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Language inclusion

Bc obtained by determinization of B

A
NBW

B
NBW

Prog Spec

Prog ⊨ Spec iff L(A) ⊆ L(B)

L(A)∩L(Bc)=∅iff
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Realizability-Synthesis

∃λ1 • ∀λ2 • ∃run r of AΦ • r accepts Outcome(λ1,λ2)

Remove second ∃ by determinization of AΦ.

∃λ1 • ∀λ2 • unique r of Ad on Outcome(λ1,λ2) is accepting

Σ=Σ1∪Σ2

Spec.
Φ

LTL
?(Σ1) || Env(Σ2) ⊨ Φ
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Σ=Σ1∪Σ2

Spec.
Φ

LTL
?(Σ1) || Env(Σ2) ⊨ Φ

make possible a reduction to games

∃λ1 • ∀λ2 • ∃run r of AΦ • r accepts Outcome(λ1,λ2)

Remove second ∃ by determinization of AΦ.

∃λ1 • ∀λ2 • unique r of Ad on Outcome(λ1,λ2) is accepting

Realizability-Synthesis
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Determinization is difficult for NBW

DBWs are strictly less expressive than NBWs. 
Need Rabin or Parity acceptance conditions.

Simple subset constructions are not sufficient: 
Safra’s construction uses trees of subsets 

(encoding history of run).

①

②
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... and resistent to efficient implementation

No good symbolic data structures 
for the underlying state space.

LTL synthesis: Rabin (NP-complete) or 
Parity games (NP∩coNP) 

on a doubly exponential state space. 

①

②
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... and resistent to efficient implementation

No good symbolic data structures 
for the underlying state space.

LTL synthesis: Rabin (NP-complete) or 
Parity games (NP∩coNP) 

on a doubly exponential state space. 

①

②
Safra

’s d
eterminizati

on has b
een implemented by Tasira

n et al. 

(1995) and Thomas et al.(2
005): need of intric

ate data 

stru
ctures and very low scalability

 (8-12 stat
es).
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No good symbolic data structures 
for the underlying state space.

LTL synthesis: Rabin (NP-complete) or 
Parity games (NP∩coNP) 

on a doubly exponential state space. 
Safra

’s d
eterminizati

on has b
een implemented by Tasira

n et al. 

(1995) and Thomas et al.(2
005): need of intric

ate data 

stru
ctures and very low scalability

 (8 stat
es).

... and resistent to efficient implementation

①

②

With alternative approaches, we are able to 
treat automata with hundreds of states 
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How to avoid 
determinization ?
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“Safraless” decision procedures
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“Safraless” decision procedures

• Safraless complementation (with no determinization):

★ Progress measure construction [Klarlund91].

★ Rank construction [KupfermanVardi97,01]: 
NBW → UcoBW → ABW → NBW 
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“Safraless” decision procedures

• Safraless complementation (with no determinization):

★ Progress measure construction [Klarlund91].

★ Rank construction [KupfermanVardi97,01]: 
NBW → UcoBW → ABW → NBW 

• Safraless realizability/synthesis:

★ Rank construction [KupfermanVardi05]: 
LTL → UcoBW → ABT → NBT → Büchi game

★ K-co-Büchi condition:  
[ScheweFinkbeiner07] application to distributed synthesis, 
[FiliotJinRaskin09] application to LTL synthesis. 
LTL → UcoBW → UKcoBW → Safety game
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Plan of the talk

• How to avoid Safra construction ?
                                     focus on synthesis

• Extensions to timed specifications ?
                                     focus on synthesis

• Summary of the results of a paper 
published in FORMATS‘2010.
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Input Signals Output Signals

I OSystem

Uncontrollable Controllable

Interaction produces an infinite word w over ∑ = 2I∪O 
(o0 ∪ i0)(o1 ∪ i1)(o2 ∪ i2)...          oj⊆O   ij⊆I

The Synthesis/Realizability Problem
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The Synthesis/Realizability Problem

Input Signals Output Signals

I System

Uncontrollable Controllable

Given a LTL spec Φ, does there exist a way for the System to 
choose its signals along time, so that, no matter how the 
environment chooses its signals, the resulting execution 
satisfies the formula Φ ?

Realizability Problem

O
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Synthesis/Realizability as an ∞-game

System M Environment
Player 1 Player 2
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i0⊆I

o0⊆O

i1⊆I
o3⊆O

System M Environment

o1⊆O

Player 1 Player 2

...

The system wins the game if the play
(o0∪i0)(o1∪i1)(o2∪i2)... satisfies ϕ

Synthesis/Realizability as an ∞-game
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i0⊆I

λ1(ε)⊆O

i1⊆I
λ1(i0i1)⊆O

System M Environment

λ1(i0)⊆O

The system wins the game if the play
(λ1(ε)∪i0)(λ1(i0)∪i1)(λ1(i0i1)∪i2)... satisfies ϕ

Player 1 Player 2

...

Player 1‘s 
Strategy

Synthesis/Realizability as an ∞-game
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The Synthesis/Realizability Problem

Given a LTL spec Φ, does there exist a way for the System to 
choose its signals along time, so that, no matter how the 
environment chooses its signals, the resulting execution 
satisfies the formula Φ ?

Realizability Problem

Φ is realizable 
iff 

∃λ1•Outcome(λ1)⊆⟦Φ⟧

Monday 21 November 2011



The Synthesis/Realizability Problem

Given a LTL spec Φ, does there exist a way for the System to 
choose its signals along time, so that, no matter how the 
environment chooses its signals, the resulting execution 
satisfies the formula Φ ?

Realizability Problem

Φ is realizable 
iff 

∃λ1•Outcome(λ1)⊆⟦Φ⟧
Synthesis as

ks to construct a w
inning stra

tegy 

for a re
alizab

le specification
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“Classical” solution

Classical solution proposed by Pnueli and Rosner, 1989:           

LTL

Nd. Büchi Word Automata

Det. Rabin Word Automata

2O(n)

2O(m log m) [Safra, 88]
Realizability 

=  Rabin Game

The problem has been shown to be 2ExpTime-C by the same authors.
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An Alternative Solution

LTL

Universal coBüchi Word automata

Universal KcoBüchi Word automata

Det. KcoBüchi Word automata

2O(n)

O(1)

2O(n2)

Realizability 
=  Safety game
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Universal coBüchi Word Automata

1

2

1 3

2 4

1 3

2
...

×

Run

w ∈ LUcoB(A) 
iff 

all runs of A on w visit 
finitely many times α.

q1 q2

q3q4

r

g,¬g

r,¬r

¬g

r,¬r

(a) UCW

(q1, 0) (q2, 0)

(q1, 0), (q3, 0)

(q2, 0), (q4, 1)

(q2, 0)

(q2, 0), (q4, 2)

g,¬g

¬r
r

g

¬gr,¬r

¬g

g

(b) Safety game G(φ, 1)

Fig. 1. UCW and safety game for the formula φ ≡ !(r → X♦g)

is the set of initial states, α ⊆ QI∪QO is the set of final states, and δI ⊆ QI×ΣI×QO,

δO ⊆ QO×ΣO×QI are the input and output transition relations respectively.Wlog we

assume that the automata are complete, i.e. for all t ∈ {I, O}, all q ∈ Qt and all σ ∈ Σt,

δt(q, σ) %= ∅. Turn-based automata A run on words w = (o0 ∪ i0)(o1 ∪ i1) · · · ∈ Σω

as follows: a run on w is a word ρ = ρ0ρ1 · · · ∈ (QOQI)ω such that ρ0 ∈ Qini and for

all j ≥ 0, (ρ2j , oj , ρ2j+1) ∈ δO and (ρ2j+1, ij, ρ2j+2) ∈ δI . Let K ∈ N. We consider
the universal co-Büchi (resp. K-co-Büchi) accepting condition, for which a word w is

accepted iff any run on w visits finitely many (resp. at most K) accepting states. With
the K-co-Büchi interpretation in mind, we say that (A, K) is a universal K-co-Büchi
turn-based automaton. We denote by Luc(A) and Luc,K(A) the languages accepted by
A with these two accepting conditions resp. Turn-based automata with universal co-

Büchi and K-co-Büchi acceptance conditions are denoted by UCW and UKCW. As

they define set of infinite words, they can be taken as input to the realizability problem.

It is known that for any LTL formula one can construct an equivalentUCWAφ (pos-

sibly exponentially larger) [18]. Fig. 1(a) represents a UCW equivalent to the formula

!(r → X (♦g)), where r is an input signal and g is an output signal. States of QO are

denoted by circles while states ofQI are denoted by squares. The transitions on missing

letters are going to an additional sink non-accepting state that we do not represent for

the sake of readability. If a request r is never granted, then a run will visit the accepting
state q4 infinitely often.

The realizability problem can be reduced from a UCW to a UKCW specification:

Theorem 2 ([15, 5]). LetA be aUCW overΣI , ΣO with n states andK = 2n(n2n+2+
1). Then A is realizable iff (A, K) is realizable.

Let us recall the intuition behind the correctness of this result. First, if the specification

(A, K) is realizable then clearly the specification A is also realizable as Luc,K(A) ⊆
Luc(A). Second, if the specification A is realizable then we know that there exists a

finite memory strategy λ1 that realizes it [12]. Any run on any outcome of λ1 visits

Σω

¬g

r

¬g

r

g

...
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q1 q2

q3q4

r

g,¬g

r,¬r

¬g

r,¬r

(a) UCW

(q1, 0) (q2, 0)

(q1, 0), (q3, 0)

(q2, 0), (q4, 1)

(q2, 0)

(q2, 0), (q4, 2)

g,¬g

¬r
r

g

¬gr,¬r

¬g

g

(b) Safety game G(φ, 1)

Fig. 1. UCW and safety game for the formula φ ≡ !(r → X♦g)

is the set of initial states, α ⊆ QI∪QO is the set of final states, and δI ⊆ QI×ΣI×QO,

δO ⊆ QO×ΣO×QI are the input and output transition relations respectively.Wlog we

assume that the automata are complete, i.e. for all t ∈ {I, O}, all q ∈ Qt and all σ ∈ Σt,

δt(q, σ) %= ∅. Turn-based automata A run on words w = (o0 ∪ i0)(o1 ∪ i1) · · · ∈ Σω

as follows: a run on w is a word ρ = ρ0ρ1 · · · ∈ (QOQI)ω such that ρ0 ∈ Qini and for

all j ≥ 0, (ρ2j , oj , ρ2j+1) ∈ δO and (ρ2j+1, ij, ρ2j+2) ∈ δI . Let K ∈ N. We consider
the universal co-Büchi (resp. K-co-Büchi) accepting condition, for which a word w is

accepted iff any run on w visits finitely many (resp. at most K) accepting states. With
the K-co-Büchi interpretation in mind, we say that (A, K) is a universal K-co-Büchi
turn-based automaton. We denote by Luc(A) and Luc,K(A) the languages accepted by
A with these two accepting conditions resp. Turn-based automata with universal co-

Büchi and K-co-Büchi acceptance conditions are denoted by UCW and UKCW. As

they define set of infinite words, they can be taken as input to the realizability problem.

It is known that for any LTL formula one can construct an equivalentUCWAφ (pos-

sibly exponentially larger) [18]. Fig. 1(a) represents a UCW equivalent to the formula

!(r → X (♦g)), where r is an input signal and g is an output signal. States of QO are

denoted by circles while states ofQI are denoted by squares. The transitions on missing

letters are going to an additional sink non-accepting state that we do not represent for

the sake of readability. If a request r is never granted, then a run will visit the accepting
state q4 infinitely often.

The realizability problem can be reduced from a UCW to a UKCW specification:

Theorem 2 ([15, 5]). LetA be aUCW overΣI , ΣO with n states andK = 2n(n2n+2+
1). Then A is realizable iff (A, K) is realizable.

Let us recall the intuition behind the correctness of this result. First, if the specification

(A, K) is realizable then clearly the specification A is also realizable as Luc,K(A) ⊆
Luc(A). Second, if the specification A is realizable then we know that there exists a

finite memory strategy λ1 that realizes it [12]. Any run on any outcome of λ1 visits

Σω

¬g

r

¬g

r

g

...

1

2

1 3

2 4

1 3

2
...

×

Run

w ∈ LU,K(A) 
iff 

all runs of A on w visit 
α at most K times.

Universal KcoBüchi Word Automata
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(a) UCW
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(b) Safety game G(φ, 1)

Fig. 1. UCW and safety game for the formula φ ≡ !(r → X♦g)

is the set of initial states, α ⊆ QI∪QO is the set of final states, and δI ⊆ QI×ΣI×QO,

δO ⊆ QO×ΣO×QI are the input and output transition relations respectively.Wlog we

assume that the automata are complete, i.e. for all t ∈ {I, O}, all q ∈ Qt and all σ ∈ Σt,

δt(q, σ) %= ∅. Turn-based automata A run on words w = (o0 ∪ i0)(o1 ∪ i1) · · · ∈ Σω

as follows: a run on w is a word ρ = ρ0ρ1 · · · ∈ (QOQI)ω such that ρ0 ∈ Qini and for

all j ≥ 0, (ρ2j , oj , ρ2j+1) ∈ δO and (ρ2j+1, ij, ρ2j+2) ∈ δI . Let K ∈ N. We consider
the universal co-Büchi (resp. K-co-Büchi) accepting condition, for which a word w is

accepted iff any run on w visits finitely many (resp. at most K) accepting states. With
the K-co-Büchi interpretation in mind, we say that (A, K) is a universal K-co-Büchi
turn-based automaton. We denote by Luc(A) and Luc,K(A) the languages accepted by
A with these two accepting conditions resp. Turn-based automata with universal co-

Büchi and K-co-Büchi acceptance conditions are denoted by UCW and UKCW. As

they define set of infinite words, they can be taken as input to the realizability problem.

It is known that for any LTL formula one can construct an equivalentUCWAφ (pos-

sibly exponentially larger) [18]. Fig. 1(a) represents a UCW equivalent to the formula

!(r → X (♦g)), where r is an input signal and g is an output signal. States of QO are

denoted by circles while states ofQI are denoted by squares. The transitions on missing

letters are going to an additional sink non-accepting state that we do not represent for

the sake of readability. If a request r is never granted, then a run will visit the accepting
state q4 infinitely often.

The realizability problem can be reduced from a UCW to a UKCW specification:

Theorem 2 ([15, 5]). LetA be aUCW overΣI , ΣO with n states andK = 2n(n2n+2+
1). Then A is realizable iff (A, K) is realizable.

