

Contribution à la reconfiguration des systèmes de production : Ordonnancement par recherche d'atteignabilité

P. MARANGE¹, J.-F. PÉTIN¹, A. MANCEAUX², D. GOUYON¹

¹ Centre de Recherche en Automatique de Nancy UMR 7039 – Nancy-Université, CNRS Faculté des Sciences et Techniques, BP 70239, Vandoeuvre-lès-Nancy, {pascale.marange, jean-françois.petin, david.gouyon} @cran.uhp-nancy.fr

² Société TRANE
 1 r. des Amériques – Z.I. de Golbey
 88190 Golbey

P. Marangé et al., MRS'11, Lille 16-18 novembre 2011

Sommaire

- 1. Contexte
- 2. Etat de l'art
- 3. Ordonnancement par recherche d'atteignabilité
 - Principes généraux
 - Modélisation
- 4. Application à l'exemple de la TRANE
 - Cas d'étude
 - Modèles
 - Résultats
- 5. Conclusions et perspectives

1. Contexte (1/3)

- Problématique Industrielle
 - Système de production manufacturier :
 - Ordonnancement prévisionnel :
 - défini sur la base de gammes opératoires associant opérations de transformations et machines de production.
 - dates de début et de fin d'exécution des opérations de transformations à réaliser sur le produit
 - Redondance fonctionnelle sur les ressources de production : possibilités de gammes alternatives et de reconfiguration.
 - Reconfiguration d'un ordonnancement de la production pour faire face :
 - Aux aléas (pannes machine, indisponibilité des opérateurs, ...)
 - A la forte variabilité des produits
 - Reconfiguration de l'ordonnancement en ligne :
 - Obtenir une solution valide le plus rapidement possible
 - Pas de recherche systématique d'optimalité

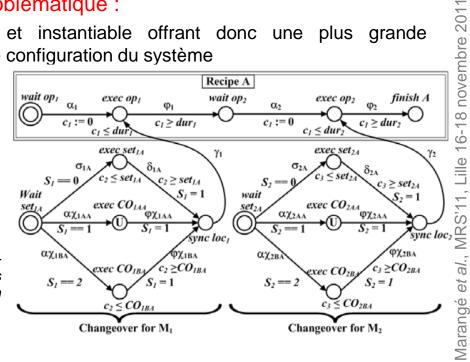
1. Contexte (2/3)

Problème scientifique

- Système de production reconfigurable (d'après M. Kanso, Thèse UBS, 2010)
 - O : ensemble des opérations applicables aux différents produits,
 - M: ensemble des machines M_i avec $i \in (0, ..., I)$ où l'est le nombre de machines :
 - Odispo_i: ensemble des couples {opérations, temps d'exécution}
 - E_i: situation de la machine : {disponible, en traitement, occupée, en panne}
 - G : ensemble des gammes logiques associées aux produits à réaliser G_k (P_k, Odem_k, Seq_k) avec k ∈ (0, ..., K) où K est le nombre de produits:
 - P_k: identifiant des produits,
 - Odem_k: ensemble des opérations à réaliser pour obtenir le produit fini k à partir d'un produit initial,
 - Seq_k est une relation entre les opérations :
 - Seqk: $Odem_k \times Odem_k \rightarrow \mathcal{B}$
 - $(Odem_{k_m},Odem_{k_n}) \mapsto \begin{cases} 1 \text{ si } Odem_{k_n} \text{ peut être exécutée après } Odem_{k_m} \\ 0 \text{ sinon} \end{cases}$

