
findere:

fast and precise approximate membership

query

Lucas Robidou, Pierre Peterlongo

Monday 4th October, 2021

Inria Rennes

1 / 30



Introduction

findere

Results

Work in progress

Take home message

2 / 30



Introduction

findere

Results

Work in progress

Take home message

2 / 30



Introduction

findere

Results

Work in progress

Take home message

2 / 30



Introduction

findere

Results

Work in progress

Take home message

2 / 30



Introduction

findere

Results

Work in progress

Take home message

2 / 30



Summary

Introduction

findere

Results

Work in progress

Take home message

3 / 30



Introduction - Bloom filters

A Bloom filter is a data structure used to test wether an element

X is in a set S .

� If X ∈ S , then the filter

answers ‘True’

� If X 6∈ S , the filter might

still answers ‘True’ with a

probability ε (collisions)
Figure 1: A Bloom Filter

4 / 30



Some context

Main goal:
� to read and index (large) genomic datasets

� to query those indexed datasets

5 / 30



Some context

Main goal:
� to read and index (large) genomic datasets

� to query those indexed datasets

6 / 30



Some context

Challenges:

� indexation time

� abundance storage

� index size

� query time

� false positive rate

7 / 30



Some context

How do I index?

� extract every subsequence of size K (K -mers), index them

� query every K -mer from your queried sequence

� compute similarity using the proportion of shared K -mers

8 / 30



Classic indexation example

9 / 30



Classic indexation example

9 / 30



Classic indexation example

9 / 30



Classic indexation example

9 / 30



Classic indexation example

9 / 30



Classic indexation example

9 / 30



Classic indexation example

9 / 30



Classic indexation example

9 / 30



Classic indexation example

9 / 30



Summary

Introduction

findere

Results

Work in progress

Take home message

10 / 30



Main idea of findere

Let’s consider the 7-mer ‘biology’. Its 5-mers are:

� ‘biolo’

� ‘iolog’

� ‘ology’

One of them not found =⇒ ‘biology’ not found

11 / 30



New method: findere

Rather than indexing K -mers, let’s index k-mers, k < K .

Let’s introduce z = K − k, so that a K -mer is made of z + 1

smaller k-mers.

A K -mer is said ‘found’ iif the z + 1 k-mers composing it are

found in the filter.

12 / 30



New method: findere

Let us change the indexation part a bit: we now need to index

k-mers.

13 / 30



Findere indexation example

14 / 30



Findere indexation example

14 / 30



Findere indexation example

14 / 30



Findere indexation example

14 / 30



Findere indexation example

14 / 30



Findere indexation example

14 / 30



Findere indexation example

14 / 30



Findere indexation example

14 / 30



Findere indexation example

14 / 30



Findere indexation example

14 / 30



Findere indexation example

14 / 30



Findere indexation example

14 / 30



Findere indexation example

14 / 30



Findere indexation example

14 / 30



Findere indexation example

14 / 30



New method: findere

Let us change the query part now: we now need to query k-mers.

z k-mers are shared among two K -mers: no need to query them

again

15 / 30



Findere query example

16 / 30



Findere query example

16 / 30



Findere query example

16 / 30



Findere query example

16 / 30



Findere query example

16 / 30



Findere query example

16 / 30



Findere query example

16 / 30



Findere query example

16 / 30



Findere query example

16 / 30



Findere query example

16 / 30



Findere query example

16 / 30



Findere query example

16 / 30



Findere query example

16 / 30



Findere query example

16 / 30



Findere query example

16 / 30



Findere (negative) query example

17 / 30



Findere (negative) query example

17 / 30



Findere (negative) query example

17 / 30



Findere (negative) query example

17 / 30



Findere (negative) query example

17 / 30



Findere (negative) query example

17 / 30



Findere (negative) query example

17 / 30



findere: ‘skip’ optimisation

If two negatives k-mers are z positions away, there is at most z − 1

positive k-mers in between

� Higher z =⇒ less query in a negative stretch

18 / 30



Choosing z

For a chosen K , if z is too close to K , then findere will index and

query very small k-mers. In such case, the probability of having

indexed all those k-mers is high.

19 / 30



Findere query example

20 / 30



Summary

Introduction

findere

Results

Work in progress

Take home message

21 / 30



Some results

Figure 2: False positive rate for a classic query on a Bloom filter vs using

findere. HMP sample SRS014107 queried against sample SRS016349.

22 / 30



Some results

Figure 3: False positive rate for a classic query on a Bloom filter vs using

findere. HMP sample SRS014107 queried against sample SRS016349.

23 / 30



Some results

Figure 4: False positive rate for a classic query on a Bloom filter vs using

findere. HMP sample SRS014107 queried against sample SRS016349.

24 / 30



Some results

Figure 5: False positive rate for a classic query on a Bloom filter vs

using findere wrt the size (K31, z = 3). HMP sample SRS014107

queried against sample SRS016349.

25 / 30



Some results

z 0 1 2 3 4 5 10

BF 42.4

findere 42.9 43.7 24.3 17.5 14.1 12.0 8.6

Table 1: Query time (second) with and without findere, using a Bloom

filter wrt z.

26 / 30



Summary

Introduction

findere

Results

Work in progress

Take home message

27 / 30



Work in progress

How to predict the false positive rate when using findere ?

Working on it with

� Mahendra Mariadassou

� Sophie Schbath

� Julie Aubert

� Stephane Robin

For now: able to have a rought estimation

28 / 30



Summary

Introduction

findere

Results

Work in progress

Take home message

29 / 30



Take home message

Using findere, we we are able to

� decrease the size required for a Bloom filter by a factor 100

� (or alternatively, decrease the false positive rate)

� while querying it three times faster

30 / 30


	Introduction
	findere
	Results
	Work in progress
	Take home message