Let us recall the intuition behind the correctness of this result. First, if the specification

(A, K) is realizable then clearly the specification A is also realizable as Luc,K(A) ⊆
Luc(A). Second, if the specification A is realizable then we know that there exists a

finite memory strategy λ1 that realizes it [12]. Any run on any outcome of λ1 visits

Σω

¬g

r

¬g

r

g

...

1

2

1 3

2 4

1 3

2
...

×

Run

w ∈ LU,K(A) 
iff 

all runs of A on w visit 
α at most K times.

Universal KcoBüchi Word Automata

Note that the ω-language accepted by a 

UKcoBW is a s
afety language.
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LTL, UcoBW and UKcoBW

q1 q2

q3q4

r

g,¬g

r,¬r

¬g

r,¬r

(a) UCW

(q1, 0) (q2, 0)

(q1, 0), (q3, 0)

(q2, 0), (q4, 1)

(q2, 0)

(q2, 0), (q4, 2)

g,¬g

¬r
r

g

¬gr,¬r

¬g

g

(b) Safety game G(φ, 1)

Fig. 1. UCW and safety game for the formula φ ≡ !(r → X♦g)

is the set of initial states, α ⊆ QI∪QO is the set of final states, and δI ⊆ QI×ΣI×QO,

δO ⊆ QO×ΣO×QI are the input and output transition relations respectively.Wlog we

assume that the automata are complete, i.e. for all t ∈ {I, O}, all q ∈ Qt and all σ ∈ Σt,

δt(q, σ) %= ∅. Turn-based automata A run on words w = (o0 ∪ i0)(o1 ∪ i1) · · · ∈ Σω

as follows: a run on w is a word ρ = ρ0ρ1 · · · ∈ (QOQI)ω such that ρ0 ∈ Qini and for

all j ≥ 0, (ρ2j , oj , ρ2j+1) ∈ δO and (ρ2j+1, ij, ρ2j+2) ∈ δI . Let K ∈ N. We consider
the universal co-Büchi (resp. K-co-Büchi) accepting condition, for which a word w is

accepted iff any run on w visits finitely many (resp. at most K) accepting states. With
the K-co-Büchi interpretation in mind, we say that (A, K) is a universal K-co-Büchi
turn-based automaton. We denote by Luc(A) and Luc,K(A) the languages accepted by
A with these two accepting conditions resp. Turn-based automata with universal co-

Büchi and K-co-Büchi acceptance conditions are denoted by UCW and UKCW. As

they define set of infinite words, they can be taken as input to the realizability problem.

It is known that for any LTL formula one can construct an equivalentUCWAφ (pos-

sibly exponentially larger) [18]. Fig. 1(a) represents a UCW equivalent to the formula

!(r → X (♦g)), where r is an input signal and g is an output signal. States of QO are

denoted by circles while states ofQI are denoted by squares. The transitions on missing

letters are going to an additional sink non-accepting state that we do not represent for

the sake of readability. If a request r is never granted, then a run will visit the accepting
state q4 infinitely often.

The realizability problem can be reduced from a UCW to a UKCW specification:

Theorem 2 ([15, 5]). LetA be aUCW overΣI , ΣO with n states andK = 2n(n2n+2+
1). Then A is realizable iff (A, K) is realizable.

Let us recall the intuition behind the correctness of this result. First, if the specification

(A, K) is realizable then clearly the specification A is also realizable as Luc,K(A) ⊆
Luc(A). Second, if the specification A is realizable then we know that there exists a

finite memory strategy λ1 that realizes it [12]. Any run on any outcome of λ1 visits

Input

Output
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LTL, UcoBW and UKcoBW

q1 q2

q3q4

r

g,¬g

r,¬r

¬g

r,¬r

(a) UCW

(q1, 0) (q2, 0)
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g,¬g
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¬gr,¬r

¬g
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(b) Safety game G(φ, 1)

Fig. 1. UCW and safety game for the formula φ ≡ !(r → X♦g)

is the set of initial states, α ⊆ QI∪QO is the set of final states, and δI ⊆ QI×ΣI×QO,

δO ⊆ QO×ΣO×QI are the input and output transition relations respectively.Wlog we

assume that the automata are complete, i.e. for all t ∈ {I, O}, all q ∈ Qt and all σ ∈ Σt,

δt(q, σ) %= ∅. Turn-based automata A run on words w = (o0 ∪ i0)(o1 ∪ i1) · · · ∈ Σω

as follows: a run on w is a word ρ = ρ0ρ1 · · · ∈ (QOQI)ω such that ρ0 ∈ Qini and for

all j ≥ 0, (ρ2j , oj , ρ2j+1) ∈ δO and (ρ2j+1, ij, ρ2j+2) ∈ δI . Let K ∈ N. We consider
the universal co-Büchi (resp. K-co-Büchi) accepting condition, for which a word w is

accepted iff any run on w visits finitely many (resp. at most K) accepting states. With
the K-co-Büchi interpretation in mind, we say that (A, K) is a universal K-co-Büchi
turn-based automaton. We denote by Luc(A) and Luc,K(A) the languages accepted by
A with these two accepting conditions resp. Turn-based automata with universal co-

Büchi and K-co-Büchi acceptance conditions are denoted by UCW and UKCW. As

they define set of infinite words, they can be taken as input to the realizability problem.

It is known that for any LTL formula one can construct an equivalentUCWAφ (pos-

sibly exponentially larger) [18]. Fig. 1(a) represents a UCW equivalent to the formula

!(r → X (♦g)), where r is an input signal and g is an output signal. States of QO are

denoted by circles while states ofQI are denoted by squares. The transitions on missing

letters are going to an additional sink non-accepting state that we do not represent for

the sake of readability. If a request r is never granted, then a run will visit the accepting
state q4 infinitely often.

The realizability problem can be reduced from a UCW to a UKCW specification:

Theorem 2 ([15, 5]). LetA be aUCW overΣI , ΣO with n states andK = 2n(n2n+2+
1). Then A is realizable iff (A, K) is realizable.

Let us recall the intuition behind the correctness of this result. First, if the specification

(A, K) is realizable then clearly the specification A is also realizable as Luc,K(A) ⊆
Luc(A). Second, if the specification A is realizable then we know that there exists a

finite memory strategy λ1 that realizes it [12]. Any run on any outcome of λ1 visits

Input

Output
How to get an UcoBW ?
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LTL, UcoBW and UKcoBW
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(b) Safety game G(φ, 1)

Fig. 1. UCW and safety game for the formula φ ≡ !(r → X♦g)

is the set of initial states, α ⊆ QI∪QO is the set of final states, and δI ⊆ QI×ΣI×QO,

δO ⊆ QO×ΣO×QI are the input and output transition relations respectively.Wlog we

assume that the automata are complete, i.e. for all t ∈ {I, O}, all q ∈ Qt and all σ ∈ Σt,

δt(q, σ) %= ∅. Turn-based automata A run on words w = (o0 ∪ i0)(o1 ∪ i1) · · · ∈ Σω

as follows: a run on w is a word ρ = ρ0ρ1 · · · ∈ (QOQI)ω such that ρ0 ∈ Qini and for

all j ≥ 0, (ρ2j , oj , ρ2j+1) ∈ δO and (ρ2j+1, ij, ρ2j+2) ∈ δI . Let K ∈ N. We consider
the universal co-Büchi (resp. K-co-Büchi) accepting condition, for which a word w is

accepted iff any run on w visits finitely many (resp. at most K) accepting states. With
the K-co-Büchi interpretation in mind, we say that (A, K) is a universal K-co-Büchi
turn-based automaton. We denote by Luc(A) and Luc,K(A) the languages accepted by
A with these two accepting conditions resp. Turn-based automata with universal co-

Büchi and K-co-Büchi acceptance conditions are denoted by UCW and UKCW. As

they define set of infinite words, they can be taken as input to the realizability problem.

It is known that for any LTL formula one can construct an equivalentUCWAφ (pos-

sibly exponentially larger) [18]. Fig. 1(a) represents a UCW equivalent to the formula

!(r → X (♦g)), where r is an input signal and g is an output signal. States of QO are

denoted by circles while states ofQI are denoted by squares. The transitions on missing

letters are going to an additional sink non-accepting state that we do not represent for

the sake of readability. If a request r is never granted, then a run will visit the accepting
state q4 infinitely often.

The realizability problem can be reduced from a UCW to a UKCW specification:

Theorem 2 ([15, 5]). LetA be aUCW overΣI , ΣO with n states andK = 2n(n2n+2+
1). Then A is realizable iff (A, K) is realizable.

Let us recall the intuition behind the correctness of this result. First, if the specification

(A, K) is realizable then clearly the specification A is also realizable as Luc,K(A) ⊆
Luc(A). Second, if the specification A is realizable then we know that there exists a

finite memory strategy λ1 that realizes it [12]. Any run on any outcome of λ1 visits

Input

Output
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Fig. 1. UCW and safety game for the formula φ ≡ !(r → X♦g)

is the set of initial states, α ⊆ QI∪QO is the set of final states, and δI ⊆ QI×ΣI×QO,

δO ⊆ QO×ΣO×QI are the input and output transition relations respectively.Wlog we

assume that the automata are complete, i.e. for all t ∈ {I, O}, all q ∈ Qt and all σ ∈ Σt,

δt(q, σ) %= ∅. Turn-based automata A run on words w = (o0 ∪ i0)(o1 ∪ i1) · · · ∈ Σω

as follows: a run on w is a word ρ = ρ0ρ1 · · · ∈ (QOQI)ω such that ρ0 ∈ Qini and for

all j ≥ 0, (ρ2j , oj , ρ2j+1) ∈ δO and (ρ2j+1, ij, ρ2j+2) ∈ δI . Let K ∈ N. We consider
the universal co-Büchi (resp. K-co-Büchi) accepting condition, for which a word w is

accepted iff any run on w visits finitely many (resp. at most K) accepting states. With
the K-co-Büchi interpretation in mind, we say that (A, K) is a universal K-co-Büchi
turn-based automaton. We denote by Luc(A) and Luc,K(A) the languages accepted by
A with these two accepting conditions resp. Turn-based automata with universal co-

Büchi and K-co-Büchi acceptance conditions are denoted by UCW and UKCW. As

they define set of infinite words, they can be taken as input to the realizability problem.

It is known that for any LTL formula one can construct an equivalentUCWAφ (pos-

sibly exponentially larger) [18]. Fig. 1(a) represents a UCW equivalent to the formula

!(r → X (♦g)), where r is an input signal and g is an output signal. States of QO are

denoted by circles while states ofQI are denoted by squares. The transitions on missing

letters are going to an additional sink non-accepting state that we do not represent for

the sake of readability. If a request r is never granted, then a run will visit the accepting
state q4 infinitely often.

The realizability problem can be reduced from a UCW to a UKCW specification:

Theorem 2 ([15, 5]). LetA be aUCW overΣI , ΣO with n states andK = 2n(n2n+2+
1). Then A is realizable iff (A, K) is realizable.

Let us recall the intuition behind the correctness of this result. First, if the specification

(A, K) is realizable then clearly the specification A is also realizable as Luc,K(A) ⊆
Luc(A). Second, if the specification A is realizable then we know that there exists a

finite memory strategy λ1 that realizes it [12]. Any run on any outcome of λ1 visits
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is the set of initial states, α ⊆ QI∪QO is the set of final states, and δI ⊆ QI×ΣI×QO,

δO ⊆ QO×ΣO×QI are the input and output transition relations respectively.Wlog we

assume that the automata are complete, i.e. for all t ∈ {I, O}, all q ∈ Qt and all σ ∈ Σt,

δt(q, σ) %= ∅. Turn-based automata A run on words w = (o0 ∪ i0)(o1 ∪ i1) · · · ∈ Σω

as follows: a run on w is a word ρ = ρ0ρ1 · · · ∈ (QOQI)ω such that ρ0 ∈ Qini and for

all j ≥ 0, (ρ2j , oj , ρ2j+1) ∈ δO and (ρ2j+1, ij, ρ2j+2) ∈ δI . Let K ∈ N. We consider
the universal co-Büchi (resp. K-co-Büchi) accepting condition, for which a word w is

accepted iff any run on w visits finitely many (resp. at most K) accepting states. With
the K-co-Büchi interpretation in mind, we say that (A, K) is a universal K-co-Büchi
turn-based automaton. We denote by Luc(A) and Luc,K(A) the languages accepted by
A with these two accepting conditions resp. Turn-based automata with universal co-

Büchi and K-co-Büchi acceptance conditions are denoted by UCW and UKCW. As

they define set of infinite words, they can be taken as input to the realizability problem.

It is known that for any LTL formula one can construct an equivalentUCWAφ (pos-

sibly exponentially larger) [18]. Fig. 1(a) represents a UCW equivalent to the formula

!(r → X (♦g)), where r is an input signal and g is an output signal. States of QO are

denoted by circles while states ofQI are denoted by squares. The transitions on missing

letters are going to an additional sink non-accepting state that we do not represent for

the sake of readability. If a request r is never granted, then a run will visit the accepting
state q4 infinitely often.

The realizability problem can be reduced from a UCW to a UKCW specification:

Theorem 2 ([15, 5]). LetA be aUCW overΣI , ΣO with n states andK = 2n(n2n+2+
1). Then A is realizable iff (A, K) is realizable.

Let us recall the intuition behind the correctness of this result. First, if the specification

(A, K) is realizable then clearly the specification A is also realizable as Luc,K(A) ⊆
Luc(A). Second, if the specification A is realizable then we know that there exists a

finite memory strategy λ1 that realizes it [12]. Any run on any outcome of λ1 visits

w ∈ LUcoB(AΦ) iff all runs of AΦ on w visit finitely many times α.
w ∈ LU,K(AΦ) iff all runs of A on w visit at most K times α.
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the K-co-Büchi interpretation in mind, we say that (A, K) is a universal K-co-Büchi
turn-based automaton. We denote by Luc(A) and Luc,K(A) the languages accepted by
A with these two accepting conditions resp. Turn-based automata with universal co-

Büchi and K-co-Büchi acceptance conditions are denoted by UCW and UKCW. As

they define set of infinite words, they can be taken as input to the realizability problem.

It is known that for any LTL formula one can construct an equivalentUCWAφ (pos-

sibly exponentially larger) [18]. Fig. 1(a) represents a UCW equivalent to the formula

!(r → X (♦g)), where r is an input signal and g is an output signal. States of QO are

denoted by circles while states ofQI are denoted by squares. The transitions on missing

letters are going to an additional sink non-accepting state that we do not represent for

the sake of readability. If a request r is never granted, then a run will visit the accepting
state q4 infinitely often.

