Safraless Procedures for
Timed Specifications

Barbara Di Giampaolo (U Salerno)
Gilles Geeraerts and Jean-Francois Raskin (ULB)
Nathalie Sznajder (Paris 6)

MSR201 | - Lille

Monday 21 November 2011

Safraless Procedures
Motivations

oooooooooooooooooooo

Language inclusion

Prog Spec
A B
NBW NBW

Prog = Spec iff L(A) € L(B)
iff L(A)nL(B)=2

B obtained by determinization of B

oooooooooooooooooooo

Realizability-Synthesis

Spec.
2=21U2) o 2(21) || Env(22) = P
LTL

3N * VA2 ¢ 3run r of Ao * r accepts Outcome(A|,A2)

Remove second 3 by determinization of Ao.

3A1 ¢ VA2 ¢ unique r of AY on Outcome(A|,A2) is accepting

Monday 21 November 2011

Realizability-Synthesis

Spec.
2=21U2) o 2(21) || Env(22) = P
LTL

3N * VA2 ¢ 3run r of Ao * r accepts Outcome(A|,A2)

Remove second 3 by determinization of Ao.

3A1 ¢ VA2 ¢ unique r of AY on Outcome(A|,A2) is accepting
N

make possible a reduction to games

Monday 21 November 2011

Determinization is difficult for NBW

D

DBWVs are strictly less expressive than NBWs.
Need Rabin or Parity acceptance conditions.

@ Simple subset constructions are not sufficient:
Safra’s construction uses trees of subsets
(encoding history of run).

Monday 21 November 2011

... and resistent to efficient implementation

D

No good symbolic data structures
for the underlying state space.

LTL synthesis: Rabin (NP-complete) or
Parity games (NPncoNP)

on a doubly exponential state space.

... and resistent to efficient implementation

Monday 21 November 2011

... and resistent to efficient implementation

With alternative approaches, we are able to

treat automata with hundreds of states

Monday 21 November 2011

How to avoid
determinization ?

— —_— —_— = ——— = ———

oooooooooooooooooooo

“Safraless™ decision procedures

oooooooooooooooooooo

“Safraless™ decision procedures

® Safraless complementation (with no determinization):

% Progress measure construction [Klarlund91].

% Rank construction [KupfermanVardi97,01]:
NBW — UcoBW — ABW — NBW

Monday 21 November 2011

“Safraless™ decision procedures

® Safraless complementation (with no determinization):

% Progress measure construction [Klarlund91].

% Rank construction [KupfermanVardi97,01]:
NBW — UcoBW — ABW — NBW

® Safraless realizability/synthesis:

% Rank construction [KupfermanVardi05]:
LTL = UcoBW — ABT — NBT — Buchi game

% K-co-Buchi condition:
ScheweFinkbeiner07] application to distributed synthesis,
Filiot)JinRaskin09] application to LTL synthesis.

_TL = UcoBW — UKcoBW — Safety game

Monday 21 November 2011

Plan of the talk

® How to avoid Safra construction ?

® Extensions to timed specifications !

® Summary of the results of a paper
published in FORMATS2010.

The Synthesis/Realizability Problem

o Input Signals Output Signals
Q
-
- >
5 1 0
S >
-
LL]
Uncontrollable Controllable

Interaction produces an infinite word w over > = 2V©
(0o U ig)(o1 U i1)(02 U i)... 0;CO iiCl

Monday 21 November 2011

The Synthesis/Realizability Problem

o Input Signals Output Signals

Q

-

- >

O | > O
£ 4

-

Ll

Uncontrollable Controllable

Realizability Problem

Given a LTL spec @, does there exist a way for the System to
choose its signals along time, so that, no matter how the
environment chooses its signals, the resulting execution
satisfies the formula ® ?

