
.

.

. ..

.

.

Integrating Discrete Controller Synthesis in a
Programming Language

Gwenaël Delaval*, Eric Rutten*, Hervé Marchand**

* LIG (UJF, INRIA) Grenoble – ** INRIA Rennes

November 17, 2011

.
Motivation

.
BZR

.
Case study

.
Perspectives

Motivation

mixed imperative/declarative programming language
separation of concerns between:

functionality of sub-systems
properties of their assembly in a system

declarative contracts are enforced upon
imperatively described behaviors (automata)

Discrete Controller Synthesis (DCS)
formal technique from supervisory control theory of DES
events, states, control modes ↔ automata (e.g., StateFlow)

application to adaptive and reconfigurable computing systems
closed-loop adaptation controllers : flexible execution of
functionalities w.r.t. changing resource and environment
Contributions

...1 BZR programming language: semantics and compilation

...2 case study : robot arm controller

.
Motivation

.
BZR

.
Case study

.
Perspectives

Motivation

mixed imperative/declarative programming language
separation of concerns between:

functionality of sub-systems
properties of their assembly in a system

declarative contracts are enforced upon
imperatively described behaviors (automata)

Discrete Controller Synthesis (DCS)
formal technique from supervisory control theory of DES
events, states, control modes ↔ automata (e.g., StateFlow)

application to adaptive and reconfigurable computing systems
closed-loop adaptation controllers : flexible execution of
functionalities w.r.t. changing resource and environment
Contributions

...1 BZR programming language: semantics and compilation

...2 case study : robot arm controller

.
Motivation

.
BZR

.
Case study

.
Perspectives

Motivation

mixed imperative/declarative programming language
separation of concerns between:

functionality of sub-systems
properties of their assembly in a system

declarative contracts are enforced upon
imperatively described behaviors (automata)

Discrete Controller Synthesis (DCS)
formal technique from supervisory control theory of DES
events, states, control modes ↔ automata (e.g., StateFlow)

application to adaptive and reconfigurable computing systems
closed-loop adaptation controllers : flexible execution of
functionalities w.r.t. changing resource and environment

Contributions
...1 BZR programming language: semantics and compilation
...2 case study : robot arm controller

.
Motivation

.
BZR

.
Case study

.
Perspectives

Motivation

mixed imperative/declarative programming language
separation of concerns between:

functionality of sub-systems
properties of their assembly in a system

declarative contracts are enforced upon
imperatively described behaviors (automata)

Discrete Controller Synthesis (DCS)
formal technique from supervisory control theory of DES
events, states, control modes ↔ automata (e.g., StateFlow)

application to adaptive and reconfigurable computing systems
closed-loop adaptation controllers : flexible execution of
functionalities w.r.t. changing resource and environment
Contributions

...1 BZR programming language: semantics and compilation

...2 case study : robot arm controller

.
Motivation

.
BZR

.
Case study

.
Perspectives

Discrete

Control Techniques for Adaptive Computing

Use of Discrete Event Systems and supervisory control:
Petri nets, language theory (R&W), automata (synchronous)

Control of computation adaptation as a closed control loop

BZR programming language, and Discrete Controller Synthesis
to compute the decision component (controller)

decision

representation
system

system
managed

policy / strategy

monitor execute

model
automaton

system
managed

BZR program

executemonitor

DCS ctrlr

.
Motivation

.
BZR

.
Case study

.
Perspectives

Discrete Control Techniques for Adaptive Computing

Use of Discrete Event Systems and supervisory control:
Petri nets, language theory (R&W), automata (synchronous)

Control of computation adaptation as a closed control loop

BZR programming language, and Discrete Controller Synthesis
to compute the decision component (controller)

decision

representation
system

system
managed

policy / strategy

monitor execute

model
automaton

system
managed

BZR program

executemonitor

DCS ctrlr

.
Motivation

.
BZR

.
Case study

.
Perspectives

Discrete Control Techniques for Adaptive Computing

Use of Discrete Event Systems and supervisory control:
Petri nets, language theory (R&W), automata (synchronous)