1. Contexte (3/3)

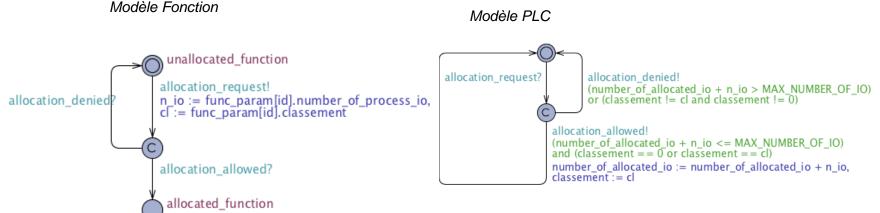
Problème scientifique


- Formalisation du problème :
 - Ordonnancement : association d'une machine et d'une opération d'une gamme logique avec une date de début et de fin de chaque opération.
 - L'ordonnancement $Ordo_k$ pour un produit P_k : ensemble de triplets $(Odem_{k_q}, M_i, d_{k_q})$ qui à chaque opération $Odem_{k_q}$ de la gamme logique associe une date d_{k_q} et une machine M_i
 - Contraintes:
 - Opérations réalisables par la machine M_i : $\exists j \ tel \ que \ Odispo_{i_j} = Odem_{k_q}$,
 - L'état de la machine M_i : Ei = disponible,
 - Gamme logique : $\operatorname{Seq}_{\mathsf{k}}\left(\operatorname{Odem}_{k_{m}},\operatorname{Odem}_{k_{n}}\right)\Rightarrow d_{k_{n}}>d_{k_{m}}$
- Trouver un ensemble de triplets $(Odem_{k_q}, M_i, d_{k_q})$, en un temps minimum (contrainte de reconfiguration en ligne), qui satisfasse l'ensemble des contraintes (pas de recherche d'optimalité) :
 - Trouver une machine permettant de réaliser les opérations demandées par la gamme logique,
 - Définir les dates de disponibilité de ces machines.

2. État de l'art (1/3)

- « Virtual Manufacturing Line » (Qui, 2004)
 - Génération d'un ensemble de trajectoires admissibles par la gamme logique,
 - Cette génération est souvent réalisée avant implémentation en déterminant au préalable l'ensemble des trajectoires possibles
 - Synthèse de superviseurs (Qui, JIM, 2004; Gouyon et al., SIC 2007),
 - Utilisation d'heuristiques (Henry et al., MCPL 2004),
 - Analyse par Réseaux de Petri (Dangoumau, thèse, 2000).
 - Limites:
 - Ensemble des gammes opératoires générées hors ligne (prévisionnelle)
 - Prise en compte de la dimension temporelle (dates de début et de fin, disponibilité des machines, mode de fonctionnement des machines, aléas de production, ...).
- Approche classique par programmation linéaire en nombre entier :
 - Taille et complexité (linéarisation des modèles) des modèles peu compatibles avec les contraintes de temps d'obtention d'une solution

2. État de l'art (2/3)


- Approche par automates temporisés (Subbiah and Engell, 2010)
 - **Principes**
 - Point de départ : gammes opératoires des produits
 - Calcul d'un ordonnancement (date de début / date de fin) par recherche d'atteignabilité (états finaux des gammes opératoires)
 - Ordonnancement recherché = trace conduisant à ces états finaux
 - Intérêts / limites par rapport à notre problématique :
 - Modélisation modulaire, paramétrable et instantiable offrant donc une plus grande robustesse vis-à-vis des changements de configuration du système
 - Nécessité de compléter cette approche l'intégration du processus par d'allocation des opérations dans gammes logiques aux ressources de production pour pouvoir exploiter les fonctionnelles redondances des ressources de production
 - S. Subbiah & S. Engell, Short-Term Scheduling of Multi-Product Batch Plants with Sequence-Dependent Changeovers Using Timed Automata Models, 20th European Symposium on Computer Aided Process Engineering, 2010

σ.