Monday 21 November 2011

Synthesis/Realizability as an c0-game

Player | Player 2
System M

Environment

oooooooooooooooooooo

Synthesis/Realizability as an c0-game

Player | Player 2
System M Environment

oooooooooooooooooooo

Synthesis/Realizability as an c0-game

Player | Player 2
System M Environment
N(E)QO >

Ai(i0)cO

icl @

The system wins the game if the play
(A1 (€)uio)(Ai(io)uit) (N (ioir)uiz)... satisfies

oooooooooooooooooooo

The Synthesis/Realizability Problem

‘ Realizability Problem \

Given a LTL spec @, does there exist a way for the System to
choose its signals along time, so that, no matter how the
environment chooses its signals, the resulting execution
satisfies the formula @ ?

d is realizable
iff

3N *Outcome(A|)C[P]

Monday 21 November 2011

The Synthesis/Realizability Problem

‘ Realizability Problem \

Given a LTL spec @, does there exist a way for the System to
choose its signals along time, so that, no matter how

tcome(A|)C[P]

Monday 21 November 2011

“Classical’”’ solution

Classical solution proposed by Pnueli and Rosner, 1989:

LTL

20O(n) 1
Nd. Buchi Word Automata Realizability
2 O(m log m)l [Safra, 88] = Rabin Game

Det. Rabin Word Automata

The problem has been shown to be 2ExpTime=C by the same authors.

Monday 21 November 2011

An Alternative Solution

LTL
20(n) l
Universal coBuchi Word automata . .
o(1) _Reallzablllty
Universal KcoBﬁ}.hiWord automata = Safety game
ZO(nZ)l

Det. KcoBuchi Word automata

Monday 21 November 2011

Universal coBuchi Word Automata

7,9 Sw Run
T .
r, T g ¢
L PN
’ Ir
7] | 3
O b
2 4
r v ¢
w € Lucor(A) | 3
iff g v X
all runs of A on w visit %

finitely many times «.

oooooooooooooooooooo

Universal KcoBuchi Word Automata

7,9 Sw Run
T .
r, T —|g ¢
ANy} PN
’ Ir
7] | 3
B O L
2 4
r v ¢
W € Lu,K(A) | 3
iff g v X
all runs of A on w visit %

X at most K times.

Monday 21 November 2011

Universal KcoBuchi VWord Automata

7,9 Sw Run

LTL, UcoBVVY and UKcoBWY

Input

|

(r — X(0g))

l

Output

oooooooooooooooooooo

LTL, UcoBW and UKcoBW

-
2 -
’ i 4" ~~“ -
-~
'l ------ O' ~.“—’ ’
A
' A 3
------ ') - ==
| A\
‘ A\
‘ A\
-
———————————
N '
-
: ,
- '.
’ -~
' -~
’ -~
. g
25¢ a !
~ '
~ <L
O’ ~~
' ~
I' >
.. . “
.. "
ut u K ‘
| -
.
' %~

---‘ "
‘ A\
‘ A\
‘ ------ ‘ ' -------
Q‘ '
-
NS ~ eV m L, Tt)
~ . =
~ e’ S. ‘
~, =

Monday 21 November 2011

LTL, UcoBW and UKcoBW

InTUt LTL &
" !
(T - (OT)) NBW A-o
Duali
Output : HATES
UcoBWV A-o

LucoB(A-0) ={W |WE®}

oooooooooooooooooooo

LTL, UcoBW and UKcoBW

InTut
(r — X(0g))
l
Output

w € Luco(Ao) iff all runs of Ao on w visit finitely many times «.
w € Lu,k(Ao) iff all runs of A on w visit at most K times «.

Monday 21 November 2011

LTL, UcoBW and UKcoBW

InTut
(r — X(0g))
l
Output

oooooooooooooooooooo

LTL, UcoBVVY and UKcoBWY

Input e

(T%X

g,—g

42

Ao)
grom LUKY ®1.
i Snt\‘:gt ?i\tl' LucoslAo) =
N

T

Lu,i(As) € Lu2(A0) C ... € Lun(As) C ... € Lucor(As)=[P].

A w'\\’\ﬂ‘
is also W

oooooooooooooooooooo

(Finite Memory) Strategies

Strategies for Player I:

A (Z1022)* 22

Finite Memory for Player |I:

(Complete) Moore Machines

] L(M) = {infinite words over 2 U2}

Ex: (oiuii)(o2ui2)®

Monday 21 November 2011

Finite Memory Strategies are Sufficient

L(M) = infinite words over 2.,u2;

Ex: (oiuii)(o2ui2)®

% If a regular objective is realizable, then it is realizable by a
finite memory strategy [Buchi69].

* Theorem [Safra88,Piterman08] For an objective
specified by a UCW, there is a Moore machine that realizes the
objective iff there is a Moore machine with less than 292,

Monday 21 November 2011

Bounding Visits to Accepting States

Lemma. Let M be a Moore machine with m states, and A a UcoBW
with n states. If L(M)CLucoB(A), then all runs on words of L(M) visit

accepting states at most mXn times.