Control of computation adaptation as a closed control loop

BZR programming language, and Discrete Controller Synthesis
to compute the decision component (controller)

decision

representation
system

system
managed

policy / strategy

monitor execute

model
automaton

system
managed

BZR program

executemonitor

DCS ctrlr

.
Motivation

.
BZR

.
Case study

.
Perspectives

Examples of discrete computing modes

state ↔ configuration
resource access, level of consumption/quality, ...

computation task control

(example of Heptagon node)

modes: algorithm variants for a
functionality (resource, QoS)
placement and migration : task
Ti on processor/core Pj

resource budgeting: proc./core
taken for other application

r∧¬c

delayable(r,c,e) = act

Idle Wait

Active

act = false act = false

act = true

c

e r∧c

fault tolerance : migration/rollback upon processor failure
architecture control: frequency, DVS, stand-by in MPSoC

.
Motivation

.
BZR

.
Case study

.
Perspectives

Examples of discrete computing modes

state ↔ configuration
resource access, level of consumption/quality, ...

computation task control
(example of Heptagon node)

modes: algorithm variants for a
functionality (resource, QoS)
placement and migration : task
Ti on processor/core Pj

resource budgeting: proc./core
taken for other application

r∧¬c

delayable(r,c,e) = act

Idle Wait

Active

act = false act = false

act = true

c

e r∧c

fault tolerance : migration/rollback upon processor failure
architecture control: frequency, DVS, stand-by in MPSoC

.
Motivation

.
BZR

.
Case study

.
Perspectives

Examples of discrete computing modes

state ↔ configuration
resource access, level of consumption/quality, ...

computation task control
(example of Heptagon node)
modes: algorithm variants for a
functionality (resource, QoS)

placement and migration : task
Ti on processor/core Pj

resource budgeting: proc./core
taken for other application

r∧¬c

delayable(r,c,e) = act

Idle Wait

Active

act = false act = false

act = true

c

e r∧c

fault tolerance : migration/rollback upon processor failure
architecture control: frequency, DVS, stand-by in MPSoC

.
Motivation

.
BZR

.
Case study

.
Perspectives

Examples of discrete computing modes

state ↔ configuration
resource access, level of consumption/quality, ...

computation task control
(example of Heptagon node)
modes: algorithm variants for a
functionality (resource, QoS)
placement and migration : task
Ti on processor/core Pj

resource budgeting: proc./core
taken for other application

r∧¬c

delayable(r,c,e) = act

Idle Wait

Active

act = false act = false

act = true

c

e r∧c

fault tolerance : migration/rollback upon processor failure
architecture control: frequency, DVS, stand-by in MPSoC

.
Motivation

.
BZR

.
Case study

.
Perspectives

Examples of discrete computing modes

state ↔ configuration
resource access, level of consumption/quality, ...

computation task control
(example of Heptagon node)
modes: algorithm variants for a
functionality (resource, QoS)
placement and migration : task
Ti on processor/core Pj

resource budgeting: proc./core
taken for other application

r∧¬c

delayable(r,c,e) = act

Idle Wait

Active

act = false act = false

act = true

c

e r∧c

fault tolerance : migration/rollback upon processor failure
architecture control: frequency, DVS, stand-by in MPSoC

.
Motivation

.
BZR

.
Case study

.
Perspectives

Examples of discrete computing modes

state ↔ configuration
resource access, level of consumption/quality, ...

computation task control
(example of Heptagon node)
modes: algorithm variants for a
functionality (resource, QoS)
placement and migration : task
Ti on processor/core Pj

resource budgeting: proc./core
taken for other application

r∧¬c

delayable(r,c,e) = act

Idle Wait

Active

act = false act = false

act = true

c

e r∧c

fault tolerance : migration/rollback upon processor failure

architecture control: frequency, DVS, stand-by in MPSoC

.
Motivation

.
BZR

.
Case study

.
Perspectives

Examples of discrete computing modes

state ↔ configuration
resource access, level of consumption/quality, ...