The realizability problem can be reduced from a UCW to a UKCW specification:

Theorem 2 ([15, 5]). LetA be aUCW overΣI , ΣO with n states andK = 2n(n2n+2+
1). Then A is realizable iff (A, K) is realizable.

Let us recall the intuition behind the correctness of this result. First, if the specification

(A, K) is realizable then clearly the specification A is also realizable as Luc,K(A) ⊆
Luc(A). Second, if the specification A is realizable then we know that there exists a
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assume that the automata are complete, i.e. for all t ∈ {I, O}, all q ∈ Qt and all σ ∈ Σt,

δt(q, σ) %= ∅. Turn-based automata A run on words w = (o0 ∪ i0)(o1 ∪ i1) · · · ∈ Σω

as follows: a run on w is a word ρ = ρ0ρ1 · · · ∈ (QOQI)ω such that ρ0 ∈ Qini and for

all j ≥ 0, (ρ2j , oj , ρ2j+1) ∈ δO and (ρ2j+1, ij, ρ2j+2) ∈ δI . Let K ∈ N. We consider
the universal co-Büchi (resp. K-co-Büchi) accepting condition, for which a word w is

accepted iff any run on w visits finitely many (resp. at most K) accepting states. With
the K-co-Büchi interpretation in mind, we say that (A, K) is a universal K-co-Büchi
turn-based automaton. We denote by Luc(A) and Luc,K(A) the languages accepted by
A with these two accepting conditions resp. Turn-based automata with universal co-

Büchi and K-co-Büchi acceptance conditions are denoted by UCW and UKCW. As

they define set of infinite words, they can be taken as input to the realizability problem.

It is known that for any LTL formula one can construct an equivalentUCWAφ (pos-

sibly exponentially larger) [18]. Fig. 1(a) represents a UCW equivalent to the formula

!(r → X (♦g)), where r is an input signal and g is an output signal. States of QO are

denoted by circles while states ofQI are denoted by squares. The transitions on missing

letters are going to an additional sink non-accepting state that we do not represent for

the sake of readability. If a request r is never granted, then a run will visit the accepting
state q4 infinitely often.

The realizability problem can be reduced from a UCW to a UKCW specification:

Theorem 2 ([15, 5]). LetA be aUCW overΣI , ΣO with n states andK = 2n(n2n+2+
1). Then A is realizable iff (A, K) is realizable.

Let us recall the intuition behind the correctness of this result. First, if the specification

(A, K) is realizable then clearly the specification A is also realizable as Luc,K(A) ⊆
Luc(A). Second, if the specification A is realizable then we know that there exists a

finite memory strategy λ1 that realizes it [12]. Any run on any outcome of λ1 visits

LU,1(AΦ) ⊆ LU,2(AΦ) ⊆ ... ⊆ LU,n(AΦ) ⊆ ... ⊊ LUcoB(AΦ)=⟦Φ⟧.
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is the set of initial states, α ⊆ QI∪QO is the set of final states, and δI ⊆ QI×ΣI×QO,

δO ⊆ QO×ΣO×QI are the input and output transition relations respectively.Wlog we

assume that the automata are complete, i.e. for all t ∈ {I, O}, all q ∈ Qt and all σ ∈ Σt,

δt(q, σ) %= ∅. Turn-based automata A run on words w = (o0 ∪ i0)(o1 ∪ i1) · · · ∈ Σω

as follows: a run on w is a word ρ = ρ0ρ1 · · · ∈ (QOQI)ω such that ρ0 ∈ Qini and for

all j ≥ 0, (ρ2j , oj , ρ2j+1) ∈ δO and (ρ2j+1, ij, ρ2j+2) ∈ δI . Let K ∈ N. We consider
the universal co-Büchi (resp. K-co-Büchi) accepting condition, for which a word w is

accepted iff any run on w visits finitely many (resp. at most K) accepting states. With
the K-co-Büchi interpretation in mind, we say that (A, K) is a universal K-co-Büchi
turn-based automaton. We denote by Luc(A) and Luc,K(A) the languages accepted by
A with these two accepting conditions resp. Turn-based automata with universal co-

Büchi and K-co-Büchi acceptance conditions are denoted by UCW and UKCW. As

they define set of infinite words, they can be taken as input to the realizability problem.

It is known that for any LTL formula one can construct an equivalentUCWAφ (pos-

sibly exponentially larger) [18]. Fig. 1(a) represents a UCW equivalent to the formula

!(r → X (♦g)), where r is an input signal and g is an output signal. States of QO are

denoted by circles while states ofQI are denoted by squares. The transitions on missing

letters are going to an additional sink non-accepting state that we do not represent for

the sake of readability. If a request r is never granted, then a run will visit the accepting
state q4 infinitely often.

The realizability problem can be reduced from a UCW to a UKCW specification:

Theorem 2 ([15, 5]). LetA be aUCW overΣI , ΣO with n states andK = 2n(n2n+2+
1). Then A is realizable iff (A, K) is realizable.

Let us recall the intuition behind the correctness of this result. First, if the specification

(A, K) is realizable then clearly the specification A is also realizable as Luc,K(A) ⊆
Luc(A). Second, if the specification A is realizable then we know that there exists a

finite memory strategy λ1 that realizes it [12]. Any run on any outcome of λ1 visits
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is the set of initial states, α ⊆ QI∪QO is the set of final states, and δI ⊆ QI×ΣI×QO,

δO ⊆ QO×ΣO×QI are the input and output transition relations respectively.Wlog we

assume that the automata are complete, i.e. for all t ∈ {I, O}, all q ∈ Qt and all σ ∈ Σt,

δt(q, σ) %= ∅. Turn-based automata A run on words w = (o0 ∪ i0)(o1 ∪ i1) · · · ∈ Σω

as follows: a run on w is a word ρ = ρ0ρ1 · · · ∈ (QOQI)ω such that ρ0 ∈ Qini and for

all j ≥ 0, (ρ2j , oj , ρ2j+1) ∈ δO and (ρ2j+1, ij, ρ2j+2) ∈ δI . Let K ∈ N. We consider
the universal co-Büchi (resp. K-co-Büchi) accepting condition, for which a word w is

accepted iff any run on w visits finitely many (resp. at most K) accepting states. With
the K-co-Büchi interpretation in mind, we say that (A, K) is a universal K-co-Büchi
turn-based automaton. We denote by Luc(A) and Luc,K(A) the languages accepted by
A with these two accepting conditions resp. Turn-based automata with universal co-

Büchi and K-co-Büchi acceptance conditions are denoted by UCW and UKCW. As

they define set of infinite words, they can be taken as input to the realizability problem.

It is known that for any LTL formula one can construct an equivalentUCWAφ (pos-

sibly exponentially larger) [18]. Fig. 1(a) represents a UCW equivalent to the formula

!(r → X (♦g)), where r is an input signal and g is an output signal. States of QO are

denoted by circles while states ofQI are denoted by squares. The transitions on missing

letters are going to an additional sink non-accepting state that we do not represent for

the sake of readability. If a request r is never granted, then a run will visit the accepting
state q4 infinitely often.

The realizability problem can be reduced from a UCW to a UKCW specification:

Theorem 2 ([15, 5]). LetA be aUCW overΣI , ΣO with n states andK = 2n(n2n+2+
1). Then A is realizable iff (A, K) is realizable.

Let us recall the intuition behind the correctness of this result. First, if the specification

(A, K) is realizable then clearly the specification A is also realizable as Luc,K(A) ⊆
Luc(A). Second, if the specification A is realizable then we know that there exists a

finite memory strategy λ1 that realizes it [12]. Any run on any outcome of λ1 visits

LU,1(AΦ) ⊆ LU,2(AΦ) ⊆ ... ⊆ LU,n(AΦ) ⊆ ... ⊊ LUcoB(AΦ)=⟦Φ⟧.
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(Finite Memory) Strategies

M
L(M) = {infinite words over Σ1∪Σ2}

o1

o2

o3

i1
i2

i1

i1

i2
i2

Ex:  (o1∪i1)(o2∪i2)ω

Strategies for Player 1:

λ1:(Σ1•Σ2)*→Σ1

Finite Memory for Player 1:

(Complete) Moore Machines
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Finite Memory Strategies are Sufficient

★ If a regular objective is realizable, then it is realizable by a 
finite memory strategy [Büchi69].

★ Theorem [Safra88,Piterman08] For an objective 
specified by a UCW, there is a Moore machine that realizes the 
objective iff there is a Moore machine with less than 2O(n2).

M L(M) =  infinite words over Σ1∪Σ2
o1

o2

o3

i1
i2

i1

i1

i2
i2

Ex:  (o1∪i1)(o2∪i2)ω
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Bounding Visits to Accepting States

Lemma. Let M be a Moore machine with m states, and A a UcoBW 
with n states.  If L(M)⊆LUcoB(A), then all runs on words of L(M) visit 
accepting states at most m×n times.
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M A

Moore Machine UcoBW

m states n states

Lemma. Let M be a Moore machine with m states, and A a UcoBW 
with n states.  If L(M)⊆LUcoB(A), then all runs on words of L(M) visit 
accepting states at most m×n times.
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M A

Moore Machine UcoBW

m states n states

⊗ =

No accepting states in 
reachable loops

Lemma. Let M be a Moore machine with m states, and A a UcoBW 
with n states.  If L(M)⊆LUcoB(A), then all runs on words of L(M) visit 
accepting states at most m×n times.

Synchronized product

Bounding Visits to Accepting States
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M A

Moore Machine UcoBW

m states n states

⊗ =

No accepting states in 
reachable loops

At most m×n accepting 
states on a path

"

≤m×n

Lemma. Let M be a Moore machine with m states, and A a UcoBW 
with n states.  If L(M)⊆LUcoB(A), then all runs on words of L(M) visit 
accepting states at most m×n times.

Synchronized product

Bounding Visits to Accepting States
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Corollary 1. For all UcoBW A with n states, for all Moore machine 
M with m states, let K=n×m, then

                         L(M)⊆LUcoB(A) iff L(M)⊆Lu,K(A) 

Corollary 2. If an objective LUcoB(A) defined by a UcoBW A with n 
states is realized by a Moore machine M with m states, then the 
strengthened objective Lu,K(A), with K=n×m, is also realized by M.

Bounding Visits to Accepting States

Monday 21 November 2011



K-Co-Büchi Objectives

Theorem: 
Let A a UcoBW with n states and K = n(n2n+1+1). 
Then LUcoB(A) is realizable iff LU,K(A) is realizable.

Proof. Back direction is trivial. For the converse:

1/ UcoBW A → det. Parity automaton → Parity game G with 

                                    |G| = n2n+1+1 

2/ Parity games admit memoryless strategies

   3/ Therefore A realizable ⇒ ∃M with |G| states that realizes it

   4/ Apply previous Lemma → bound on the number of accepting states
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Determinization of UKcoBWs
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“Extended subsets”
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Lemma: UKCWs are determinizable (modulo exponential blow-up)

• Sketch of Proof: Let A = (∑,Q,q0,α,∆,K) be a UKCW.

• For each state q, count the maximal number of accepting states visited by runs 
ending up in q

• States are counting functions F from Q to [-1,0,...,K+1]

• Initial counting function F0: q→ (q0∈α) if q=q0, -1 otherwise

• Final states are functions F such that ∃q: F(q)>K

Δd(F, σ) : q → max(q’,σ,q)∈∆ { F(q’) + (q∈α) |  F(q’)≠-1}

Determinization of UKcoBWs
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• Sketch of Proof: Let A = (∑,Q,q0,α,∆,K) be a UKCW.

• For each state q, count the maximal number of accepting states visited by runs 
ending up in q

• States are counting functions F from Q to [-1,0,...,K+1]

• Initial counting function F0: q→ (q0∈α) if q=q0, -1 otherwise

• Final states are functions F such that ∃q: F(q)>K

Lemma: UKCWs are determinizable (modulo exponential blow-up)

Δd(F, σ) : q → max(q’,σ,q)∈∆ { F(q’) + (q∈α) |  F(q’)≠-1}

From Det(A,K), it is
 easy t

o construct 

a safe
ty ga

me G(A,K).

Determinization of UKcoBWs
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Incremental algorithm
Remember that for all UcoBW A,  for all K1≤K2, 
                       L(A,K1)⊆L(A,K2)⊆L(A).

⇒ Incremental Realizability Checking Algorithm:

1.Input: an LTL formula Φ, a partition I,O
2.A ← UcoBW with n states equivalent to Φ
3.K ← n(n2n+1+1)
4.for k=0...K do
5.    if Player 1 wins then G(A,k) return realizable
6.endfor
7.return unrealizable
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1.Input: an LTL formula Φ, a partition I,O
2.A ← UcoBW with n states equivalent to Φ
3.K ← n(n2n+1+1)
4.for k=0...K do
5.    if Player 1 wins then G(A,k) return realizable
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Incremental algorithm
Remember that for all UcoBW A,  for all K1≤K2, 
                       L(A,K1)⊆L(A,K2)⊆L(A).

⇒ Incremental Realizability Checking Algorithm:

This is 
not reasonable for 

unrealizab
le specificatio

n !
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Incremental algorithm
Remember that for all UcoBW A,  for all K1≤K2, 
                       L(A,K1)⊆L(A,K2)⊆L(A).

⇒ Incremental Realizability Checking Algorithm:

1.Input: an LTL formula Φ, a partition I,O
2.A ← UcoBW with n states equivalent to Φ
3.K ← n(n2n+1+1)
4.for k=0...K do
5.    if Model wins then G(A,k) return realizable
6.endfor
7.return unrealizable

This is 
not reasonable for 

unrealizab
le specificatio

n !