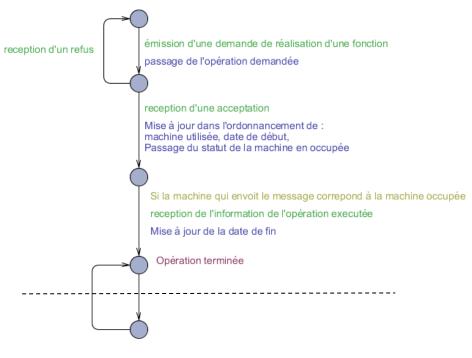
2. État de l'art (3/3)

- Processus d'allocation sous contraintes (Lemattre et al., CASE 2011)
 - Allocation de fonctions de commande sur une architecture matérielle (automates programmable) sous contraintes (dimensionnement, séparation & redondance fonctionnelle, ...)
 - Processus d'allocation est représenté par un réseau d'automates communicants : des automates relatifs aux fonctions à allouer, des automates relatifs aux matériels
 - synchronisation entre automates communicants sous la forme de mécanismes d'appel/réponse (demande d'allocation par les matériels)

Lemattre et al., Designing operational control architectures of critical systems by reachability analysis, IEEE 7th International Conference on Automation Science and Engineering, 2011.

3. Ordo. par recherche d'atteignabilité (1/7)

- Principes généraux de notre démarche :
 - Modélisation sous la forme d'automates communicants (Subbiah and Engell, 2010) :
 - Gamme logique des produits : enchainements des opérations de transformations devant être réalisées sur le produit
 - Ressources de production : capabilité (opérations réalisables sur la machine), temps d'opérations et états de fonctionnement
 - Modélisation du processus d'allocation par la synchronisation entre automates communicants sous la forme de mécanismes d'appel/réponse (Lemattre et al., CASE, 2011)
 - Obtention de l'ordonnancement possible :
 - Recherche d'atteignabilité (états finaux des gammes logiques)
 - Utilisation d'un model-checker
 - Trace retournée par le model-checker correspond à un ordonnancement possible

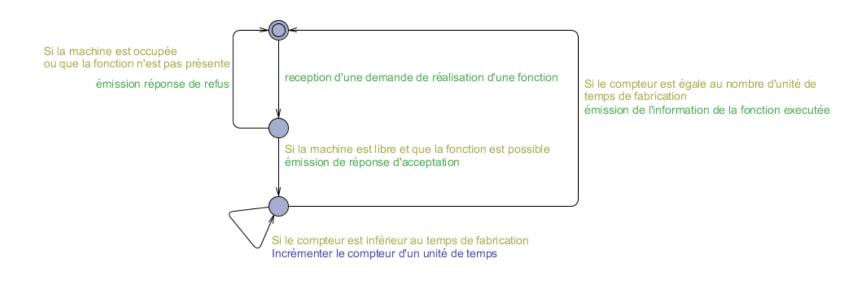

3. Ordo. par recherche d'atteignabilité (2/7)

- Automate communicant défini par A = (Q, E, f, q0, I, h) (Alur and Dill, 1994) :
 - Q : ensemble fini d'états
 - E : ensemble fini de transitions
 - f: fonction de transition f: $Q \times E \rightarrow Q$ qui associe à une transition:
 - garde logique autorisant le franchissement de la transition (basées sur des variables logiques ou entières)
 - synchronisation permettant de faire évoluer deux automates A₁ et A₂ simultanément
 - mises-à-jours qui offrent la possibilité d'affecter une valeur à des variables booléennes ou entières
 - \rightarrow q₀ : état initial
 - I : ensemble d'invariants associés à chaque état
 - h : une horloge

3. Ordo. par recherche d'atteignabilité (3/7)

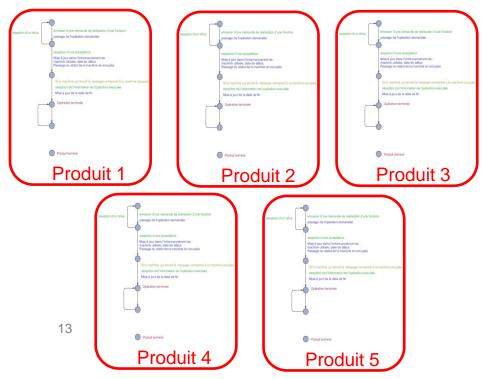
Modèle produit

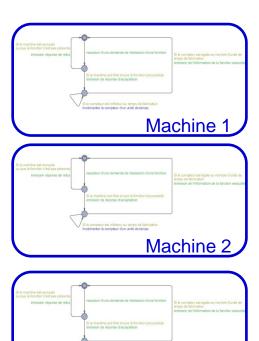
- Le modèle du produit représente la gamme logique, c'est-à-dire la succession d'opérations à réaliser pour fabriquer un produit donné.
- Modèle complet du produit se termine par un état « produit terminé » représentant l'exécution de toutes les opérations