computation task control
(example of Heptagon node)
modes: algorithm variants for a
functionality (resource, QoS)
placement and migration : task
Ti on processor/core Pj

resource budgeting: proc./core
taken for other application

r∧¬c

delayable(r,c,e) = act

Idle Wait

Active

act = false act = false

act = true

c

e r∧c

fault tolerance : migration/rollback upon processor failure
architecture control: frequency, DVS, stand-by in MPSoC

.
Motivation

.
BZR

.
Case study

.
Perspectives

Discrete controller synthesis: principle

.
Goal..

.

. ..

.

.

Enforcing a temporal property Φ on a system (on which Φ does not
a priori hold)

.
Principle (on implicit equational representation)
..

.

. ..

.

.

State memory
Trans transition function
Out output function

Partition of inputs into controllable (Y c) and uncontrollable
(Y u) inputs
Computation of a controller, maximally permissive, such as the
controlled system satisfies Φ

tool: sigali (H. Marchand, INRIA Rennes)

.
Motivation

.
BZR

.
Case study

.
Perspectives

Discrete controller synthesis: principle

.
Goal..

.

. ..

.

.

Enforcing a temporal property Φ on a system (on which Φ does not
a priori hold)

.
Principle (on implicit equational representation)
..

.

. ..

.

.

State memory
Trans transition function
Out output function

Trans State Out
ZY

Partition of inputs into controllable (Y c) and uncontrollable
(Y u) inputs
Computation of a controller, maximally permissive, such as the
controlled system satisfies Φ

tool: sigali (H. Marchand, INRIA Rennes)

.
Motivation

.
BZR

.
Case study

.
Perspectives

Discrete controller synthesis: principle

.
Goal..

.

. ..

.

.

Enforcing a temporal property Φ on a system (on which Φ does not
a priori hold)

.
Principle (on implicit equational representation)
..

.

. ..

.

.

State memory
Trans transition function
Out output function

Y c

Y u Trans State Out
ZY

Partition of inputs into controllable (Y c) and uncontrollable
(Y u) inputs

Computation of a controller, maximally permissive, such as the
controlled system satisfies Φ

tool: sigali (H. Marchand, INRIA Rennes)

.
Motivation

.
BZR

.
Case study

.
Perspectives

Discrete controller synthesis: principle

.
Goal..

.

. ..

.

.

Enforcing a temporal property Φ on a system (on which Φ does not
a priori hold)

.
Principle (on implicit equational representation)
..

.

. ..

.

.

State memory
Trans transition function
Out output function

Ctrlr Y c

Y u Trans State Out
ZY

Partition of inputs into controllable (Y c) and uncontrollable
(Y u) inputs
Computation of a controller, maximally permissive, such as the
controlled system satisfies Φ

tool: sigali (H. Marchand, INRIA Rennes)

.
Motivation

.
BZR

.
Case study

.
Perspectives

BZR: contracts and DCS

f (x1, . . . , xn) = (y1, . . . , yp)
eA =⇒ eG

with c1, . . . , cq

y1 = f1(x1, . . . , xn, c1, . . . , cq)
· · ·
yp = fp(x1, . . . , xn, c1, . . . , cq)

OutCTrC StC

Trans StateCtrlr

eA, eG

xi

contract

Out
yj

ck

body

built on top of heptagon synchronous nodes (M. Pouzet e.a.)

contract construct :
assuming eA (on the environment), enforce objective eG
by constraining the additional controllable variables

c1, . . . , cq local to the component (with)

encoded as a DCS problem (invariance)
computes a local controller for each component

[ACM LCTES’10]