Solution: run two instances of the algorithm:

1) one that checks realizability of Φ for Player 1
2) one that checks realizability of ¬Φ for Player 2

Justified by determinacy of ω-regular games !
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Example, K=1
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Fig. 1. UCW and safety game for the formula φ ≡ !(r → X♦g)

is the set of initial states, α ⊆ QI∪QO is the set of final states, and δI ⊆ QI×ΣI×QO,

δO ⊆ QO×ΣO×QI are the input and output transition relations respectively.Wlog we

assume that the automata are complete, i.e. for all t ∈ {I, O}, all q ∈ Qt and all σ ∈ Σt,

δt(q, σ) %= ∅. Turn-based automata A run on words w = (o0 ∪ i0)(o1 ∪ i1) · · · ∈ Σω

as follows: a run on w is a word ρ = ρ0ρ1 · · · ∈ (QOQI)ω such that ρ0 ∈ Qini and for

all j ≥ 0, (ρ2j , oj , ρ2j+1) ∈ δO and (ρ2j+1, ij, ρ2j+2) ∈ δI . Let K ∈ N. We consider
the universal co-Büchi (resp. K-co-Büchi) accepting condition, for which a word w is

accepted iff any run on w visits finitely many (resp. at most K) accepting states. With
the K-co-Büchi interpretation in mind, we say that (A, K) is a universal K-co-Büchi
turn-based automaton. We denote by Luc(A) and Luc,K(A) the languages accepted by
A with these two accepting conditions resp. Turn-based automata with universal co-

Büchi and K-co-Büchi acceptance conditions are denoted by UCW and UKCW. As

they define set of infinite words, they can be taken as input to the realizability problem.

It is known that for any LTL formula one can construct an equivalentUCWAφ (pos-

sibly exponentially larger) [18]. Fig. 1(a) represents a UCW equivalent to the formula

!(r → X (♦g)), where r is an input signal and g is an output signal. States of QO are

denoted by circles while states ofQI are denoted by squares. The transitions on missing

letters are going to an additional sink non-accepting state that we do not represent for

the sake of readability. If a request r is never granted, then a run will visit the accepting
state q4 infinitely often.

The realizability problem can be reduced from a UCW to a UKCW specification:

Theorem 2 ([15, 5]). LetA be aUCW overΣI , ΣO with n states andK = 2n(n2n+2+
1). Then A is realizable iff (A, K) is realizable.

Let us recall the intuition behind the correctness of this result. First, if the specification

(A, K) is realizable then clearly the specification A is also realizable as Luc,K(A) ⊆
Luc(A). Second, if the specification A is realizable then we know that there exists a

finite memory strategy λ1 that realizes it [12]. Any run on any outcome of λ1 visits
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the universal co-Büchi (resp. K-co-Büchi) accepting condition, for which a word w is

accepted iff any run on w visits finitely many (resp. at most K) accepting states. With
the K-co-Büchi interpretation in mind, we say that (A, K) is a universal K-co-Büchi
turn-based automaton. We denote by Luc(A) and Luc,K(A) the languages accepted by
A with these two accepting conditions resp. Turn-based automata with universal co-

Büchi and K-co-Büchi acceptance conditions are denoted by UCW and UKCW. As

they define set of infinite words, they can be taken as input to the realizability problem.

It is known that for any LTL formula one can construct an equivalentUCWAφ (pos-

sibly exponentially larger) [18]. Fig. 1(a) represents a UCW equivalent to the formula

!(r → X (♦g)), where r is an input signal and g is an output signal. States of QO are

denoted by circles while states ofQI are denoted by squares. The transitions on missing

letters are going to an additional sink non-accepting state that we do not represent for

the sake of readability. If a request r is never granted, then a run will visit the accepting
state q4 infinitely often.

The realizability problem can be reduced from a UCW to a UKCW specification:

Theorem 2 ([15, 5]). LetA be aUCW overΣI , ΣO with n states andK = 2n(n2n+2+
1). Then A is realizable iff (A, K) is realizable.

Let us recall the intuition behind the correctness of this result. First, if the specification

(A, K) is realizable then clearly the specification A is also realizable as Luc,K(A) ⊆
Luc(A). Second, if the specification A is realizable then we know that there exists a

finite memory strategy λ1 that realizes it [12]. Any run on any outcome of λ1 visits
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is the set of initial states, α ⊆ QI∪QO is the set of final states, and δI ⊆ QI×ΣI×QO,

δO ⊆ QO×ΣO×QI are the input and output transition relations respectively.Wlog we

assume that the automata are complete, i.e. for all t ∈ {I, O}, all q ∈ Qt and all σ ∈ Σt,
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as follows: a run on w is a word ρ = ρ0ρ1 · · · ∈ (QOQI)ω such that ρ0 ∈ Qini and for

all j ≥ 0, (ρ2j , oj , ρ2j+1) ∈ δO and (ρ2j+1, ij, ρ2j+2) ∈ δI . Let K ∈ N. We consider
the universal co-Büchi (resp. K-co-Büchi) accepting condition, for which a word w is

accepted iff any run on w visits finitely many (resp. at most K) accepting states. With
the K-co-Büchi interpretation in mind, we say that (A, K) is a universal K-co-Büchi
turn-based automaton. We denote by Luc(A) and Luc,K(A) the languages accepted by
A with these two accepting conditions resp. Turn-based automata with universal co-

Büchi and K-co-Büchi acceptance conditions are denoted by UCW and UKCW. As

they define set of infinite words, they can be taken as input to the realizability problem.

It is known that for any LTL formula one can construct an equivalentUCWAφ (pos-

sibly exponentially larger) [18]. Fig. 1(a) represents a UCW equivalent to the formula

!(r → X (♦g)), where r is an input signal and g is an output signal. States of QO are

denoted by circles while states ofQI are denoted by squares. The transitions on missing

letters are going to an additional sink non-accepting state that we do not represent for

the sake of readability. If a request r is never granted, then a run will visit the accepting
state q4 infinitely often.

The realizability problem can be reduced from a UCW to a UKCW specification:

Theorem 2 ([15, 5]). LetA be aUCW overΣI , ΣO with n states andK = 2n(n2n+2+
1). Then A is realizable iff (A, K) is realizable.

Let us recall the intuition behind the correctness of this result. First, if the specification

(A, K) is realizable then clearly the specification A is also realizable as Luc,K(A) ⊆
Luc(A). Second, if the specification A is realizable then we know that there exists a

finite memory strategy λ1 that realizes it [12]. Any run on any outcome of λ1 visits
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Solving the safety game
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Fig. 1. UCW and safety game for the formula φ ≡ !(r → X♦g)

is the set of initial states, α ⊆ QI∪QO is the set of final states, and δI ⊆ QI×ΣI×QO,

δO ⊆ QO×ΣO×QI are the input and output transition relations respectively.Wlog we

assume that the automata are complete, i.e. for all t ∈ {I, O}, all q ∈ Qt and all σ ∈ Σt,

δt(q, σ) %= ∅. Turn-based automata A run on words w = (o0 ∪ i0)(o1 ∪ i1) · · · ∈ Σω

as follows: a run on w is a word ρ = ρ0ρ1 · · · ∈ (QOQI)ω such that ρ0 ∈ Qini and for

all j ≥ 0, (ρ2j , oj , ρ2j+1) ∈ δO and (ρ2j+1, ij, ρ2j+2) ∈ δI . Let K ∈ N. We consider
the universal co-Büchi (resp. K-co-Büchi) accepting condition, for which a word w is

accepted iff any run on w visits finitely many (resp. at most K) accepting states. With
the K-co-Büchi interpretation in mind, we say that (A, K) is a universal K-co-Büchi
turn-based automaton. We denote by Luc(A) and Luc,K(A) the languages accepted by
A with these two accepting conditions resp. Turn-based automata with universal co-

Büchi and K-co-Büchi acceptance conditions are denoted by UCW and UKCW. As

they define set of infinite words, they can be taken as input to the realizability problem.

It is known that for any LTL formula one can construct an equivalentUCWAφ (pos-

sibly exponentially larger) [18]. Fig. 1(a) represents a UCW equivalent to the formula

!(r → X (♦g)), where r is an input signal and g is an output signal. States of QO are

denoted by circles while states ofQI are denoted by squares. The transitions on missing

letters are going to an additional sink non-accepting state that we do not represent for

the sake of readability. If a request r is never granted, then a run will visit the accepting
state q4 infinitely often.

The realizability problem can be reduced from a UCW to a UKCW specification:

Theorem 2 ([15, 5]). LetA be aUCW overΣI , ΣO with n states andK = 2n(n2n+2+
1). Then A is realizable iff (A, K) is realizable.

Let us recall the intuition behind the correctness of this result. First, if the specification

(A, K) is realizable then clearly the specification A is also realizable as Luc,K(A) ⊆
Luc(A). Second, if the specification A is realizable then we know that there exists a

finite memory strategy λ1 that realizes it [12]. Any run on any outcome of λ1 visits

Safety game for K=1
√ √

√√

√×

√= winning for player 1
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the universal co-Büchi (resp. K-co-Büchi) accepting condition, for which a word w is

accepted iff any run on w visits finitely many (resp. at most K) accepting states. With
the K-co-Büchi interpretation in mind, we say that (A, K) is a universal K-co-Büchi
turn-based automaton. We denote by Luc(A) and Luc,K(A) the languages accepted by
A with these two accepting conditions resp. Turn-based automata with universal co-

Büchi and K-co-Büchi acceptance conditions are denoted by UCW and UKCW. As

they define set of infinite words, they can be taken as input to the realizability problem.

It is known that for any LTL formula one can construct an equivalentUCWAφ (pos-

sibly exponentially larger) [18]. Fig. 1(a) represents a UCW equivalent to the formula

!(r → X (♦g)), where r is an input signal and g is an output signal. States of QO are

denoted by circles while states ofQI are denoted by squares. The transitions on missing

letters are going to an additional sink non-accepting state that we do not represent for

the sake of readability. If a request r is never granted, then a run will visit the accepting
state q4 infinitely often.

The realizability problem can be reduced from a UCW to a UKCW specification:

Theorem 2 ([15, 5]). LetA be aUCW overΣI , ΣO with n states andK = 2n(n2n+2+
1). Then A is realizable iff (A, K) is realizable.

Let us recall the intuition behind the correctness of this result. First, if the specification

(A, K) is realizable then clearly the specification A is also realizable as Luc,K(A) ⊆
Luc(A). Second, if the specification A is realizable then we know that there exists a
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letters are going to an additional sink non-accepting state that we do not represent for

the sake of readability. If a request r is never granted, then a run will visit the accepting
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The realizability problem can be reduced from a UCW to a UKCW specification:

Theorem 2 ([15, 5]). LetA be aUCW overΣI , ΣO with n states andK = 2n(n2n+2+
1). Then A is realizable iff (A, K) is realizable.
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Fig. 1. UCW and safety game for the formula φ ≡ !(r → X♦g)

is the set of initial states, α ⊆ QI∪QO is the set of final states, and δI ⊆ QI×ΣI×QO,

δO ⊆ QO×ΣO×QI are the input and output transition relations respectively.Wlog we

assume that the automata are complete, i.e. for all t ∈ {I, O}, all q ∈ Qt and all σ ∈ Σt,

δt(q, σ) %= ∅. Turn-based automata A run on words w = (o0 ∪ i0)(o1 ∪ i1) · · · ∈ Σω

as follows: a run on w is a word ρ = ρ0ρ1 · · · ∈ (QOQI)ω such that ρ0 ∈ Qini and for

all j ≥ 0, (ρ2j , oj , ρ2j+1) ∈ δO and (ρ2j+1, ij, ρ2j+2) ∈ δI . Let K ∈ N. We consider
the universal co-Büchi (resp. K-co-Büchi) accepting condition, for which a word w is

accepted iff any run on w visits finitely many (resp. at most K) accepting states. With
the K-co-Büchi interpretation in mind, we say that (A, K) is a universal K-co-Büchi
turn-based automaton. We denote by Luc(A) and Luc,K(A) the languages accepted by
A with these two accepting conditions resp. Turn-based automata with universal co-

Büchi and K-co-Büchi acceptance conditions are denoted by UCW and UKCW. As

they define set of infinite words, they can be taken as input to the realizability problem.

It is known that for any LTL formula one can construct an equivalentUCWAφ (pos-

sibly exponentially larger) [18]. Fig. 1(a) represents a UCW equivalent to the formula

!(r → X (♦g)), where r is an input signal and g is an output signal. States of QO are

denoted by circles while states ofQI are denoted by squares. The transitions on missing

letters are going to an additional sink non-accepting state that we do not represent for

the sake of readability. If a request r is never granted, then a run will visit the accepting
state q4 infinitely often.

The realizability problem can be reduced from a UCW to a UKCW specification:

Theorem 2 ([15, 5]). LetA be aUCW overΣI , ΣO with n states andK = 2n(n2n+2+
1). Then A is realizable iff (A, K) is realizable.

Let us recall the intuition behind the correctness of this result. First, if the specification

(A, K) is realizable then clearly the specification A is also realizable as Luc,K(A) ⊆
Luc(A). Second, if the specification A is realizable then we know that there exists a

finite memory strategy λ1 that realizes it [12]. Any run on any outcome of λ1 visits

As Player 1 has a w
inning stra

tegy, 

the formula is r
ealizable

Monday 21 November 2011



Structure

q1 q2

q3q4

r

g,¬g

r,¬r

¬g

r,¬r

(a) UCW

(q1, 0) (q2, 0)

(q1, 0), (q3, 0)

(q2, 0), (q4, 1)

(q1, 0), (q3, 1)

(q2, 0), (q4, 2)

g,¬g

¬r
r

g

¬gr,¬r

¬g

g

(b) Safety game G(φ, 1)

Fig. 1. UCW and safety game for the formula φ ≡ !(r → X♦g)

is the set of initial states, α ⊆ QI∪QO is the set of final states, and δI ⊆ QI×ΣI×QO,

δO ⊆ QO×ΣO×QI are the input and output transition relations respectively.Wlog we

assume that the automata are complete, i.e. for all t ∈ {I, O}, all q ∈ Qt and all σ ∈ Σt,

δt(q, σ) %= ∅. Turn-based automata A run on words w = (o0 ∪ i0)(o1 ∪ i1) · · · ∈ Σω

as follows: a run on w is a word ρ = ρ0ρ1 · · · ∈ (QOQI)ω such that ρ0 ∈ Qini and for

all j ≥ 0, (ρ2j , oj , ρ2j+1) ∈ δO and (ρ2j+1, ij, ρ2j+2) ∈ δI . Let K ∈ N. We consider
the universal co-Büchi (resp. K-co-Büchi) accepting condition, for which a word w is

accepted iff any run on w visits finitely many (resp. at most K) accepting states. With
the K-co-Büchi interpretation in mind, we say that (A, K) is a universal K-co-Büchi
turn-based automaton. We denote by Luc(A) and Luc,K(A) the languages accepted by
A with these two accepting conditions resp. Turn-based automata with universal co-

Büchi and K-co-Büchi acceptance conditions are denoted by UCW and UKCW. As

they define set of infinite words, they can be taken as input to the realizability problem.

