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Context :
Several type systems have been introduced to analyse the time complexity of functional programs, see

for instance [HAH12]. With such a system, given a type derivation for a program M , one can extract from
it an upper bound on the (sequential) execution time of M on any input. A more recent challenge is that of
complexity analysis for parallel or concurrent computation.

Objective :
The π-calculus [SW03] is a formal calculus to study parallel and concurrent computation, just as λ-

calculus allows to study functional computation. It represents processes communicating by messages sent
through channels. Some systems have recently been proposed [BG21, BGK21, Ghy21, BG22] to analyse the
parallel time complexity of π-calculus programs. The first system [BG21] deals with parallel behaviour, while
the second one [BGK21] also accounts for concurrent behaviour, at the price of a more involved syntax. In
both cases the execution time analysis bounds the time needed to reach an inactive state and is expressed
parametrically with respect to the sizes of input messages.

However for concurrent systems there is not yet any standard notion of time complexity similar to that of
input-output functional computation. For this reason we propose to extend the kinds of complexity that can
be analysed by the types. For instance for some systems we might be interested in the time needed to reach
certain particular states (e.g. expressing that a certain task has been completed, even if some computation is
still going on in other threads), or we might be interested in expressing the complexity not only with respect
to the sizes of input messages, but rather with respect to their number. For motivating this second extension
think of a process that needs to handle a large number of messages, each of which is of small bounded size.

The work in this internship will consist first in exploring which notions of complexity can be relevant
for π-calculus concurrent systems, and then in introducing a type system to analyse these complexities and
proving its properties.

Expected background : It is expected to have some knowledge about λ-calculus or functional program-
ming languages as well as about type systems. Some notions of concurrent process calculi such as π-calculus
or CCS, as well as more generally about concurrency theory, would also be welcome but are not compulsory.
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