Produit terminé

11

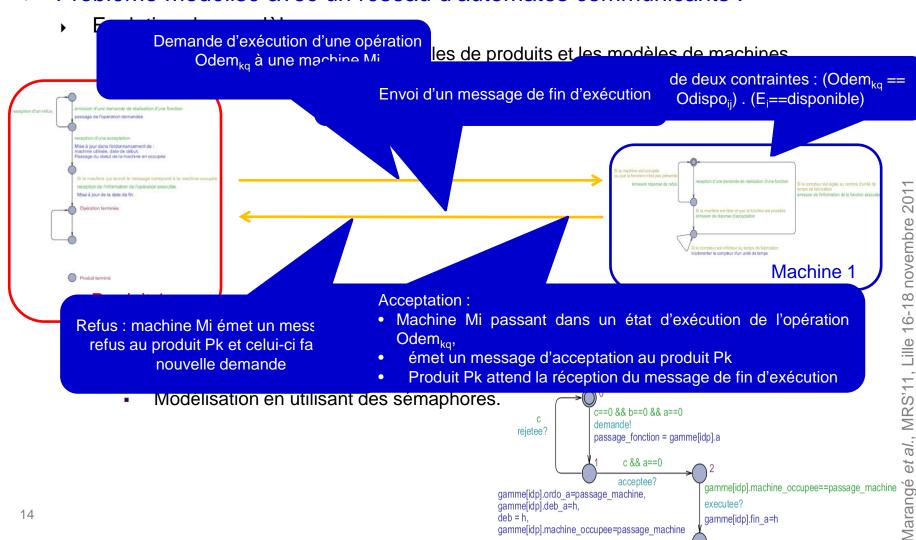
3. Ordo. par recherche d'atteignabilité (4/7)


Modèle de machine


- Le modèle de machine fonctionne en parallèle du modèle de produit et interagit avec celui-ci par le biais de synchronisations.
- Les machines sont caractérisées par les opérations qu'elles peuvent réaliser, le temps d'exécution de chaque opération, et leur situation de fonctionnement (disponible, en traitement d'une demande, occupée, en panne).

3. Ordo. par recherche d'atteignabilité (5/7)

- Problème modélisé avec un réseau d'automates communicants :
 - Instanciation
 - Le système se modélise par un ensemble d'automates communicants qui comporte n produits et m machines, c'est-à-dire :
 - n instances du modèle de produit
 - m instances du modèle de machine
 - Exemple pour 5 produits et 3 machines



Machine 3

3. Ordo. par recherche d'atteignabilité (6/7)

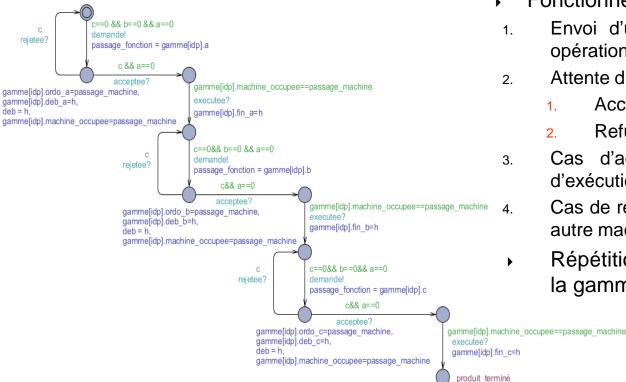
Problème modélisé avec un réseau d'automates communicants :

σ.