It is known that for any LTL formula one can construct an equivalentUCWAφ (pos-

sibly exponentially larger) [18]. Fig. 1(a) represents a UCW equivalent to the formula

!(r → X (♦g)), where r is an input signal and g is an output signal. States of QO are

denoted by circles while states ofQI are denoted by squares. The transitions on missing

letters are going to an additional sink non-accepting state that we do not represent for

the sake of readability. If a request r is never granted, then a run will visit the accepting
state q4 infinitely often.

The realizability problem can be reduced from a UCW to a UKCW specification:

Theorem 2 ([15, 5]). LetA be aUCW overΣI , ΣO with n states andK = 2n(n2n+2+
1). Then A is realizable iff (A, K) is realizable.

Let us recall the intuition behind the correctness of this result. First, if the specification

(A, K) is realizable then clearly the specification A is also realizable as Luc,K(A) ⊆
Luc(A). Second, if the specification A is realizable then we know that there exists a

finite memory strategy λ1 that realizes it [12]. Any run on any outcome of λ1 visits

Safety game for K=1

≥

((q1,0),(q3,1)) ≥ ((q1,0),(q3,0))

((q1,0),(q3,1)) winning
implies 

((q1,0),(q3,0)) is winning

Set of winning positions are ≥-
downward closed

≥-downward closed sets are 
canonically represented by their 

maximal elements
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It works in practice !

• Implemented in Acacia [FJR09] 
(at ULB) 

• .... and with BDDs [Ehlers10] (at U Saarbrücken)

• Acacia handles large LTL formulas 
(can be several pages long)

• Parameter K is usually very small (K=0,1,2,3).

• Synthesized strategies are very compact

"  may lead to hardware implementations.

Monday 21 November 2011



An Antichain Algorithm for LTL Realizability!

Emmanuel Filiot Naiyong Jin Jean-François Raskin

CS, Faculty of Sciences

Université Libre de Bruxelles (U.L.B.), Belgium

Abstract. In this paper, we study the structure of underlying automata based

constructions for solving the LTL realizability and synthesis problem. We show

how to reduce the LTL realizability problem to a game with an observer that

checks that the game visits a bounded number of times accepting states of a uni-

versal co-Büchi word automaton. We show that such an observer can be made

deterministic and that this deterministic observer has a nice structure which can

be exploited by an incremental algorithm that manipulates antichains of game

positions. We have implemented this new algorithm and our first results are very

encouraging.

1 Introduction

Automata theory has revealed very elegant for solving verification and synthesis prob-
lems. A large body of results in computer aided verification can be phrased and solved
in this framework. Tools that use those results have been successfully used in industrial
context, see [16] for an example. Nevertheless, there is still plenty of research to do
and new theory to develop in order to obtain more efficient algorithms able to handle
larger or broader classes of practical examples. Recently, we and other authors have
shown in [4–6, 14, 21] that several automata-based constructions enjoy structural prop-
erties that can be exploited to improve algorithms on automata. For example, in [6] we
show how to solve more efficiently the language inclusion problem for nondeterminis-
tic Büchi automata by exploiting a partial-order that exists on the state spaces of subset
constructions used to solve this problem. Other structural properties have been addi-
tionally exploited in [7]. In this paper, we pursue this line of research and revisit the
automata-based approach to LTL realizability and synthesis. Although LTL realizability
is 2EXPTIME-COMPLETE, we show that there are also automata structures equipped
with adequate partial-orders that can be exploited to obtain a more practical decision
procedure for it.

The realizability problem for an LTL formula φ is best seen as a game between two
players [13]. Each of the players is controlling a subset of the set P of propositions
on which the LTL formula φ is constructed. The set of propositions P is partitioned
into I the set of input signals that are controlled by ”Player input” (the environment,
also called Player I), and O the set of output signals that are controlled by ”Player
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Abstract. In this paper, we provide two compositional algorithms to solve safety

games and apply them to provide compositional algorithms for the LTL synthe-

sis problem. We have implemented those new compositional algorithms, and we

demonstrate that they are able to handle full LTL specifications that are orders of

magnitude larger than the specifications that can be treated by the current state of

the art algorithms.

1 Introduction

Context and motivations The realizability problem is best seen as a game between

two players [12]. Given an LTL formula φ and a partition of its atomic propositions P
into I and O, Player 1 starts by giving a subset o0 ⊆ O of propositions 1, Player 2
responds by giving a subset of propositions i0 ⊆ I , then Player 1 gives o1 and Player 2
responds by i1, and so on. This game lasts forever and the outcome of the game is the
infinite word w = (i0∪o0)(i1∪o1)(i2∪o2) · · · ∈ (2P )ω. Player 1 wins if the resulting
infinite word w is a model of φ. The synthesis problem asks to produce a winning

strategy for Player 1 when the LTL formula is realizable. The LTL realizability problem

is central when reasoning about specifications for reactive systems and has been studied

starting from the end of the eighties with the seminal works by Pnueli and Rosner [12],

and Abadi, Lamport and Wolper [1]. It has been shown 2EXPTIME-C in [13].2 Despite

their high worst-case computation complexity, we believe that it is possible to solve LTL

realizability and synthesis problems in practice. We proceed here along recent research

efforts that have brought new algorithmic ideas to attack this important problem.

Contributions In this paper, we propose two compositional algorithms to solve the LTL

realizability and synthesis problems. Those algorithms rely on previous works where

the LTL realizability problem for an LTL formula Φ is reduced to the resolution of a

safety game G(Φ) [5] (a similar reduction was proposed independently in [15] and ap-
plied to synthesis of distributed controllers). We show here that if the LTL specification

has the form Φ = φ1 ∧ φ2 ∧ · · ·∧ φn i.e., a conjunction of LTL sub-specifications, then

G(Φ) can be constructed and solved compositionally. The compositional algorithms are
able to handle formulas that are several pages long while previous non-compositional

algorithms were limited to toy examples.

The new algorithms rely on the following nice property of safety games: for any

safety game G, there exists a function that maps each position of Player 1 to the set of

1 Technically, we could have started with Player 2, for modelling reason it is conservative to
start with Player 1.

2 Older pioneering works consider the realizability problem but for more expressive and com-

putationally intractable formalisms like MSO, see [17] for pointers.
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Extensions to
Timed Specifications
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Timed words

(a,1) (b,1.7) (a,2.4) (a,3.1) (b,3.8)

Timed word on Σ={a,b}:

...

= infinite sequence of elements in Σ×ℝ≥0

(σ0,t0) (σ1,t1) (σ2,t2) ... (σn,tn) ... 

such that σi∈Σ and ti ≤ ti+1, for all i∈ℕ.
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Timed Formalisms

1 2 3

4 5

a, b, d

c
x := 0

b, d

a, x ∈ (2, 3)

x := 0
c

b, d

a, x ∈ (2, 3)

a, b, c, d
a, b, c, d

a, x "∈ (2, 3) a, x "∈ (2, 3)
c

Fig. 1. A deterministic parity timed automaton for ϕe. States 1, 3, 4 have priority 0, and states
2, 5 have priority 1.

– Q contains qin and all the q ⊆ Sub(ψ) that are consistent. A subset q is consistent
iff: (i) there exists a unique a ∈ Σ such that a ∈ q; (ii) for all subformulas ϕ1, ϕ2

of ψ, if ϕ2 ≡ ¬ϕ1, then ϕ1 ∈ q iff ϕ2 "∈ q; and (iii) for all subformulas ϕ1 ∨ ϕ2

of ψ, ϕ1 ∨ ϕ2 ∈ q iff ϕ1 ∈ q or ϕ2 ∈ q.
– E ⊆ Q × (Σ × 2P ) × Q contains all edges (q, σ, q′) such that σ = (a, {pϕ ∈ P |

ϕ ∈ q′} where {a} = Σ ∩ q′ and, either (i) q = qin, ψ ∈ q′ and ϕ1 S ϕ2 "∈ q′ for
all formulas ϕ1 S ϕ2 ∈ Sub(ψ), or (ii) q "= qin, for all subformula ϕ1 U ϕ2 of ψ,
we have ϕ1 U ϕ2 ∈ q iff either (a) ϕ2 ∈ q′, or (b) ϕ1 ∈ q′ and ϕ1 U ϕ2 ∈ q′; and
for all subformula ϕ1 S ϕ2 of ψ, we have ϕ1 S ϕ2 ∈ q′ iff either (a) ϕ2 ∈ q, or (b)
ϕ1 ∈ q and ϕ1 S ϕ2 ∈ q.

– α is a set of accepting sets of edges, containing for each subformula ϕ1 U ϕ2 of ψ
the set {(q, σ, q′) ∈ E | ϕ1 U ϕ2 "∈ q or ϕ2 ∈ q′}.

Lemma 6. For all LTL! formula ψ, we have [[L(Aψ)]] = [[ψ]].

The next lemma is crucial to translate Bψ (the deterministic version of Aψ) into

a timed automaton Cψ . Indeed, in the time automaton Cψ , we use one clock for each
formula of the form !I ϕ to remember the last time ϕ has been true. Lemma 7 shows
that only the information about the past of the word is relevant to know when these
clocks have to be reset.

Lemma 7. For all nonempty (untimed) finite words w over the set of propositions Σ,
for all runs r1, r2 of Aψ over w, the states Last(r1) and Last(r2) contain exactly the
same PastECL formulas.

From Aψ, we obtain a deterministic (untimed) automatonBψ with parity condition
such that L(Bψ) = L(Aψ) by Piterman’s determinization procedure [22]. The states
of Bψ are Safra trees s, whose root root(s) tracks the standard subset construction.
Therefore, by Lemma 7, for every transition (s, σ, s′) of Bψ, all states q ∈ roots′ agree
on thePastECL subformulas of ψ. So, we can define a (deterministic) timed automaton
Cψ over alphabet Σ and clocks {xϕ | !I ϕ is a subformula of ψ} as follows: the state
space of Cψ is a copy of the state space of Bψ, and for each transition (s, (a, Ω), s′) in
Bψ, if for all pϕ ∈ Ω with ϕ ≡ !I ϕ1, we have♦-ϕ1 ∈ root(s), then there is a transition
(s, g, a, R, s′) in Cψ such that: R = {xϕ | pϕ ∈ Ω} and g is the conjunction of (i)
all constraints xϕ1 ∈ I s.t. pϕ ∈ Ω and ϕ ≡ !I ϕ1 is a subformula of ψ, and (ii) all
constraints xϕ "∈ I s.t. pϕ "∈ Ω, ϕ ≡ !I ϕ1 is a subformula of ψ, and ♦-ϕ1 ∈ root(s).

Timed automata

Timed extensions of LTL

☐ ( a → ♢=1 b )

MTL [Koy89,AH89]

“Every a is followed by a b exactly one time unit later”
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Undecidability

➡ Language inclusion for TA is undecidable [AD94].

➡ Emptiness of universal/alternating automata is 
undecidable.

➡ MTL satisfiability (over infinite timed words) is 
undecidable [AH93], and so is realizability/synthesis.

➢➢ no hope to apply the previous constructions to 
those timed formalisms !
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Recovering decidability

Event clock automata
[AFH99]

Clock are not reset and are associated to events: { xσ,yσ | σ∈Σ }
Values of event-clocks are input determined:

(a,1) (b,1.7) (a,2.4) (a,3.1) (b,3.8)

val(xb)=⟘
val(yb)=2.1

val(xb)=1.4
val(yb)=0.7
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Recovering decidability

Theorem [AFH99]. Unlike timed automata, 
event-clock automata are determinizable and 
their language inclusion problem is PSpace-C. 

Event clock automata
[AFH99]
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Recovering decidability

☐ ( a →▷=1 b )

ECL [RS97,HRS98]

☐ ( a → ♢(0,1] b )

MITL [AFH91]

prohibits punctuality in MTL
satisfiability ExpSpaceC [AFH96]

but synthesis undecidable [DGRR09]

refers only to next/previous occ.
satisfiability PSpaceC [RS97,HRS98]
but synthesis undecidable [DGRR09]

☐ ( a →◁=1 b )
LTL+◁ [DGRR09]

refers only to previous occ.
satisfiability PSpaceC [RS97,HRS98]

and synthesis 2ExpTimeC [DGRR09]
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LTL + ◁
LTL+◁: Φ::= σ | Φ1∨Φ2 | Φ1 U Φ2 | Φ1 U Φ2 | ◁I σ

                                       with I is an interval of ℝ≥0 with integer bounds. 

(a,1) (b,1.7) (a,2.4) (a,3.1) (b,3.8)

aUbbUb

 (w,i) ⊨ ◁I σ iff ∃j<i • (w,j) ⊨ σ and ∀k • j < k < i • (w,k) ⊭ σ and t(i)-t(j)∈I

(a,1) (b,1.7) (a,2.4) (a,3.1) (b,3.8)

◁[1,2] a ◁[1,2] a

(w,i) ⊨ Φ1 U Φ2 iff ∃j>i • ( (w,j) ⊨ Φ2 and ∀k • i < k < j • (w,j) ⊨ Φ1 )
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Timed Games
• A timed game is a 3-tuple ⟨Σ1,Σ2,Win⟩ where:

★ Σ1 is a finite alphabet of letters that belong to Player 1, 

★ Σ2 belongs to Player 2, 

★ and Win is a language of timed words over Σ1∪Σ2.

• A timed game is played during an infinite number of rounds. In each round:

★ Player 1chooses a pair (σ,t1)∈Σ1×ℝ≥0

★ Player 2 either lets Player 1 play or chooses (σ,t2)∈Σ2×ℝ≥0 with t2 ≤ t1.

• This interaction generates an infinite timed word w.

• Player 1 wins the timed game iff w ∈ Win.
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Timed Strategies
Player 1’s strategies:  λ1: (Σ×ℝ≥0)*→ (Σ1×ℝ≥0)

ex:  λ1((a,0.6),(b,0.9))=(a,0.5)

then either Player 2 let Player 1 play, and we obtain: 

(a,0.6),(b,0.9)(a,1.4) 

or he overtakes Player 1, for example by playing (b,0.3), and we get 

(a,0.6),(b,0.9)(b,1.2)

➢➢ λ1 is winning in ⟨Σ1,Σ2,Win⟩ if Outcome(λ1)⊆Win
Monday 21 November 2011



Realizability problem for LTL+◁

Given a LTL+◁ spec Φ over the alphabet Σ1∪Σ2.
Does there exist a strategy λ1 for Player 1 such that:

λ1 is winning the timed game ⟨Σ1,Σ2,⟦Φ⟧⟩ ?

