findere: fast and precise approximate membership query

Lucas Robidou, Pierre Peterlongo Monday 4th October, 2021

Inria Rennes

findere

findere

Results

findere

Results

Work in progress

findere

Results

Work in progress

Take home message

Summary

Introduction

findere

Results

Work in progress

Take home message

Introduction - Bloom filters

A Bloom filter is a data structure used to test wether an element X is in a set S.

- If X ∈ S, then the filter answers 'True'
- If X ∉ S, the filter might still answers 'True' with a probability ϵ (collisions)

Figure 1: A Bloom Filter

Main goal:

- to read and index (large) genomic datasets
- to query those indexed datasets

Main goal:

- to read and index (large) genomic datasets
- to query those indexed datasets

Challenges:

- indexation time
- abundance storage
- index size
- query time
- false positive rate

How do I index?

- extract every subsequence of size K (K-mers), index them
- query every K-mer from your queried sequence
- compute similarity using the proportion of shared K-mers

Indexing: GGTCACTGACA

Indexing: GGTCACTGACA

Summary

Introduction

findere

Results

Work in progress

Take home message

Main idea of findere

Let's consider the 7-mer 'biology'. Its 5-mers are:

- 'biolo'
- 'iolog'
- 'ology'

One of them not found \implies 'biology' not found

New method: findere

Rather than indexing K-mers, let's index k-mers, k < K. Let's introduce z = K - k, so that a K-mer is made of z + 1 smaller k-mers.

A $\it K$ -mer is said 'found' iif the $\it z+1$ $\it k$ -mers composing it are found in the filter.

New method: findere

Let us change the indexation part a bit: we now need to index k-mers.

Indexing: GGTCACTGACA

Indexing: GGTCACTGACA

GGT GTC TCA

GGT

GGT GTC TCA

GTC TCA CAC

GTC TCA CAC

New method: findere

Let us change the query part now: we now need to query k-mers. z k-mers are shared among two K-mers: no need to query them again

Indexed: GGTCACTGACA Querying: GGTCACTGACA

Indexed: GGTCACTGACA

Querying: GGTCACTGACA

16 / 30

Indexed: GGTCACTGACA Querying: GGTCACTGACA

GGT GTC TCA

Indexed: GGTCACTGACA

Querying: GGTCACTGACA

GGT GTC TCA

Indexed: GGTCACTGACA Querying: GGTCACTGACA

GGT GTC TCA

Indexed: GGTCACTGACA Querying: GGTCACTGACA

GTC TCA CAC

Indexed: GGTCACTGACA

GTC TCA CAC

Indexed: GGTCACTGACA Querying: GGTCACTGACA

GTC TCA CAC

Indexed: GGTCACTGACA

Indexed: GGTCACTGACA

Indexed: GGTCACTGACA

Indexed: GGTCACTGACA

Querying: CGTCATTGGCA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

17 / 30

Indexed: GGTCACTGACA

Querying: CGTCATTGGCA

Indexed: GGTCACTGACA

Querying: CGTCATTGGCA

GTC TCA CAT

Indexed: GGTCACTGACA

Querying: CGTCATTGGCA

Querying: CGTCATTGGCA

Indexed: GGTCACTGACA

findere: 'skip' optimisation

If two negatives k-mers are z positions away, there is at most z-1 positive k-mers in between

• Higher $z \implies$ less query in a negative stretch

Choosing z

For a chosen K, if z is too close to K, then findere will index and query very small k-mers. In such case, the probability of having indexed all those k-mers is high.

Indexed: GGTCACTGACA

Summary

Introduction

findere

Results

Work in progress

Take home message

Figure 2: False positive rate for a classic query on a Bloom filter vs using findere. HMP sample SRS014107 queried against sample SRS016349.

Figure 3: False positive rate for a classic query on a Bloom filter vs using findere. HMP sample SRS014107 queried against sample SRS016349.

Figure 4: False positive rate for a classic query on a Bloom filter vs using findere. HMP sample SRS014107 queried against sample SRS016349.

Figure 5: False positive rate for a classic query on a Bloom filter vs using findere wrt the size (K31, z=3). HMP sample SRS014107 queried against sample SRS016349.

Z	0	1	2	3	4	5	10
BF	42.4						
findere	42.9	43.7	24.3	17.5	14.1	12.0	8.6

Table 1: Query time (second) with and without findere, using a Bloom filter wrt z.

Summary

Introduction

findere

Results

Work in progress

Take home message

Work in progress

How to predict the false positive rate when using findere ? Working on it with

- Mahendra Mariadassou
- Sophie Schbath
- Julie Aubert
- Stephane Robin

For now: able to have a rought estimation

Summary

Introduction

findere

Results

Work in progress

Take home message

Take home message

Using findere, we we are able to

- decrease the size required for a Bloom filter by a factor 100
- (or alternatively, decrease the false positive rate)
- while querying it three times faster