.
Motivation

.
BZR

.
Case study

.
Perspectives

BZR: contracts and DCS

f (x1, . . . , xn) = (y1, . . . , yp)
eA =⇒ eG

with c1, . . . , cq

y1 = f1(x1, . . . , xn, c1, . . . , cq)
· · ·
yp = fp(x1, . . . , xn, c1, . . . , cq)

OutCTrC StC

Trans StateCtrlr

eA, eG

xi

contract

Out
yj

ck

body

built on top of heptagon synchronous nodes (M. Pouzet e.a.)
contract construct :

assuming eA (on the environment), enforce objective eG
by constraining the additional controllable variables

c1, . . . , cq local to the component (with)

encoded as a DCS problem (invariance)
computes a local controller for each component

[ACM LCTES’10]

.
Motivation

.
BZR

.
Case study

.
Perspectives

BZR: contracts and DCS

f (x1, . . . , xn) = (y1, . . . , yp)
eA =⇒ eG

with c1, . . . , cq

y1 = f1(x1, . . . , xn, c1, . . . , cq)
· · ·
yp = fp(x1, . . . , xn, c1, . . . , cq)

OutCTrC StC

Trans StateCtrlr

eA, eG

xi

contract

Out
yj

ck

body

built on top of heptagon synchronous nodes (M. Pouzet e.a.)
contract construct :

assuming eA (on the environment), enforce objective eG
by constraining the additional controllable variables

c1, . . . , cq local to the component (with)

encoded as a DCS problem (invariance)
computes a local controller for each component

[ACM LCTES’10]

.
Motivation

.
BZR

.
Case study

.
Perspectives

BZR: contracts and DCS

f (x1, . . . , xn) = (y1, . . . , yp)
eA =⇒ eG

with c1, . . . , cq

y1 = f1(x1, . . . , xn, c1, . . . , cq)
· · ·
yp = fp(x1, . . . , xn, c1, . . . , cq)

OutCTrC StC

Trans StateCtrlr

eA, eG

xi

contract

Out
yj

ck

body

built on top of heptagon synchronous nodes (M. Pouzet e.a.)
contract construct :

assuming eA (on the environment), enforce objective eG
by constraining the additional controllable variables

c1, . . . , cq local to the component (with)

encoded as a DCS problem (invariance)
computes a local controller for each component

[ACM LCTES’10]

.
Motivation

.
BZR

.
Case study

.
Perspectives

BZR modularity

BZR composite contract node:
re-use contracts of sub-nodes for the controller of the composite

assuming eA, as well as (eA1 ⇒ eG1) and (eA2 ⇒ eG2)
enforce eG , as well as eA1 et eA2

f (x1, . . . , xn) = y1, . . . , yp
assume eA
enforce eG
with c1, . . . , cq

f1(x11, . . . , x1n, c1, . . . , cq) = y11, . . . , y1p
assume eA1
enforce eG1
· · ·
fp(xp1, . . . , xpn, c1, . . . , cq) = yp1, . . . , ypp
assume eAp
enforce eGp

.
Motivation

.
BZR

.
Case study

.
Perspectives

Compilation & implementation

...

(synchronous)
compiler

(synchronous)
compiler

objectives

contracts automata

transition
system

(synchronous)
DCS tool

controller
(constraint)

triangularize
transl. to eq.

controller
(function)

compose

controlled
automata

sequential code
JavaC

with
contracts

BZR specification

extension

Development process:
integration in computing system

(here: Orccad):

constraint

generated C code

resolution)
(with constraint

executive
Real-time

Xenomai)
(C, Linux/

RT & RP
automata
& contract

BZR compiler

spec.
Orccad extract

link

synchronous
compiler

DCSseq. C code

Bool. eq.
& obj.

.
Motivation

.
BZR

.
Case study

.
Perspectives

Compilation & implementation

...