LTL+◁ realizability problem
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Example
1 2 3 4 5 6 7 8

up down up updown

input
hi

lo

grants
no grant allowed

grant

1 2 3 4 5 6 7 8

up down up updown

input
hi

lo

grants
no grant allowed

grant

Fig. 1. Two examples of execution of the systems. The state of the input is represented on top,

grants are represented at the bottom. Each dot represents a grant event. Thick lines represent the

period during which the controller cannot produce any grant because of Req2.

Σ2 = {up, down} and:

Hyp ≡ �
�
up →

�
¬down U(down ∧�≥1 up)

��
∧

�
�
down →

�
¬up U(up ∧�≥1 down)

��

Req1 ≡ �
�
(down ∧�>2 up)→ (¬up U grant)

�

Req2 ≡ �(grant → ¬�<3 grant)

Remark that ϕ does not forbid the controller from producing grant events that have

not been requested by the environment. However, a controller producing grants too
often might hinder itself because Req2 requires each pair of grants to be separated from

each other by at least 3 time units. Fig. 1 illustrates this by showing two prefixes of

executions. The left part shows a prefix that respects ϕ. The right part of the figure

shows a case where the controller has issued an unnecessary grant that prevents him

from granting the request that appears with the down event at time 5.75.

Let us now apply the algorithmic schema presented above to this example. We first

build the NECA with Büchi acceptance condition A¬ϕ, given in Fig. 2. This automa-

ton has two parts, identified by the names of the states: the top part (corresponding to

the states 1, . . . 7) accepts the models of [[¬(Hyp→ Req1)]] and the lower part (states

1, 2, . . . , 6) accepts the models of [[¬(Hyp→ Req2)]], so the whole automaton accepts

exactly [[¬ϕ]]. Fig. 2 can also be regarded as a depiction of the dual UECA with co-Büchi

acceptance condition Ã¬ϕ, by interpreting non-determinism as universal branching.

From Ã¬ϕ, we have applied the counting functions construction described above,

for i = 1. In order to ease the presentation, we have applied this construction separately

on the two parts of the automaton, to obtain G1 and G2, given in Fig. 3. These automata

are shown as they appear in their UPPAAL TIGA encoding: controllable transitions are

plain, and uncontrollable transitions are dashed. The history clocks corresponding to up,

down and grant are respectively denoted u, d and g. Remark that since UPPAAL TIGA

uses classical Alur-Dill timed automata, and not NECA, we have to explicitly manage

the reset of those clocks. Finally, observe that we have used the synchronisation mech-

anism offered by UPPAAL TIGA to ensure that the game is played on the synchronous

product of these two automata (which corresponds to the counting function construction

applied to A¬ϕ).

We provided this model to UPPAAL TIGA together with the synthesis objective

control: A[not BadState], where BadState is true iff one of the automata

reaches one of its Bad locations (that corresponds to one of the counters being > 1).

In this case, UPPAAL TIGA can compute a winning strategy for player 1, which means
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on the two parts of the automaton, to obtain G1 and G2, given in Fig. 3. These automata
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the reset of those clocks. Finally, observe that we have used the synchronisation mech-

anism offered by UPPAAL TIGA to ensure that the game is played on the synchronous

product of these two automata (which corresponds to the counting function construction

applied to A¬ϕ).

We provided this model to UPPAAL TIGA together with the synthesis objective

control: A[not BadState], where BadState is true iff one of the automata

reaches one of its Bad locations (that corresponds to one of the counters being > 1).

In this case, UPPAAL TIGA can compute a winning strategy for player 1, which means

with K-co-Büchi acceptance condition (for a precise value of K). In this game, the

objective of player 1 is thus to avoid visiting accepting states too often (no more than

K times), and this is thus a safety condition. The automaton DetK(Ã¬ϕ) can be used to

define a timed safety game. Such games can be solved by tools such as UPPAAL TIGA

[BCD
+

07].

The drawback of this approach is that the value K is potentially intractable: it is

doubly-exponential in the size of ϕ. As a consequence, DetK(Ã¬ϕ) and its underlying

timed safety game are unmanageably large. To circumvent this difficulty, we adopt an

incremental approach. Instead of solving the game underlying DetK(Ã¬ϕ), we solve

iteratively the games underlying Deti(Ã¬ϕ) for increasing values of i = 0, 1, . . .. As

soon as player 1 can win a game for some i, we can stop and conclude that ϕ is realiz-
able. Indeed, L0coB(Deti(Ã¬ϕ)) = LicoB(Ã¬ϕ) by Proposition 21, and LicoB(Ã¬ϕ) ⊆
LKcoB(Ã¬ϕ) ⊆ [[ϕ]]. In other words, realizability of L0coB(Deti(Ã¬ϕ)) implies realiz-

ability of ϕ. Unfortunately, if ϕ is not realizable, this approach fails to avoid considering

the large theoretical bound K. To circumvent this second difficulty, we use the prop-

erty that our games are determined: ϕ is not realizable by player 1 iff ¬ϕ is realizable

by player 2. So in practice, we execute two instances of our incremental algorithm in

parallel and stop whenever one of the two is conclusive. The details of this incremental

approach are given in [FJR09], and it is experimentally shown there, in the case of LTL
specifications, that the values that one needs to consider for i are usually very small.

To sum up, our incremental algorithm works as follows. Fix an LTL� formula ϕ, and

set i to 0. Next, if player 1 has a winning strategy in

�
Σ1,Σ2, L0coB(Deti(Ã¬ϕ))

�
, then

ϕ is realizable; else if player 2 has a winning strategy in

�
Σ1,Σ2, L0coB(Deti(Ãϕ))

�
,

then ϕ is not realizable; else, increment i by 1 and iterate.

Experiments with UPPAAL TIGA We have thus reduced the realizability problem of

LTL� to solving a sequence of TG of the form �Σ1,Σ2, L0coB(A)�, where A is a DECA.

Solving each of these games amounts to solving a safety game played in an arena which

is defined by A (where the edges are partitioned according to Σ1 and Σ2). In practice,

this can be done using UPPAAL TIGA [BCD
+

07], as we are about to show thanks to

a simple yet realistic example. Our example consists of a system where a controller

monitors an input line that can be in two states: high or low. The state of the input line

is controlled by the environment, thanks to the actions up and down, that respectively

change the state from low to high and high to low. Changes in the state of the input

line might represent requests that the controller has to grant. More precisely, whenever

consecutive up and down events occur separated by at least two time units, the controller

has to issue a grant after the corresponding down but before the next up. Moreover,

successive grants have to be at least three time units apart, and up and down events

have to be separated by at least one time unit. This informal requirement is captured by

the LTL� formula ϕ ≡ Hyp → Req1 ∧ Req2 on Σ = Σ1 � Σ2 where Σ1 = {grant},
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by player 2. So in practice, we execute two instances of our incremental algorithm in

parallel and stop whenever one of the two is conclusive. The details of this incremental

approach are given in [FJR09], and it is experimentally shown there, in the case of LTL
specifications, that the values that one needs to consider for i are usually very small.

To sum up, our incremental algorithm works as follows. Fix an LTL� formula ϕ, and

set i to 0. Next, if player 1 has a winning strategy in

�
Σ1,Σ2, L0coB(Deti(Ã¬ϕ))

�
, then

ϕ is realizable; else if player 2 has a winning strategy in

�
Σ1,Σ2, L0coB(Deti(Ãϕ))

�
,

then ϕ is not realizable; else, increment i by 1 and iterate.

Experiments with UPPAAL TIGA We have thus reduced the realizability problem of

LTL� to solving a sequence of TG of the form �Σ1,Σ2, L0coB(A)�, where A is a DECA.

Solving each of these games amounts to solving a safety game played in an arena which

is defined by A (where the edges are partitioned according to Σ1 and Σ2). In practice,

this can be done using UPPAAL TIGA [BCD
+

07], as we are about to show thanks to

a simple yet realistic example. Our example consists of a system where a controller

monitors an input line that can be in two states: high or low. The state of the input line

is controlled by the environment, thanks to the actions up and down, that respectively

change the state from low to high and high to low. Changes in the state of the input

line might represent requests that the controller has to grant. More precisely, whenever

consecutive up and down events occur separated by at least two time units, the controller

has to issue a grant after the corresponding down but before the next up. Moreover,

successive grants have to be at least three time units apart, and up and down events

have to be separated by at least one time unit. This informal requirement is captured by

the LTL� formula ϕ ≡ Hyp → Req1 ∧ Req2 on Σ = Σ1 � Σ2 where Σ1 = {grant},
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Fig. 1. Two examples of execution of the systems. The state of the input is represented on top,

grants are represented at the bottom. Each dot represents a grant event. Thick lines represent the

period during which the controller cannot produce any grant because of Req2.

Σ2 = {up, down} and:

Hyp ≡ �
�
up →

�
¬down U(down ∧�≥1 up)

��
∧

�
�
down →

�
¬up U(up ∧�≥1 down)

��

Req1 ≡ �
�
(down ∧�>2 up)→ (¬up U grant)

�

Req2 ≡ �(grant → ¬�<3 grant)

Remark that ϕ does not forbid the controller from producing grant events that have

not been requested by the environment. However, a controller producing grants too
often might hinder itself because Req2 requires each pair of grants to be separated from

each other by at least 3 time units. Fig. 1 illustrates this by showing two prefixes of

executions. The left part shows a prefix that respects ϕ. The right part of the figure

shows a case where the controller has issued an unnecessary grant that prevents him

from granting the request that appears with the down event at time 5.75.

Let us now apply the algorithmic schema presented above to this example. We first

build the NECA with Büchi acceptance condition A¬ϕ, given in Fig. 2. This automa-

ton has two parts, identified by the names of the states: the top part (corresponding to

the states 1, . . . 7) accepts the models of [[¬(Hyp→ Req1)]] and the lower part (states

1, 2, . . . , 6) accepts the models of [[¬(Hyp→ Req2)]], so the whole automaton accepts

exactly [[¬ϕ]]. Fig. 2 can also be regarded as a depiction of the dual UECA with co-Büchi

acceptance condition Ã¬ϕ, by interpreting non-determinism as universal branching.

From Ã¬ϕ, we have applied the counting functions construction described above,

for i = 1. In order to ease the presentation, we have applied this construction separately

on the two parts of the automaton, to obtain G1 and G2, given in Fig. 3. These automata

are shown as they appear in their UPPAAL TIGA encoding: controllable transitions are

plain, and uncontrollable transitions are dashed. The history clocks corresponding to up,

down and grant are respectively denoted u, d and g. Remark that since UPPAAL TIGA

uses classical Alur-Dill timed automata, and not NECA, we have to explicitly manage

the reset of those clocks. Finally, observe that we have used the synchronisation mech-

anism offered by UPPAAL TIGA to ensure that the game is played on the synchronous

product of these two automata (which corresponds to the counting function construction

applied to A¬ϕ).

We provided this model to UPPAAL TIGA together with the synthesis objective

control: A[not BadState], where BadState is true iff one of the automata

reaches one of its Bad locations (that corresponds to one of the counters being > 1).

In this case, UPPAAL TIGA can compute a winning strategy for player 1, which means
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acceptance condition Ã¬ϕ, by interpreting non-determinism as universal branching.

From Ã¬ϕ, we have applied the counting functions construction described above,

for i = 1. In order to ease the presentation, we have applied this construction separately

on the two parts of the automaton, to obtain G1 and G2, given in Fig. 3. These automata
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Let us now apply the algorithmic schema presented above to this example. We first

build the NECA with Büchi acceptance condition A¬ϕ, given in Fig. 2. This automa-

ton has two parts, identified by the names of the states: the top part (corresponding to

the states 1, . . . 7) accepts the models of [[¬(Hyp→ Req1)]] and the lower part (states

1, 2, . . . , 6) accepts the models of [[¬(Hyp→ Req2)]], so the whole automaton accepts

exactly [[¬ϕ]]. Fig. 2 can also be regarded as a depiction of the dual UECA with co-Büchi

acceptance condition Ã¬ϕ, by interpreting non-determinism as universal branching.

From Ã¬ϕ, we have applied the counting functions construction described above,

for i = 1. In order to ease the presentation, we have applied this construction separately

on the two parts of the automaton, to obtain G1 and G2, given in Fig. 3. These automata

are shown as they appear in their UPPAAL TIGA encoding: controllable transitions are

plain, and uncontrollable transitions are dashed. The history clocks corresponding to up,

down and grant are respectively denoted u, d and g. Remark that since UPPAAL TIGA

uses classical Alur-Dill timed automata, and not NECA, we have to explicitly manage

the reset of those clocks. Finally, observe that we have used the synchronisation mech-

anism offered by UPPAAL TIGA to ensure that the game is played on the synchronous

product of these two automata (which corresponds to the counting function construction

applied to A¬ϕ).

We provided this model to UPPAAL TIGA together with the synthesis objective

control: A[not BadState], where BadState is true iff one of the automata

reaches one of its Bad locations (that corresponds to one of the counters being > 1).

In this case, UPPAAL TIGA can compute a winning strategy for player 1, which means

“Up and down events alternate. Distance between up and down is at least 1 t.u.”

“If down follows up with at least 2 t.u. then it should be granted before next up”

“Two grant events should be at least 3 t.u. apart”
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build the NECA with Büchi acceptance condition A¬ϕ, given in Fig. 2. This automa-

ton has two parts, identified by the names of the states: the top part (corresponding to

the states 1, . . . 7) accepts the models of [[¬(Hyp→ Req1)]] and the lower part (states

1, 2, . . . , 6) accepts the models of [[¬(Hyp→ Req2)]], so the whole automaton accepts

exactly [[¬ϕ]]. Fig. 2 can also be regarded as a depiction of the dual UECA with co-Büchi
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for i = 1. In order to ease the presentation, we have applied this construction separately

on the two parts of the automaton, to obtain G1 and G2, given in Fig. 3. These automata

are shown as they appear in their UPPAAL TIGA encoding: controllable transitions are

plain, and uncontrollable transitions are dashed. The history clocks corresponding to up,

down and grant are respectively denoted u, d and g. Remark that since UPPAAL TIGA

uses classical Alur-Dill timed automata, and not NECA, we have to explicitly manage

the reset of those clocks. Finally, observe that we have used the synchronisation mech-

anism offered by UPPAAL TIGA to ensure that the game is played on the synchronous

product of these two automata (which corresponds to the counting function construction

applied to A¬ϕ).