Monday 21 November 2011

Bounding Visits to Accepting States

Lemma. Let M be a Moore machine with m states, and A a UcoBW
with n states. If L(M)CLucoB(A), then all runs on words of L(M) visit

accepting states at most mXn times.

Moore Machine UcoBW

M A

m states n states

Monday 21 November 2011

Bounding Visits to Accepting States

Lemma. Let M be a Moore machine with m states, and A a UcoBW
with n states. If L(M)CLucoB(A), then all runs on words of L(M) visit

accepting states at most mXn times.

Moore Machine UcoBW L Synchronized product
m states n states

No accepting states in
reachable loops

Monday 21 November 2011

Bounding Visits to Accepting States

Lemma. Let M be a Moore machine with m states, and A a UcoBW
with n states. If L(M)CLucoB(A), then all runs on words of L(M) visit

accepting states at most mXn times.

Moore Machine UcoBW Synchronized product
M A e
m states n states

No accepting states in
reachable loops

At most mXn accepting
states on a path

Monday 21 November 2011

Bounding Visits to Accepting States

Corollary I. For all UcoBW A with n states, for all Moore machine
M with m states, let K=nXm, then

L(M)C Lucor(A) iff L(M)CLuk(A)

Corollary 2. If an objective LucoB(A) defined by a UcoBW A with n
states is realized by a Moore machine M with m states, then the
strengthened objective Lu,k(A), with K=nXm, is also realized by M.

Monday 21 November 2011

K-Co-Buchi Objectives

Theorem:
Let A a UcoBW with n states and K = n(n?"*'+1).

i Then Lucos(A) is realizable iff Lu,ic(A) is realizable. |

Proof. Back direction is trivial. For the converse:

|/ UcoBW A — det. Parity automaton — Parity game G with
G| = N2+
2/ Parity games admit memoryless strategies

3/ Therefore A realizable = 3IM with |G| states that realizes it

4/ Apply previous Lemma — bound on the number of accepting states

Monday 21 November 2011

Determinization of UKcoBWVs

2w Run “Extended subsets”
| {1:0}
—|g ¢
2 {2:0}
r 7~ "\
| 3 {1:0,3:0}
ng J J
2 4 {2:0,4:1}
r v v
| 3 {1:0,3:1}
g ' X
% {2:0}

oooooooooooooooooooo

Determinization of UKcoBWVs

Lemma: UKCWs are determinizable (modulo exponential blow-up)

e Sketch of Proof:Let A = (3,Q,q0,&,A,K) be a UKCW.

® For each state g, count the maximal number of accepting states visited by runs
ending up in g

® States are counting functions F from Q to [-1,0,...,.K+1]
® |Initial counting function Fo: q— (qoeX) if g=qo, -1 otherwise

® Final states are functions F such that 3q: F(q)>K

A4(F 0) :q = max(q,oqea{ F(q) + (qex) | F(q')#-1}

Monday 21 November 2011

Determinization of UKcoBWVs

Lemma: UKCWs are determinizable (modulo exponential blow-up)

e Sketch of Proof:Let A = (2,Q,q0,&,A,K) be a UKCWV.

® For each state g, count the maximal number of a2z
ending up in g

® States are counting functi

Initial co

iX(q.oqea 1 F(q) + (qeq) | F(q)#-1}

Monday 21 November 2011

Incremental algorithm

Remember that for all UcoBWV A, for all K| <K,
L(AK)CL(AK2)CL(A).

= Incremental Realizability Checking Algorithm:

|.Input: an LTL formula @, a partition 1,O
2.A < UcoBW with n states equivalent to ®
3.K < n(n?*!+])

4.for k=0..K do

5. if Player | wins then G(A,k) return realizable
6.endfor
/.return unrealizable

Monday 21 November 2011

Incremental algorithm

Remember that for all UcoBM\

Player | wins then G(A,k) return realizable
6.endfor
/.return unrealizable

Monday 21 November 2011

Incremental algorithm

Remember that for all UcoB)
L (AL

= |ncke Mo
50
A Le _6C

Solution: run two instances of the algorithm:

|) one that checks realizability of ® for Player |
2) one that checks realizability of =® for Player 2