3. Ordo. par recherche d'atteignabilité (7/7)

Vérification

- Rechercher s'il est possible d'atteindre l'ensemble des états finaux associés aux produits ? Si oui, la trace conduisant à cet ensemble d'états est un ordonnancement possible.
- La propriété à vérifier : AG not deadlock
 - Signification : les modèles de produit ne peuvent plus évoluer, c'est à dire qu'ils ont tous atteint l'état « produit terminé »
 - On cherche à infirmer cette propriété, le contre-exemple fourni dans ce cas est un ordonnancement possible
- Vérification réalisée par un model-checker, UPPAAL (Behrmann et al., 2002) dans notre cas.


4. Application à l'exemple de la TRANE (1/4)

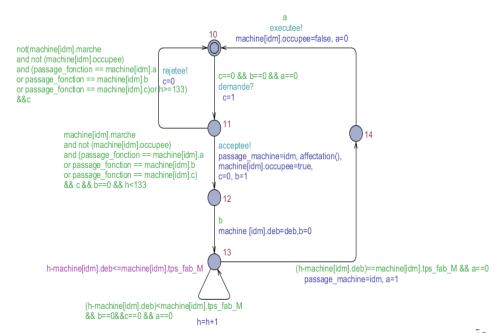
- Cas d'étude : Société TRANE
 - Description du processus de fabrication d'unité de climatisation, :
 - découpe, pliage (au cours duquel 3 opérations doivent être réalisées) et peinture.
 - La reconfiguration dynamique intervient dans deux cas :
 - pour des raisons d'optimisation du rendement matière, les ordres de fabrication sont découpés en lots variables
 - en cas de défaillance sur une des 4 presses plieuses.
- Dans notre étude : phase de pliage, 10 types de produits définis par une gamme linéaire composée de 3 opérations.

Machines	Marche (1:marche, 0:panne)	Occupée (1:occupee, 0:disponible)		Fonction disponible			Temps de fabrication		
Machine0	1	0	1	2	3	2	1	3	
Machine1	0	0	2	3	5	5	2	1	
Machine2	1	0	4	2	5	2	2	4	
Machine3	1	0	4	1	3	1	1	2	

Produits	Légende	Gamme à réaliser			Produits	Légende	Gamme à réaliser		
Produit0		1	2	3	Produit5		4	3	5
Produit 1		2	3	5	Produit6		2	1	5
Produit2		4	2	5	Produit7		3	1	3
Produit3		4	1	3	Produit8		5	2	1
Produit4		1	5	3	Produit9		2	4	5

4. Application à l'exemple de la TRANE (2/4)

Modèle de produit


- Fonctionnement du patron
- Envoi d'une demande d'exécution d'une opération
- Attente d'une réponse
 - Acceptation
 - Refus
- Cas d'acceptation : attente de la fin d'exécution
 - Cas de refus : envoi d'une demande à une autre machine
 - Répétition du motif pour décrire toute la gamme logique

Marangé et al., MRS

4. Application à l'exemple de la TRANE (3/4)

Modèle de machine

- Attente d'une demande d'exécution d'une opération
- Test des contraintes :
 - État de la machine : {disponible, occupée}
 - 2. Fonctions disponibles
- Si état disponible et fonctions disponibles→envoi message acceptation
- 4. Si état non disponible ou fonctions non disponibles
 - → envoi message refus
- 5. Exécution de la fonction et lorsque l'exécution est finie. Le temps d'exécution est représenté par un compteur h
 → envoi message exécutée
- Rq : les états supplémentaires sont là pour empêcher les utilisations multiples du canal de communication

4. Application à l'exemple de la TRANE (4/4)

Propriété à vérifier : A[] not deadlock()

Résultats

Si un ordonnancement existe, la propriété n'est pas vérifiée et UPPAAL retourne un contre exemple.