We provided this model to UPPAAL TIGA together with the synthesis objective

control: A[not BadState], where BadState is true iff one of the automata

reaches one of its Bad locations (that corresponds to one of the counters being > 1).

In this case, UPPAAL TIGA can compute a winning strategy for player 1, which means
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objective of player 1 is thus to avoid visiting accepting states too often (no more than

K times), and this is thus a safety condition. The automaton DetK(Ã¬ϕ) can be used to

define a timed safety game. Such games can be solved by tools such as UPPAAL TIGA

[BCD
+

07].

The drawback of this approach is that the value K is potentially intractable: it is

doubly-exponential in the size of ϕ. As a consequence, DetK(Ã¬ϕ) and its underlying

timed safety game are unmanageably large. To circumvent this difficulty, we adopt an

incremental approach. Instead of solving the game underlying DetK(Ã¬ϕ), we solve

iteratively the games underlying Deti(Ã¬ϕ) for increasing values of i = 0, 1, . . .. As
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able. Indeed, L0coB(Deti(Ã¬ϕ)) = LicoB(Ã¬ϕ) by Proposition 21, and LicoB(Ã¬ϕ) ⊆
LKcoB(Ã¬ϕ) ⊆ [[ϕ]]. In other words, realizability of L0coB(Deti(Ã¬ϕ)) implies realiz-

ability of ϕ. Unfortunately, if ϕ is not realizable, this approach fails to avoid considering

the large theoretical bound K. To circumvent this second difficulty, we use the prop-

erty that our games are determined: ϕ is not realizable by player 1 iff ¬ϕ is realizable

by player 2. So in practice, we execute two instances of our incremental algorithm in

parallel and stop whenever one of the two is conclusive. The details of this incremental

approach are given in [FJR09], and it is experimentally shown there, in the case of LTL
specifications, that the values that one needs to consider for i are usually very small.

To sum up, our incremental algorithm works as follows. Fix an LTL� formula ϕ, and
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, then
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Σ1,Σ2, L0coB(Deti(Ãϕ))

�
,

then ϕ is not realizable; else, increment i by 1 and iterate.

Experiments with UPPAAL TIGA We have thus reduced the realizability problem of

LTL� to solving a sequence of TG of the form �Σ1,Σ2, L0coB(A)�, where A is a DECA.

Solving each of these games amounts to solving a safety game played in an arena which

is defined by A (where the edges are partitioned according to Σ1 and Σ2). In practice,

this can be done using UPPAAL TIGA [BCD
+

07], as we are about to show thanks to

a simple yet realistic example. Our example consists of a system where a controller

monitors an input line that can be in two states: high or low. The state of the input line

is controlled by the environment, thanks to the actions up and down, that respectively

change the state from low to high and high to low. Changes in the state of the input

line might represent requests that the controller has to grant. More precisely, whenever

consecutive up and down events occur separated by at least two time units, the controller

has to issue a grant after the corresponding down but before the next up. Moreover,

successive grants have to be at least three time units apart, and up and down events

have to be separated by at least one time unit. This informal requirement is captured by

the LTL� formula ϕ ≡ Hyp → Req1 ∧ Req2 on Σ = Σ1 � Σ2 where Σ1 = {grant},
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Fig. 1. Two examples of execution of the systems. The state of the input is represented on top,

grants are represented at the bottom. Each dot represents a grant event. Thick lines represent the

period during which the controller cannot produce any grant because of Req2.
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Remark that ϕ does not forbid the controller from producing grant events that have

not been requested by the environment. However, a controller producing grants too
often might hinder itself because Req2 requires each pair of grants to be separated from

each other by at least 3 time units. Fig. 1 illustrates this by showing two prefixes of

executions. The left part shows a prefix that respects ϕ. The right part of the figure

shows a case where the controller has issued an unnecessary grant that prevents him

from granting the request that appears with the down event at time 5.75.

Let us now apply the algorithmic schema presented above to this example. We first

build the NECA with Büchi acceptance condition A¬ϕ, given in Fig. 2. This automa-

ton has two parts, identified by the names of the states: the top part (corresponding to

the states 1, . . . 7) accepts the models of [[¬(Hyp→ Req1)]] and the lower part (states

1, 2, . . . , 6) accepts the models of [[¬(Hyp→ Req2)]], so the whole automaton accepts

exactly [[¬ϕ]]. Fig. 2 can also be regarded as a depiction of the dual UECA with co-Büchi

acceptance condition Ã¬ϕ, by interpreting non-determinism as universal branching.

From Ã¬ϕ, we have applied the counting functions construction described above,

for i = 1. In order to ease the presentation, we have applied this construction separately

on the two parts of the automaton, to obtain G1 and G2, given in Fig. 3. These automata

are shown as they appear in their UPPAAL TIGA encoding: controllable transitions are

plain, and uncontrollable transitions are dashed. The history clocks corresponding to up,

down and grant are respectively denoted u, d and g. Remark that since UPPAAL TIGA

uses classical Alur-Dill timed automata, and not NECA, we have to explicitly manage

the reset of those clocks. Finally, observe that we have used the synchronisation mech-

anism offered by UPPAAL TIGA to ensure that the game is played on the synchronous

product of these two automata (which corresponds to the counting function construction

applied to A¬ϕ).

We provided this model to UPPAAL TIGA together with the synthesis objective

control: A[not BadState], where BadState is true iff one of the automata

reaches one of its Bad locations (that corresponds to one of the counters being > 1).

In this case, UPPAAL TIGA can compute a winning strategy for player 1, which means
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Remark that ϕ does not forbid the controller from producing grant events that have

not been requested by the environment. However, a controller producing grants too
often might hinder itself because Req2 requires each pair of grants to be separated from

each other by at least 3 time units. Fig. 1 illustrates this by showing two prefixes of

executions. The left part shows a prefix that respects ϕ. The right part of the figure

shows a case where the controller has issued an unnecessary grant that prevents him

from granting the request that appears with the down event at time 5.75.

Let us now apply the algorithmic schema presented above to this example. We first

build the NECA with Büchi acceptance condition A¬ϕ, given in Fig. 2. This automa-

ton has two parts, identified by the names of the states: the top part (corresponding to

the states 1, . . . 7) accepts the models of [[¬(Hyp→ Req1)]] and the lower part (states

1, 2, . . . , 6) accepts the models of [[¬(Hyp→ Req2)]], so the whole automaton accepts

exactly [[¬ϕ]]. Fig. 2 can also be regarded as a depiction of the dual UECA with co-Büchi

acceptance condition Ã¬ϕ, by interpreting non-determinism as universal branching.

From Ã¬ϕ, we have applied the counting functions construction described above,

for i = 1. In order to ease the presentation, we have applied this construction separately

on the two parts of the automaton, to obtain G1 and G2, given in Fig. 3. These automata

are shown as they appear in their UPPAAL TIGA encoding: controllable transitions are

plain, and uncontrollable transitions are dashed. The history clocks corresponding to up,

down and grant are respectively denoted u, d and g. Remark that since UPPAAL TIGA

uses classical Alur-Dill timed automata, and not NECA, we have to explicitly manage

the reset of those clocks. Finally, observe that we have used the synchronisation mech-

anism offered by UPPAAL TIGA to ensure that the game is played on the synchronous

product of these two automata (which corresponds to the counting function construction

applied to A¬ϕ).

We provided this model to UPPAAL TIGA together with the synthesis objective

control: A[not BadState], where BadState is true iff one of the automata

reaches one of its Bad locations (that corresponds to one of the counters being > 1).

In this case, UPPAAL TIGA can compute a winning strategy for player 1, which means

with K-co-Büchi acceptance condition (for a precise value of K). In this game, the

objective of player 1 is thus to avoid visiting accepting states too often (no more than

K times), and this is thus a safety condition. The automaton DetK(Ã¬ϕ) can be used to

define a timed safety game. Such games can be solved by tools such as UPPAAL TIGA

[BCD
+

07].

The drawback of this approach is that the value K is potentially intractable: it is

doubly-exponential in the size of ϕ. As a consequence, DetK(Ã¬ϕ) and its underlying

timed safety game are unmanageably large. To circumvent this difficulty, we adopt an

incremental approach. Instead of solving the game underlying DetK(Ã¬ϕ), we solve

iteratively the games underlying Deti(Ã¬ϕ) for increasing values of i = 0, 1, . . .. As

soon as player 1 can win a game for some i, we can stop and conclude that ϕ is realiz-
able. Indeed, L0coB(Deti(Ã¬ϕ)) = LicoB(Ã¬ϕ) by Proposition 21, and LicoB(Ã¬ϕ) ⊆
LKcoB(Ã¬ϕ) ⊆ [[ϕ]]. In other words, realizability of L0coB(Deti(Ã¬ϕ)) implies realiz-

ability of ϕ. Unfortunately, if ϕ is not realizable, this approach fails to avoid considering

the large theoretical bound K. To circumvent this second difficulty, we use the prop-

erty that our games are determined: ϕ is not realizable by player 1 iff ¬ϕ is realizable

by player 2. So in practice, we execute two instances of our incremental algorithm in

parallel and stop whenever one of the two is conclusive. The details of this incremental

approach are given in [FJR09], and it is experimentally shown there, in the case of LTL
specifications, that the values that one needs to consider for i are usually very small.

To sum up, our incremental algorithm works as follows. Fix an LTL� formula ϕ, and

set i to 0. Next, if player 1 has a winning strategy in

�
Σ1,Σ2, L0coB(Deti(Ã¬ϕ))

�
, then

ϕ is realizable; else if player 2 has a winning strategy in

�
Σ1,Σ2, L0coB(Deti(Ãϕ))

�
,

then ϕ is not realizable; else, increment i by 1 and iterate.

Experiments with UPPAAL TIGA We have thus reduced the realizability problem of

LTL� to solving a sequence of TG of the form �Σ1,Σ2, L0coB(A)�, where A is a DECA.

Solving each of these games amounts to solving a safety game played in an arena which

is defined by A (where the edges are partitioned according to Σ1 and Σ2). In practice,

this can be done using UPPAAL TIGA [BCD
+

07], as we are about to show thanks to

a simple yet realistic example. Our example consists of a system where a controller

monitors an input line that can be in two states: high or low. The state of the input line

is controlled by the environment, thanks to the actions up and down, that respectively

change the state from low to high and high to low. Changes in the state of the input

line might represent requests that the controller has to grant. More precisely, whenever

consecutive up and down events occur separated by at least two time units, the controller

has to issue a grant after the corresponding down but before the next up. Moreover,

successive grants have to be at least three time units apart, and up and down events

have to be separated by at least one time unit. This informal requirement is captured by

the LTL� formula ϕ ≡ Hyp → Req1 ∧ Req2 on Σ = Σ1 � Σ2 where Σ1 = {grant},

1 2 3 4 5 6 7 8

up down up updown

input
hi

lo

grants
no grant allowed

grant

1 2 3 4 5 6 7 8

up down up updown

input
hi

lo

grants
no grant allowed

grant

Fig. 1. Two examples of execution of the systems. The state of the input is represented on top,

grants are represented at the bottom. Each dot represents a grant event. Thick lines represent the

period during which the controller cannot produce any grant because of Req2.

Σ2 = {up, down} and:

Hyp ≡ �
�
up →

�
¬down U(down ∧�≥1 up)

��
∧

�
�
down →

�
¬up U(up ∧�≥1 down)

��

Req1 ≡ �
�
(down ∧�>2 up)→ (¬up U grant)

�

Req2 ≡ �(grant → ¬�<3 grant)

Remark that ϕ does not forbid the controller from producing grant events that have

not been requested by the environment. However, a controller producing grants too
often might hinder itself because Req2 requires each pair of grants to be separated from

each other by at least 3 time units. Fig. 1 illustrates this by showing two prefixes of

executions. The left part shows a prefix that respects ϕ. The right part of the figure

shows a case where the controller has issued an unnecessary grant that prevents him

from granting the request that appears with the down event at time 5.75.

Let us now apply the algorithmic schema presented above to this example. We first

build the NECA with Büchi acceptance condition A¬ϕ, given in Fig. 2. This automa-

ton has two parts, identified by the names of the states: the top part (corresponding to

the states 1, . . . 7) accepts the models of [[¬(Hyp→ Req1)]] and the lower part (states

1, 2, . . . , 6) accepts the models of [[¬(Hyp→ Req2)]], so the whole automaton accepts

exactly [[¬ϕ]]. Fig. 2 can also be regarded as a depiction of the dual UECA with co-Büchi

acceptance condition Ã¬ϕ, by interpreting non-determinism as universal branching.

From Ã¬ϕ, we have applied the counting functions construction described above,

for i = 1. In order to ease the presentation, we have applied this construction separately

on the two parts of the automaton, to obtain G1 and G2, given in Fig. 3. These automata

are shown as they appear in their UPPAAL TIGA encoding: controllable transitions are

plain, and uncontrollable transitions are dashed. The history clocks corresponding to up,

down and grant are respectively denoted u, d and g. Remark that since UPPAAL TIGA

uses classical Alur-Dill timed automata, and not NECA, we have to explicitly manage

the reset of those clocks. Finally, observe that we have used the synchronisation mech-

anism offered by UPPAAL TIGA to ensure that the game is played on the synchronous

product of these two automata (which corresponds to the counting function construction

applied to A¬ϕ).

We provided this model to UPPAAL TIGA together with the synthesis objective

control: A[not BadState], where BadState is true iff one of the automata

reaches one of its Bad locations (that corresponds to one of the counters being > 1).

In this case, UPPAAL TIGA can compute a winning strategy for player 1, which means
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Ingredients for Safraless procedure

(1) A translation from LTL+◁ to a class of 
universal timed automata

(2) A bound on the memory needed for 
winning realizable LTL+◁ specifications

(3) A translation to timed safety games
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Ingredient 1

A Class of 
Universal Timed Automata
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UniversalPastECA with coB a.c.

1

xa=1∨xa=⟘

a,b

a

RunTΣω

2

1(a,0)

1 2(a,1)

(b,1.5) 1 2 2

1(a,2)

Val(xa)

⟘

1

0.5

1
...... ...

...

Monday 21 November 2011



UniversalPastECA with coB a.c.

1

xa=1∨xa=⟘

a,b

a

RunTΣω

2

1(a,0)

1 2(a,1)

(b,1.5) 1 2

1(a,2)

Val(xa)

⟘

1

0.5

1
...... ...

...
It is 

also possible to define alte
rnating ECA.

Their emptiness problem is P
Space-C.
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UniversalPastECA with coB a.c.