X3l Justified by determinacy of w-regular games !
/.ret

Monday 21 November 2011

oooooooooooooooooooo

Example, K=1

UCWV of the formula

(r — X(0g))
g, g
(g1,0) (g2, 0)
9
g
(g1 02, (g3,1)) (91,0), (¢3,0))
/
/ 9

P/ r,r (C]2, O)a (q47 1) —g

Safety game for K=

Monday 21 November 2011

Solving the safety game

9,79
Safety game for K=|
4@2@ v
/&w
9

@0 1) N 0.0 @.0) +/

/
/ Y

(q270)7 (Q4, 1) g

"
(g2,0), (%2; X \/

+/= winning for player |

Monday 21 November 2011

Example, K=1

(r — X(0g))

ofPp~
has @ X

\
e:om\“\a s ¥

s P\aY
2 e

/ g
r,—r (C]2, O)? (Q4, 1) —g

(@) (.2)

UCW of the formula Safety game for K=|

Monday 21 November 2011

Structure

9,79
(@0)(21)) = ((@.0):(a:.0)
(qlao) (C]Q,O)
. ((a1,0),(ga 1)) winning
v implies
9 ((q.,O),(q3,O)) IS winning
(q1,0), (g3,1)) > (91,0), (g3,0))
7 Set of winning positions are >-
//ﬂgk downward closed
P/ r, T (2, 0)7 (4 1) -

(42,0), (41, 2)) : : ’ >-downward closed sets are

canonically represented by their
maximal elements

Safety game for K=|

Monday 21 November 2011

Structure

F

CPre(FF)

CPre(CPre(F))

CPre*(F)

oooooooooooooooooooo

Structure

Antichains of
maximal winning
positions !

CPre(FF)

CPre(CPre(F))

CPre*(F)

It works in practice !

® |mplemented in Acacia [FJRO9]
(at ULB)

e ...and with BDDs [Ehlers|0] (at U Saarbrucken)

® Acacia handles large LTL formulas
(can be several pages long)

® Parameter K is usually very small (K=0,1,2,3).

® Synthesized strategies are very compact

may lead to hardware implementations.

Monday 21 November 2011

CAV’2009

ATVA20I0

An Antichain Algorithm for LTL Realizability*

Emmanuel Filiot Naiyong Jin Jean-Francois Raskin

CS, Faculty of Sciences
Université Libre de Bruxelles (U.L.B.), Belgium

Abstract. In this paper, we study the structure of underlying automata based
constructions for solving the LTL realizability and synthesis problem. We show
how to reduce the LTL realizability problem to a game with an observer that
checks that the game visits a bounded number of times accepting states of a uni-
versal co-Biichi word automaton. We show that such an observer can be made
deterministic and that this deterministic observer has a nice structure which can
be exploited by an incremental algorithm that manipulates antichains of game
positions. We have implemented this new algorithm and our first results are very
encouraging.

1 Introduction

Automata theory has revealed very elegant for solving verification and synthesis prob-
lems. A large body of results in computer aided verification can be phrased and solved
in this framework. Tools that use those results have been successfully used in industrial
context, see [16] for an example. Nevertheless, there is still plenty of research to dg
and new theory to develop in order to obtain more efficient algorithms a
larger or broader classes of practical examples. Recently,
shown in [4-6,14,21] that several automata-based ¢
erties that can be exploited to improve algorithms on
show how to solve more efficiently the language incl
tic Biichi automata by exploiting a partial-order that e
constructions used to solve this problem. Other struc
tionally exploited in [7]. In this paper, we pursue this
automata-based approach to LTL realizability and synth
is 2EXPTIME-COMPLETE, we show that there are also
with adequate partial-orders that can be exploited to obt!
procedure for it.

The realizability problem for an LTL formula ¢ is best seen as a game between two
players [13]. Each of the players is controlling a subset of the set P of propositions
on which the LTL formula ¢ is constructed. The set of propositions P is partitioned

intan T the ot nf innut cionalc that are cantralled hv ”Plaver innnt” (the anviranment

Ctical decision

Compositional Algorithms for LTL Synthesis

Emmanuel Filiot, Nayiong Jin, and Jean-Francois Raskin

CS, Université Libre de Bruxelles, Belgium

Abstract. In this paper, we provide two compositional algorithms to solve safety
games and apply them to provide compositional algorithms for the LTL synthe-
sis problem. We have implemented those new compositional algorithms, and we
demonstrate that they are able to handle full LTL specifications that are orders of
magnitude larger than the specifications that can be treated by the current state of
the art algorithms.