(synchronous)
compiler

(synchronous)
compiler

objectives

contracts automata

transition
system

(synchronous)
DCS tool

controller
(constraint)

triangularize
transl. to eq.

controller
(function)

compose

controlled
automata

sequential code
JavaC

with
contracts

BZR specification

extension

Development process:
integration in computing system

(here: Orccad):

constraint

generated C code

resolution)
(with constraint

executive
Real-time

Xenomai)
(C, Linux/

RT & RP
automata
& contract

BZR compiler

spec.
Orccad extract

link

synchronous
compiler

DCSseq. C code

Bool. eq.
& obj.

.
Motivation

.
BZR

.
Case study

.
Perspectives

Programming methodology

classical programming: write the solution, then verify
here: specify the problem, then the solution is derived

write nodes describing the possible behaviors
in the absence of control
identify possible choice and control points

write contracts for the control objectives
different objectives can be possible
controllability for a specific objective is not always given

compile the program to obtain the controller using DCS
can be seen as completion of partially specified program

.
Motivation

.
BZR

.
Case study

.
Perspectives

Programming methodology

classical programming: write the solution, then verify
here: specify the problem, then the solution is derived

write nodes describing the possible behaviors
in the absence of control
identify possible choice and control points

write contracts for the control objectives
different objectives can be possible
controllability for a specific objective is not always given

compile the program to obtain the controller using DCS
can be seen as completion of partially specified program

.
Motivation

.
BZR

.
Case study

.
Perspectives

Programming methodology

classical programming: write the solution, then verify
here: specify the problem, then the solution is derived

write nodes describing the possible behaviors
in the absence of control
identify possible choice and control points

write contracts for the control objectives
different objectives can be possible
controllability for a specific objective is not always given

compile the program to obtain the controller using DCS
can be seen as completion of partially specified program

.
Motivation

.
BZR

.
Case study

.
Perspectives

Case study: robot arm

robot arm (inspired from [IFAC11])
articulations define mechanically reachable workspace

always under control of a control law (at least one)
exclusion between control laws (at most one)

6 real-time control task:
CJ: grouping 2 tasks C : moving inside workspace (Cartesian
coord.) and J: moving around singularities (Joint coord.)
F : trajectory following, to point to a target outside workspace
B: same, for a target at the border of workspace
CT : tool change, with move towards tool rack, and change
two arm-held tools: gripper, camera
M: background task, maintaining current position.

application:
when target is inside workspace: grip it
when at border: go to center, and point with camera
when outside: point towards it, with camera

.
Motivation

.
BZR

.
Case study

.
Perspectives

Case study: robot arm

robot arm (inspired from [IFAC11])
articulations define mechanically reachable workspace

always under control of a control law (at least one)
exclusion between control laws (at most one)

6 real-time control task:
CJ: grouping 2 tasks C : moving inside workspace (Cartesian
coord.) and J: moving around singularities (Joint coord.)
F : trajectory following, to point to a target outside workspace
B: same, for a target at the border of workspace
CT : tool change, with move towards tool rack, and change
two arm-held tools: gripper, camera
M: background task, maintaining current position.

application:
when target is inside workspace: grip it
when at border: go to center, and point with camera
when outside: point towards it, with camera

.
Motivation

.
BZR

.
Case study

.
Perspectives

Case study: robot arm

robot arm (inspired from [IFAC11])
articulations define mechanically reachable workspace

always under control of a control law (at least one)
exclusion between control laws (at most one)

6 real-time control task:
CJ: grouping 2 tasks C : moving inside workspace (Cartesian
coord.) and J: moving around singularities (Joint coord.)
F : trajectory following, to point to a target outside workspace
B: same, for a target at the border of workspace
CT : tool change, with move towards tool rack, and change
two arm-held tools: gripper, camera
M: background task, maintaining current position.

application:
when target is inside workspace: grip it
when at border: go to center, and point with camera
when outside: point towards it, with camera

.
Motivation

.
BZR

.
Case study

.
Perspectives

Discrete control handlers of continuous control tasks

Discrete control of tasks sequencings and mode changes

Discrete and continuous layers

tasks
real-time

robot
system

sensors actuators

DCS ctrlr

tasks automata
application &

computing
system

physical
system

control loop
continuous

discrete
control loop

exceptions,
stops activations

BZR program

Local task automata, coordinated by application automata
with discrete supervisor, enforcing logical objective

