + k + 1 monomials?
=4,k: max of nb. of positive non-degenerate sols over all such systems.

Bihan/Sottile: =44 < #2(5)#.
Bihan/Rojas/Sottile: =4 > (|d/k]| + 1)*

Univariate polynomials with disjoint variables: =4 4 > (| k/d] + 1)°.

Problem: Does there exist a system with d = k and more than 27 positive
solutions?
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Simplicial complex supported on the cyclic polytope

Cyclic polytope C(s,d): convex hull of s points (a;,aZ,...,af) € R%.

A bipartite simplicial complex with many simplices

We propose to use a bipartite simplicial complex included in a triangulation of
the cyclic polytope C(2d + 1, d).
As d grows, this simplicial complex has

(1232

simplices of dimension d.

but not balanced! Needs computational methods to positively decorate it.

11 PJ Spaenlehauer



Computational aspects: positive matrix completion

How to positively decorate a (non-balanced) simplicial complex I' € RY?
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Computational aspects: positive matrix completion

How to positively decorate a (non-balanced) simplicial complex I' € RY?

Positive matrix completion

A simplicial complex I € R? is positively decorable iff there exists a k x £
matrix M of rank k — d such that

M., >0ifs; € -Aj
= 0 otherwise,

where s1, ..., sk are the vertices of ', and Ay, ..., Ay are its d-simplices.
If such a matrix exists, then a basis of its left kernel is a d x k matrix which
positively decorates .
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Computational aspects: positive matrix completion

How to positively decorate a (non-balanced) simplicial complex I' € RY?

Positive matrix completion

A simplicial complex I € R? is positively decorable iff there exists a k x £
matrix M of rank k — d such that

Mi,j >0ifs; € -Aj
= 0 otherwise,

where s1, ..., sk are the vertices of ', and Ay, ..., Ay are its d-simplices.
If such a matrix exists, then a basis of its left kernel is a d x k matrix which
positively decorates .

Cyclic polytope + NewtonSLRA (Schost/S.)
~~» a system of 5 egs, 5 unknowns, 11 monomials, and 38 positive solutions!

= 55,5 > 38.

(previously, 32 < =5 5 < 8311244).
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A system with 38 positive solutions

14036 —29047 22485 —20647 14312 —39015 —6739 19359 16000 1804 4862
26031 45845 134218 80496 69515 127243 42098 360623 83529 131469 44061

19937 —8379 —2105 5635 9229 5391 17593 50525 —13843 18357 —54686
61149 77942 18949 122379 59989 113671 33547 112808 33458 116882 132521

C = 6391 —3329 7957 —5685 —14459 30218 —12227 49127 —14117 29515 —42328
- 94296 144100 156078 48451 74653 245615 25927 145204 47609 59658 83609

—12249 —13663 —25831 26287 6818 —14579 —11126 2247 11139 14421 —60016
145219 97873 90582 33739 23407 44765 58889 122770 100537 74818 644607

15984 —22523 —10734 8531 —21257 22017 5346 19757 5740 —62271 5591
47945 72834 41165 24837 47591 37075 284353 194173 83029 466111 37902

_ . -
t X1 Xo X3 X3 X5
2 X2 X2 X2 X2 X2°
6 2 3 4 5 —
Cl XXX X xy | =

O O o oo

108 4,10 4102 4,103 y/10% y/10°
Lt Xi X~ X3~ Xa~ X5~ |
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Limits and open problems

Limits:
There exist A s.t. the max nb. of pos. sols cannot be reached by this method.
Restricted at the moment to unmixed systems.
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Limits and open problems

Limits:
There exist A s.t. the max nb. of pos. sols cannot be reached by this method.
Restricted at the moment to unmixed systems.

Theory:

Is the bipartite simplicial complex from the cyclic polytope always decorable?
~ if yes, then limsup(Z4.4)Y9 > V2 +1

In general, existence of a bipartite simpl. complex which is not decorable?
~- if no, simpler proofs for lower bounds on the number of solutions.

“for t > 0 sufficiently small”: explicit to?

Bihan’s conjecture.
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Limits:
There exist A s.t. the max nb. of pos. sols cannot be reached by this method.
Restricted at the moment to unmixed systems.

Theory:

Is the bipartite simplicial complex from the cyclic polytope always decorable?
~ if yes, then limsup(Z4.4)Y9 > V2 +1

In general, existence of a bipartite simpl. complex which is not decorable?
~- if no, simpler proofs for lower bounds on the number of solutions.

“for t > 0 sufficiently small”: explicit to?

Bihan’s conjecture.

Computations:

Given a finite set of points A in Z9, compute (if it exists) a regular unimodular
triangulation of its convex hull.

If unimodular is not possible, find a bipartite simplicial complex with vertices A
with as many d-simplices a possible.

(Hybrid symbolic-numeric) computational tools for the positive matrix
completion problem.

14 PJ Spaenlehauer



Thank you!

arXiv:1510.05622
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