1 Introduction

Context and motivations The realizability pro.
two players [12]. Given an LTL for
into I and O, Player 1
responds Dyga

a game between
propositions P
jons !, Player 2
1 and Player 2
e game is the

S that have brought new algorithmic ideas to attack this important problem.

Contributions In this paper, we propose two compositional algorithms to solve the LTL
realizability and synthesis problems. Those algorithms rely on previous works where
the LTL realizability problem for an LTL formula & is reduced to the resolution of a
safety game G(®) [5] (a similar reduction was proposed independently in [15] and ap-

Monday 21 November 2011

|
|

E
» I
1

Extensions to
Timed Specifications

oooooooooooooooooooo

Timed words

Timed word on 2={a,b}:

(a,1) (b,1.7) (224) (23.1) (b3.8)
@ @

@ ® @

= infinite sequence of elements in ZxR>°
(Oo,t0) (O1,t1) (O2,t2) ... (On,tn) ...

such that 0;€2 and t; < tj+|, for all ieN.

oooooooooooooooooooo

Timed Formalisms

Timed automata

Timed extensions of LTL

(a—= O=1b)
MTL (koyss.aHs9]

“Every a is followed by a b exactly one time unit later”

Monday 21 November 2011

Undecidability

Language inclusion for TA is undecidable [AD94].

Emptiness of universal/alternating automata is
undecidable.

MTL satisfiability (over infinite timed words) is
undecidable [AH93], and so is realizability/synthesis.

>> no hope to apply the previous constructions to
those timed formalisms !

Monday 21 November 2011

Recovering decidability

Event clock automata

b
. . [AFH99]
Yo < 2

e,
——
"~
—
—
—
-
N
",
———
—
e ————

—"
"
———"
e
e s

Clock are not reset and are associated to events: { Xg,Yo | O€2 }
Values of event-clocks are input determined:

(a,1) (b,1.7) (224) (a3.1) (b3.8)
A * ° . °

val(xy)= 1 val(x)= 1 4
val(yb)=2.1 val(yp)=0.7

Monday 21 November 2011

Recovering decidability

/\lj T, =5 /\b’ Event clock automata
[AFH99]
a C
(s (0
b

i Theorem [AFH99]. Unlike timed automata,
| event-clock automata are determinizable and
. their language inclusion problem is PSpace-C.

Monday 21 November 2011

Recovering decidability

(a— Qpipb)
MITL (armo

(a—D=b)
ECL (rs97.Hrs98]

(a—=<=b)
LTL+ < [DGRR09]

prohibits punctuality in MTL
satisfiability ExpSpaceC [AFH96]
but synthesis undecidable [DGRR09]

refers only to next/previous occ.

satisfiability PSpaceC [RS97,HRS98]
but synthesis undecidable [DGRR09]

refers only to previous occ.

satisfiability PSpaceC [RS97,HRS98]
and synthesis 2Exp TimeC [DGRRO09]

Monday 21 November 2011

ITL+<:P:=0 | OV, | O UD | P UD| O

with | is an interval of R=0 with integer bounds.

(W,i) =D U Dy iff 3j>i e ((W,j) EPrand Vkei<k<je(wj) = D)

(a,1) (b,1.7) (224) (23.1) (b3.8)
@ @ @ ® @
bUb alUb

(w,i) = <) O iff 3j<i * (w,j)) E0and Vk *j <k <ie* (wk) ¥ 0 and t(i)-t(j)el

(a,1) (b,1.7) (224) (a3.1) (b3.8)
@ ® o ® @

pza dpga

Monday 21 November 2011

Timed Games

® A timed game is a 3-tuple (21,22, Win) where:
% 2 is a finite alphabet of letters that belong to Player I,

* 2, belongs to Player 2,

% and Win is a language of timed words over 2 |u2,.

® A timed game is played during an infinite number of rounds. In each round:
* Player |chooses a pair (O,t))eZ xR =°

% Player 2 either lets Player | play or chooses (0,t2)e2,xR=0 with t; < t.

® This interaction generates an infinite timed word w.

® Player | wins the timed game iff w € Win.