.
Motivation

.
BZR

.
Case study

.
Perspectives

Discrete control handlers of continuous control tasks

Discrete control of tasks sequencings and mode changes

Discrete and continuous layers

tasks
real-time

robot
system

sensors actuators

DCS ctrlr

tasks automata
application &

computing
system

physical
system

control loop
continuous

discrete
control loop

exceptions,
stops activations

BZR program

Local task automata, coordinated by application automata
with discrete supervisor, enforcing logical objective

.
Motivation

.
BZR

.
Case study

.
Perspectives

Modeling behaviors and specifying contract

behaviors of control tasks, contract featuring an observer

rob (endCT, endJ, singularity, inWork, outWork, border , take) returns startC, startF, startB, startM, startJ, startCT, cam

Grip Cam

take

take

= cam
assume_camassume_cam

= not cam

righttool = (aCJ implies (not cam))

and ((aF or aB) implies cam);

ex = aF xor aCJ xor aB xor aCT xor aM;

morethanone = (inWork and outWork)

or (outWork and border)

or (inWork and border)

assume (assume_cam and take implies aCT and not morethanone)

enforce (righttool and ex)

with cF, cB, cCJ, cCT, cM

ActC ActJ

singularity / startJ

endJ / startC

aCJ = true

Idle ActM

cM / startM

not cM
aM = false

aM = true

Idle Wait

Active
cB / startB

aB = false

aB = true

/ startB
border and cB

border and not cB

aB = false

stopB

stopB

Wait
Cam

stopF = inWork or border ;
stopB = inWork or outWork ;
stopCJ = outWork or border ;

Idle Wait
aCJ = false aCJ = false

inWork and not cCJ

inWork and cCJ

stopCJ

cCJ / startC
/ startC

stopCJ

Idle Wait

Active
cF / startF

aF = false aF = false

aF = true

outWork and not cF

/ startF
outWork and cF

stopF

stopF

Idle

endCT and

aCT = false
cCT / startCT

Go
aCT = true

aCT = true

take and take
endCT

not take

Grip Cam
cam = false cam = true

take

take

B CJF

M CT

Obs

.
Motivation

.
BZR

.
Case study

.
Perspectives

Simulation and modularity

typical scenario
CJ is Active, target inWork, tool not cam.

the user clicks outside of the workspace → input outWork true
transition: CJ to its initial state; F quits initial, choice cF
contract righttool: ⇒ cF = false: F to Wait;
contract ex: ⇒ cCT = true: CT to Active
CT ends → input EndCT
transition: take true, CT to Init; tool observer to Cam

contracts ex and goodtool: ⇒ cF = true: F to Active

modular contracts
two robots sharing an exclusive camera, with each its gripper

tworobs (endCT1, ... border1, endCT2, ... border2)
returns startC1, ... startCT1, startC2, ... startCT2
enforce (not (cam1 and cam2))
with take1, take2
startC1, ... startCT1, cam1 = rob (endCT1, ... border1, take1);
startC2, ... startCT2, cam2 = rob (endCT2, ... border2, take2);

.
Motivation

.
BZR

.
Case study

.
Perspectives

Simulation and modularity

typical scenario
CJ is Active, target inWork, tool not cam.
the user clicks outside of the workspace → input outWork true
transition: CJ to its initial state; F quits initial, choice cF
contract righttool: ⇒ cF = false: F to Wait;
contract ex: ⇒ cCT = true: CT to Active