1

xa=1∨xa=⟘

a,b

a

RunTΣω

2

1(a,0)

1 2(a,1)

(b,1.5) 1 2

1(a,2)

Val(xa)

⟘

1

0.5

1
...... ...

...
Note that universal 

timed automata l
eads to 

an unbounded number of clo
cks.
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Ingredient 2

Bounding memory
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Region Games
• A region game is a 4-uple ⟨Σ1,Σ2,cmax,W⟩ 

where cmax∈ℕ and W⊆(Σ1∪Σ2)×Reg(ℍΣ,cmax)

★ ℍΣ  is the set of history clocks over Σ 

★ Reg(ℍΣ,cmax) is the set of regions for clocks in ℍΣ and maximal constant cmax.

• A region game is played in rounds. 

★ In each round Pl. 1 proposes a pair (σ,r) where σ∈Σ1 and rcurrent ≤t.s. r. 

★ Then, either Pl. 2 lets Pl. 1 play, or plays (σ’,r’) s.t. σ’∈Σ2 and rcurrent ≤t.s. r’ ≤t.s. r. 

• Such an interaction generate an infinite word over the alphabet 
(Σ1∪Σ2)×Reg(ℍΣ,cmax).

Monday 21 November 2011



Region Games

Theorem

Let A be a universal PastECA 
with maximal constant cmax. 

Player 1 has a winning strategy in 
the timed game G=⟨Σ1,Σ2,LcoB(A)⟩ 

iff
 

Player 1 has a winning strategy in 
the region game GR=⟨Σ1,Σ2,cmax,LcoB(Rg(A))⟩.
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Region Games

Theorem

Let A be a universal PastECA 
with maximal constant cmax. 

Player 1 has a winning strategy in 
the timed game G=⟨Σ1,Σ2,LcoB(A)⟩ 

iff
 

Player 1 has a winning strategy in 
the region game GR=⟨Σ1,Σ2,cmax,LcoB(Rg(A))⟩.

Syntactic
Transformation
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Region Games

Theorem

Let A be a universal PastECA 
with maximal constant cmax. 

Player 1 has a winning strategy in 
the timed game G=⟨Σ1,Σ2,LKcoB(A)⟩ 

iff
 

Player 1 has a winning strategy in 
the region game GR=⟨Σ1,Σ2,cmax,LKcoB(Rg(A))⟩.

↑

↑
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Bounding the visits to accepting states

• Regions games = regular games.

• To win ⟨Σ1,Σ2,cmax,LUcoB(Rg(A))⟩, Player 1 needs a memory 
which is bounded by ( 2nn+1n! + n ) × |Reg(ℍΣ,cmax)|.
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Bounding the visits to accepting states

Theorem

Let A be a universal PastECA with maximal constant cmax. 
Let K = ( 2nn+1n! + n ) × |Reg(ℍΣ,cmax)|

Player 1 has a winning strategy in the timed game G=⟨Σ1,Σ2,LcoB(A)⟩ 

iff
 

Player 1 has a winning strategy in the region game GR=⟨Σ1,Σ2,cmax,LcoB(Rg(A))⟩

iff

Player 1 has a winning strategy in the region game GR=⟨Σ1,Σ2,cmax,LKcoB(Rg(A))⟩

iff

Player 1 has a winning strategy in the timed game GR=⟨Σ1,Σ2,LKcoB(A)⟩
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Ingredient 3

Timed Safety Games
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Determinization of PastKUcoBECA

• “Counting subset construction” can be applied 
directly on PastUcoBECA.

• No need to construct the region automaton.
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Determinization of PastKUcoBECA

1

xa≥1

a,b
xa≤2

a
xa=1

Run

2

1

1 2

1 2 2

1
...

{1:0}

{1:0,2:1}

xa≤2∧ xa≥1

{1:0,2:2}

xa≤2∧ xa≥1∧xa=1

... ... ... ...

xa≤2∧ xa≥1∧xa=1
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Determinization of PastKUcoBECA

• “Counting subset construction” can be applied 
directly on PastKUcoBECA.

• No need to construct the region automaton.

As deterministic PastECA are TA, 
we can use UppAal TiGa to analyze 
the underlying timed safety game.
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Illustration
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Fig. 2. The NECA A¬ϕ

that player 1 is capable of ensuring that, on any branch of any run of Ã¬ϕ, accepting

states occur at most one time. This strategy thus ensures that all the plays are accepted

by Ã¬ϕ, and so they all satisfy ϕ. Hence, ϕ is realizable. This example shows that,

although an exponentially-large K might be needed to prove realizability of an LTL�
formula, in practice, small values of i (here, 1) might be sufficient. A larger set of

experiments (on large LTL formulas) exploiting the same techniques can be found in

[FJR09]. These experiments confirm that small values of i are sufficient in practice.

Remark 23 (Time divergence). In this example, time divergence is not an issue. Indeed,

the objective is such that, on the one hand, player 1 wins the game if player 2 proposes

to play up followed by down, or down followed by up without waiting at least one time

unit (because of Hyp), and, on the other hand, player 1 violates Req2 if he plays two

grant actions too close in time (less than 3 t.u. apart).
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Fig. 1. Two examples of execution of the systems. The state of the input is represented on top,

grants are represented at the bottom. Each dot represents a grant event. Thick lines represent the

period during which the controller cannot produce any grant because of Req2.

Σ2 = {up, down} and:

Hyp ≡ �
�
up →

�
¬down U(down ∧�≥1 up)

��
∧

�
�
down →

�
¬up U(up ∧�≥1 down)

��

Req1 ≡ �
�
(down ∧�>2 up)→ (¬up U grant)

�

Req2 ≡ �(grant → ¬�<3 grant)

Remark that ϕ does not forbid the controller from producing grant events that have

not been requested by the environment. However, a controller producing grants too
often might hinder itself because Req2 requires each pair of grants to be separated from

each other by at least 3 time units. Fig. 1 illustrates this by showing two prefixes of

executions. The left part shows a prefix that respects ϕ. The right part of the figure

shows a case where the controller has issued an unnecessary grant that prevents him

from granting the request that appears with the down event at time 5.75.

Let us now apply the algorithmic schema presented above to this example. We first

build the NECA with Büchi acceptance condition A¬ϕ, given in Fig. 2. This automa-

ton has two parts, identified by the names of the states: the top part (corresponding to

the states 1, . . . 7) accepts the models of [[¬(Hyp→ Req1)]] and the lower part (states

1, 2, . . . , 6) accepts the models of [[¬(Hyp→ Req2)]], so the whole automaton accepts

exactly [[¬ϕ]]. Fig. 2 can also be regarded as a depiction of the dual UECA with co-Büchi

acceptance condition Ã¬ϕ, by interpreting non-determinism as universal branching.

From Ã¬ϕ, we have applied the counting functions construction described above,

for i = 1. In order to ease the presentation, we have applied this construction separately

on the two parts of the automaton, to obtain G1 and G2, given in Fig. 3. These automata

are shown as they appear in their UPPAAL TIGA encoding: controllable transitions are

plain, and uncontrollable transitions are dashed. The history clocks corresponding to up,

down and grant are respectively denoted u, d and g. Remark that since UPPAAL TIGA

uses classical Alur-Dill timed automata, and not NECA, we have to explicitly manage

the reset of those clocks. Finally, observe that we have used the synchronisation mech-

anism offered by UPPAAL TIGA to ensure that the game is played on the synchronous

product of these two automata (which corresponds to the counting function construction

applied to A¬ϕ).

We provided this model to UPPAAL TIGA together with the synthesis objective

control: A[not BadState], where BadState is true iff one of the automata

reaches one of its Bad locations (that corresponds to one of the counters being > 1).

In this case, UPPAAL TIGA can compute a winning strategy for player 1, which means

using
extension
of classical

constructions
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Fig. 2. The NECA A¬ϕ

that player 1 is capable of ensuring that, on any branch of any run of Ã¬ϕ, accepting

states occur at most one time. This strategy thus ensures that all the plays are accepted

by Ã¬ϕ, and so they all satisfy ϕ. Hence, ϕ is realizable. This example shows that,

although an exponentially-large K might be needed to prove realizability of an LTL�
formula, in practice, small values of i (here, 1) might be sufficient. A larger set of

experiments (on large LTL formulas) exploiting the same techniques can be found in

[FJR09]. These experiments confirm that small values of i are sufficient in practice.

Remark 23 (Time divergence). In this example, time divergence is not an issue. Indeed,

the objective is such that, on the one hand, player 1 wins the game if player 2 proposes

to play up followed by down, or down followed by up without waiting at least one time

unit (because of Hyp), and, on the other hand, player 1 violates Req2 if he plays two

grant actions too close in time (less than 3 t.u. apart).
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Fig. 1. Two examples of execution of the systems. The state of the input is represented on top,

grants are represented at the bottom. Each dot represents a grant event. Thick lines represent the

period during which the controller cannot produce any grant because of Req2.

Σ2 = {up, down} and:

Hyp ≡ �
�
up →

�
¬down U(down ∧�≥1 up)

��
∧

�
�
down →

�
¬up U(up ∧�≥1 down)
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Req1 ≡ �
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(down ∧�>2 up)→ (¬up U grant)
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Req2 ≡ �(grant → ¬�<3 grant)

Remark that ϕ does not forbid the controller from producing grant events that have

not been requested by the environment. However, a controller producing grants too
often might hinder itself because Req2 requires each pair of grants to be separated from

each other by at least 3 time units. Fig. 1 illustrates this by showing two prefixes of

executions. The left part shows a prefix that respects ϕ. The right part of the figure

shows a case where the controller has issued an unnecessary grant that prevents him

from granting the request that appears with the down event at time 5.75.

Let us now apply the algorithmic schema presented above to this example. We first

build the NECA with Büchi acceptance condition A¬ϕ, given in Fig. 2. This automa-

ton has two parts, identified by the names of the states: the top part (corresponding to

the states 1, . . . 7) accepts the models of [[¬(Hyp→ Req1)]] and the lower part (states

1, 2, . . . , 6) accepts the models of [[¬(Hyp→ Req2)]], so the whole automaton accepts

exactly [[¬ϕ]]. Fig. 2 can also be regarded as a depiction of the dual UECA with co-Büchi

acceptance condition Ã¬ϕ, by interpreting non-determinism as universal branching.

From Ã¬ϕ, we have applied the counting functions construction described above,

for i = 1. In order to ease the presentation, we have applied this construction separately

on the two parts of the automaton, to obtain G1 and G2, given in Fig. 3. These automata

are shown as they appear in their UPPAAL TIGA encoding: controllable transitions are

plain, and uncontrollable transitions are dashed. The history clocks corresponding to up,

down and grant are respectively denoted u, d and g. Remark that since UPPAAL TIGA

uses classical Alur-Dill timed automata, and not NECA, we have to explicitly manage

the reset of those clocks. Finally, observe that we have used the synchronisation mech-

anism offered by UPPAAL TIGA to ensure that the game is played on the synchronous

product of these two automata (which corresponds to the counting function construction

applied to A¬ϕ).

We provided this model to UPPAAL TIGA together with the synthesis objective

control: A[not BadState], where BadState is true iff one of the automata

reaches one of its Bad locations (that corresponds to one of the counters being > 1).

In this case, UPPAAL TIGA can compute a winning strategy for player 1, which means

using
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Illustration

In this game, Player 1 has a winning strategy

1 2 3 4 5 6 7 8

up down up updown

input
hi

lo

grants
no grant allowed

grant

1 2 3 4 5 6 7 8

up down up updown

input
hi

lo

grants
no grant allowed

grant

Fig. 1. Two examples of execution of the systems. The state of the input is represented on top,

grants are represented at the bottom. Each dot represents a grant event. Thick lines represent the

period during which the controller cannot produce any grant because of Req2.

Σ2 = {up, down} and:

Hyp ≡ �
�
up →

�
¬down U(down ∧�≥1 up)

��
∧

�
�
down →

�
¬up U(up ∧�≥1 down)

��

Req1 ≡ �
�
(down ∧�>2 up)→ (¬up U grant)

�

Req2 ≡ �(grant → ¬�<3 grant)

Remark that ϕ does not forbid the controller from producing grant events that have

not been requested by the environment. However, a controller producing grants too
often might hinder itself because Req2 requires each pair of grants to be separated from

each other by at least 3 time units. Fig. 1 illustrates this by showing two prefixes of

executions. The left part shows a prefix that respects ϕ. The right part of the figure

shows a case where the controller has issued an unnecessary grant that prevents him

from granting the request that appears with the down event at time 5.75.

Let us now apply the algorithmic schema presented above to this example. We first

build the NECA with Büchi acceptance condition A¬ϕ, given in Fig. 2. This automa-

ton has two parts, identified by the names of the states: the top part (corresponding to

the states 1, . . . 7) accepts the models of [[¬(Hyp→ Req1)]] and the lower part (states

1, 2, . . . , 6) accepts the models of [[¬(Hyp→ Req2)]], so the whole automaton accepts

exactly [[¬ϕ]]. Fig. 2 can also be regarded as a depiction of the dual UECA with co-Büchi

acceptance condition Ã¬ϕ, by interpreting non-determinism as universal branching.

From Ã¬ϕ, we have applied the counting functions construction described above,

for i = 1. In order to ease the presentation, we have applied this construction separately

on the two parts of the automaton, to obtain G1 and G2, given in Fig. 3. These automata

are shown as they appear in their UPPAAL TIGA encoding: controllable transitions are

plain, and uncontrollable transitions are dashed. The history clocks corresponding to up,

down and grant are respectively denoted u, d and g. Remark that since UPPAAL TIGA

uses classical Alur-Dill timed automata, and not NECA, we have to explicitly manage

the reset of those clocks. Finally, observe that we have used the synchronisation mech-

anism offered by UPPAAL TIGA to ensure that the game is played on the synchronous

product of these two automata (which corresponds to the counting function construction

applied to A¬ϕ).

We provided this model to UPPAAL TIGA together with the synthesis objective

control: A[not BadState], where BadState is true iff one of the automata

reaches one of its Bad locations (that corresponds to one of the counters being > 1).

In this case, UPPAAL TIGA can compute a winning strategy for player 1, which means

"  the formula 

is realizable

UppAal-TiGa can provide a winning strategy.
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Conclusion

★ Safraless approaches makes LTL synthesis practical

★ ... this can be smoothly extended to LTL+◁
★ Existing tools like UppAal-TiGa can be used

★ More in the paper:

★ Rank construction for AECA 

★ ... with application to the language inclusion problem for 
nondeterminstic Büchi ECA
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