Monday 21 November 2011

Timed Strategies

Player |’s strategies: Aj: (ZXR=0)"— (X ;xR =9)

ex: Ai((a,0.6),(b,0.9))=(a,0.5)
then either Player 2 let Player | play,and we obtain:
(3,0.6),(b,0.9)(a, | .4)

or he overtakes Player |, for example by playing (b,0.3), and we get

(2,0.6),(b,0.9) (b, .2)

>3> \| is winning in (2,22, Win) if Outcome(A|)CWin

Monday 21 November 2011

Realizability problem for LTL+ <

LTL+ <] realizability problem

Given a LTL+ < spec @ over the alphabet 2u2,.

Does there exist a strategy A for Player | such that:

A1 is winning the timed game (Z,2,,[P]) ?

Monday 21 November 2011

Example

Y1 = {grant} Yo = {up, down}

Hyp = (up — (ﬂdownZ/{(dOfwn A <>1 fu,p))) A

(d()wn — (mupU(up A <1 dOwn)))

Req; = O ((down A <sg up) — (—upU grant))

Req, = O(grant — — <3 grant)

Monday 21 November 2011

Example

Y1 = {grant} Yo = {up, down}

Hyp = O (up — (=downU(down A <1>1 up))) A

] (down — (ﬂup U(up N <> down)))

“Up and down events alternate. Distance between up and down is at least | t.u.”

Req; = O ((down A <> up) — (—upU grant))

“If down follows up with at least 2 t.u. then it should be granted before next up”

Req, = O(grant — — <3 grant)

“Two grant events should be at least 3 t.u. apart”

Monday 21 November 2011

Example

Y1 = {grant} Yo = {up, down}

Hyp = (up — (=downU(down A <1>1 fu,p))) A

(dawn — (mupU(up A <1 dOwn)))

Req; = O ((down A <sg up) — (—upU grant))

Req, = O(grant — — <3 grant)

hi —
input

up down up down up

grants

no grant allowed
>

Monday 21 November 2011

Example

Y1 = {grant} Yo = {up, down}
Hyp = (up — (=downU(down A <1>1 fu,p))) A
(dawn — (mupU(up A <1 dOwn)))
Req; = O ((down A <sg up) — (—upU grant))
Req, = O(grant — — <3 grant)
A
" up down up down up
input]
lo
grant
S no grant allowed]
1 | | 1 | >

Monday 21 November 2011

Ingredients for Safraless procedure

(1) A translation from LTL+ < to a class of
universal timed automata

(2) A bound on the memory needed for
winning realizable LTL+ <] specifications

(3) A translation to timed safety games

oooooooooooooooooooo

Ingredient |

A Class of
Universal Timed Automata

Monday 21 November 2011

Uhiversal PastECA with coB a.c.

... TZ(D Ru N Val (Xa)

oooooooooooooooooooo

UhiversalPast ECA with coB a.c.

UhiversalPast ECA with coB a.c.

Ingredient 2

Bounding memory

oooooooooooooooooooo

Region Games

® A region game is a 4-uple <2 ,22,Cmax, VV)
where cmax€N and WC (2 1u22)XReg(Hs,Cmax)

* Hs is the set of history clocks over 2

* Reg(Hs,cmax) is the set of regions for clocks in Hs and maximal constant cmax.

® A region game is played in rounds.

% In each round Pl. | proposes a pair (0,r) where 02| and rcyrrent <ts. I

* Then, either Pl.2 lets Pl. | play, or plays (0°,r’) s.t. 0’€22 and rcurrent <ts. I’ <¢s. T-

® Such an interaction generate an infinite word over the alphabet
(Z | UZZ) X Reg(Hz,Cmax) .

Monday 21 November 2011

Region Games

Theorem

Let A be a universal PastECA
with maximal constant cmax.

Player | has a winning strategy in
the timed game G=(21,27,Lco8(A))

iff

Player | has a winning strategy in
the region game GR=(2|,2,,cmax,L..s(Rg(A))).

Monday 21 November 2011

Region Games

Theorem

Let A be a universal PastECA
with maximal constant cmax.

Player | has a winning strategy in
the timed game G=(21,27,Lco8(A))

Syntactic

£ Transformation

Player | has a winning strategy in
the region game GR=(2|,2,,cmax,L..s(Rg(A))).

Monday 21 November 2011

Region Games

Theorem

Let A be a universal PastECA
with maximal constant cmax.

Player | has a winning strategy in
the timed game G=(21,22,LkcoB(A))

+

iff

Player | has a winning strategy in
the region game GR=(2|,2,,cmax,Lk.-s8(Rg(A))).

Monday 21 November 2011

Bounding the visits to accepting states

® Regions games = regular games.