CT ends → input EndCT
transition: take true, CT to Init; tool observer to Cam

contracts ex and goodtool: ⇒ cF = true: F to Active

modular contracts
two robots sharing an exclusive camera, with each its gripper

tworobs (endCT1, ... border1, endCT2, ... border2)
returns startC1, ... startCT1, startC2, ... startCT2
enforce (not (cam1 and cam2))
with take1, take2
startC1, ... startCT1, cam1 = rob (endCT1, ... border1, take1);
startC2, ... startCT2, cam2 = rob (endCT2, ... border2, take2);

.
Motivation

.
BZR

.
Case study

.
Perspectives

Simulation and modularity

typical scenario
CJ is Active, target inWork, tool not cam.
the user clicks outside of the workspace → input outWork true
transition: CJ to its initial state; F quits initial, choice cF
contract righttool: ⇒ cF = false: F to Wait;
contract ex: ⇒ cCT = true: CT to Active
CT ends → input EndCT
transition: take true, CT to Init; tool observer to Cam

contracts ex and goodtool: ⇒ cF = true: F to Active

modular contracts
two robots sharing an exclusive camera, with each its gripper

tworobs (endCT1, ... border1, endCT2, ... border2)
returns startC1, ... startCT1, startC2, ... startCT2
enforce (not (cam1 and cam2))
with take1, take2
startC1, ... startCT1, cam1 = rob (endCT1, ... border1, take1);
startC2, ... startCT2, cam2 = rob (endCT2, ... border2, take2);

.
Motivation

.
BZR

.
Case study

.
Perspectives

Simulation and modularity

typical scenario
CJ is Active, target inWork, tool not cam.
the user clicks outside of the workspace → input outWork true
transition: CJ to its initial state; F quits initial, choice cF
contract righttool: ⇒ cF = false: F to Wait;
contract ex: ⇒ cCT = true: CT to Active
CT ends → input EndCT
transition: take true, CT to Init; tool observer to Cam

contracts ex and goodtool: ⇒ cF = true: F to Active

modular contracts
two robots sharing an exclusive camera, with each its gripper

tworobs (endCT1, ... border1, endCT2, ... border2)
returns startC1, ... startCT1, startC2, ... startCT2
enforce (not (cam1 and cam2))
with take1, take2
startC1, ... startCT1, cam1 = rob (endCT1, ... border1, take1);
startC2, ... startCT2, cam2 = rob (endCT2, ... border2, take2);

.
Motivation

.
BZR

.
Case study

.
Perspectives

Conclusion & Perspectives

Conclusions get BZR free! : bzr.inria.fr

Discrete control integrated in programming language
Integration of DCS tool in compiler

Application of DCS to computing system
here: task management

Case study robot arm, specification & simulation

Perspectives
more DCS : efficiency, expressivity
reachability, dynamical controllers, costs on paths [WODES10]
more elaborate models of adaptive systems

finer grain, e.g. fault tolerance [FMSD09]
more integration in existing frameworks

e.g. component-based Fractal [EMSOFT11]
more adaptive computing systems

reconfigurable FPGA architectures (ANR Famous)
administration loops in data-centers (ANR CtrlGreen)

.
Motivation

.
BZR

.
Case study

.
Perspectives

Conclusion & Perspectives

Conclusions get BZR free! : bzr.inria.fr

Discrete control integrated in programming language
Integration of DCS tool in compiler

Application of DCS to computing system
here: task management

Case study robot arm, specification & simulation

Perspectives
more DCS : efficiency, expressivity
reachability, dynamical controllers, costs on paths [WODES10]
more elaborate models of adaptive systems

finer grain, e.g. fault tolerance [FMSD09]
more integration in existing frameworks

e.g. component-based Fractal [EMSOFT11]
more adaptive computing systems

reconfigurable FPGA architectures (ANR Famous)
administration loops in data-centers (ANR CtrlGreen)

	Motivation
	Motivation

	BZR
	Discrete Control Techniques for Adaptive Computing
	Examples of discrete modes
	BZR language
	Discrete Controller Synthesis
	BZR principles
	Implementation

	Case study
	Programming methodology
	Discrete control handlers of continuous control tasks

	Perspectives
	Conclusion