La trace associée à ce contre exemple permet de construire un diagramme de

Gantt représentant l'ordonnancement solution

	temps	1 2	3 4	Nb de produits	Nb de machines	Temps de calcul (en s)	Nb de produits	Nb de machines	Temps (calcul (en s)	e[10].c = 3 e[10].deb_a = 27 e[10].deb_b = 27
	F1 (2UT)			produito	maommoo	ourour (orr o)	produito	maommoo	Gaioai (Gii G)	e[10].deb_c = 29 e[10].fin_a = 27
lachine0	F2 (1UT)			30	5	0.78	90	10	52.36	e[10].fin_b = 29 e[10].fin_c = 32 e[10].ordo_a = 7
	F3 (3UT)		_	60	5	4.43	180	10	500,47	e[10].ordo_b = 6
Machine1	F2 (5UT)		-	90	5	14.85	210	10	928.15	e[10].ordo_c = 8 e[10].machine_occupee = 8 e[11].a = 2
Macililei	F3 (2UT) F5 (1UT)		+	120	5	37.09	30	20	5.9	e[11].b = 3 e[11].c = 5
	F4 (2UT)	ı		150	5	82.70	60	20	41.92	e[11].deb_a = 25 e[11].deb_b = 26
Machine 2	F2 (2UT)		-	180	5	153.53	90	20	136,58	e[11].deb_c = 29 e[11].fin_a = 26
	F5 (4UT)			210	5	292.11	180	20	1345.29	e[11].fin_b = 29 e[11].fin_c = 30
	F4 (1UT)			240	5	479.10	30	40	21.02	e[11].ordo_a = 0 e[11].ordo_b = 0
Machine3	F1 (1UT)			30	10	2.52	60	40	155.71	e[11].ordo_c = 1 e[11].machine_occupee = 1
	F3 (2UT)			60	10	16.18	90	40	521,13	e[12].a = 4 e[12].b = 2
						product_symmer_produc	governel(18 b = 1	Products Products	COSTANCIO Marrio producti producti producti p (CASAPI ACTURE P producti p	Jpanne [12], c = 5 gamme [12], deb_ b = 25 gamme [12], deb_ b = 26 gamme [12], deb_ c = 28 gamme [12], fin_ a = 26 gamme [12], fin_ b = 28 gamme [12], fin_ c = 32 gamme [12], ordo_ a = 3 gamme [12], ordo_ b = 2 gamme [12], ordo_ c = 2

5. Conclusions et Perspectives

- Proposition d'une approche d'ordonnancement adaptée à la reconfiguration dynamique des systèmes de production.
 - Modélisation à base d'automates communicants du parc machine et des gammes logiques des produits à fabriquer
 - Utilisation d'une approche par recherche d'atteignabilité pour générer une trace d'exécution correspond à l'ordonnancement de la production recherché.

Evolutions futures

- Contraintes supplémentaires d'ordonnancement (diminution de la taille de l'espace d'états à explorer) :
 - Taux d'occupation
 - Contrainte de regroupement : éviter les changements intempestifs de machine
- Prise en compte des états de pannes et des taux de défaillances
- Définition de points de reconfiguration plus réalistes : définition d'une situation initiale quelconque (modèles de produit et modèles de machines)
- Prise en compte de gammes alternatives des produits :
 - Remplacement de la gamme logique par des opérations pré et post conditionnées (pas de séquences préétablies) (Marangé et al., CIFA 2010)

Contribution à la reconfiguration des systèmes de production : Ordonnancement par recherche d'atteignabilité

P. MARANGE¹, J.-F. PÉTIN¹, A. MANCEAUX², D. GOUYON¹

¹ Centre de Recherche en Automatique de Nancy UMR 7039 – Nancy-Université, CNRS Faculté des Sciences et Techniques, BP 70239, Vandoeuvre-lès-Nancy, {pascale.marange, jean-françois.petin, david.gouyon} @cran.uhp-nancy.fr

² Société TRANE
 1 r. des Amériques – Z.I. de Golbey
 88190 Golbey