® To win (2),22,cmax,Lucos(Rg(A))), Player | needs a memory
which is bounded by (2n"*'n! + n) x |Reg(Hz,cmax)|-

Monday 21 November 2011

Bounding the visits to accepting states

Theorem

Let A be a universal PastECA with maximal constant cmax.
Let K= (2n"*'n! + n) X |Reg(Hsz,Cmax)|

Player | has a winning strategy in the timed game G=<(2,2,,L.08(A))
iff
Player | has a winning strategy in the region game GR=(2,2,,cmax,L..8(Rg(A))>
iff
, Player | has a winning strategy in the region game GR=(2,23,cmax,LkcB(Rg(A))>
| iff

Player | has a winning strategy in the timed game GR=<(2|,2,Lkcos(A)>

b
- R A P e . P P e e . Sk TR e s . 2 T A AT 5 o - R Tia heSRA L iy 2 - oo

Monday 21 November 2011

Ingredient 3

Timed Safety Games

oooooooooooooooooooo

Determinization of PastKy..sECA

® “Counting subset construction” can be applied
directly on Pastuc.csECA.

® No need to construct the region automaton.

Monday 21 November 2011

Determinization of PastKy..sECA

o Run
E S {1:0}

CD(\?:;Z / \ lXaSZ/\XaZI

2 {1:0,2:1}

Xa> | / \ \ l Xa<2A Xa2 | A= |
@ i =| . 7 {1:0,2:2}
| Xa l\ l l l Xa<2A XaZ | A% |

11111111111111111111

Determinization of PastKy..sECA

® “Counting subset construction” can be applied
directly on PastKuc.o.sECA.

® No need to construct the region automaton.

As deterministic PastECA are TA,
we can use UppAal TiGa to analyze

the underlying timed safety game.

Monday 21 November 2011

oooooooooooooooooooo

lllustration

Hyp = [<up — (ﬁdown U(down N <>1 up))) A grant grant, up, down

] (down — (ﬁupU(up N <I>1 down)))

Req; = O ((down A <> up) — (mupU grant))
Req, = O(grant — — <3 grant)

down ,u > 27@ up,d > 1

\ 4
using
extension
of classical
constructions

grant,g < 3

grant grant

Monday 21 November 2011

lllustration

Hyp = [<up — (ﬁdown U(down N <>1 up))) A grant grant, up, down

] (down — (ﬁupU(up N <I>1 dOwn)))

Req; = O ((down A <> up) — (mupU grant))
Req, = O(grant — — <3 grant)

down ,u > 27@ up,d > 1

\ 4
using
extension
of classical
constructions

grant,g < 3

grant grant

Monday 21 November 2011

lllustration

grant! g:=0

For K=1

Monday 21 November 2011

lllustration

grant! g:=0

For K=1

Monday 21 November 2011

lllustration

grant? g>=3
g:=

g>=3 grant?
g:=0

g<3 grant? g:=0 g<3 grant? g:=0

/ \
/s d>=1 \
up?
u:==u

u>=1 .

NS e ——— —

d:=0 down?

\ g<3 grant? g:=0

down?

g<3 grant?

g:=0

~ e e e e e e e e = —— -

Monday 21 November 2011

lllustration

grant? g>=3 g>=3 grant?
g:= g:=0
2 — n . Q5
Qi O g<3 grant? @g:=0 g<3 grant? g:=0 :
// \\ Q2 \\ \\
down? / \up? N g<8 grant? g:=0 \
d:=0 \u:=0 B B

down?

————_-—

NS e ——— —

d:=0 down?

~ e e e e e e e e = —— -

g<3 grant?

g:=0

Monday 21 November 2011

lllustration

In this game, Player | has a winning strategy

the formula

Hyp = up ~down U (down A <I>1 up))) A

(down o ﬂupZ/[up A <\>1 dawn)))

Req, = O ((down A <sg up) — (—upU grant))
Req, = U(grant — — <3 grant)

is realizable

UppAal-TiGa can provide a winning strategy.

Monday 21 November 2011

Conclusion

* Safraless approaches makes LTL synthesis practical

* ...this can be smoothly extended to LTL+<

* Existing tools like UppAal-TiGa can be used

* More in the paper:

% Rank construction for AECA

% ... with application to the language inclusion problem for
nondeterminstic Buchi ECA

Monday 21 November 2011

