
Grammar Index
By Induced Suffix Sorting

Tooru Akagi1, Dominik Köppl2,
Yuto Nakashima1, Shunsuke Inenaga1,
Hideo Bannai2, and Masayuki Takeda1

1. Kyushu University

2. Tokyo Medical and Dental University

1

Grammar Compression

• Given input text 𝑇, Grammar Compression is
a context-free grammar that produces
only the original text 𝑇.

2

2 0 2 0 1 2 2 0 1 2 0 1 2 0𝑇 =

Grammar Compression

Production
rules

33 4 43

2 0 2 0 1 2 2 0 1 2 0 1 2 0

3 → 2 0
4 → 1 2 0

𝑇 =

• Given input text 𝑇, Grammar Compression is
a context-free grammar that produces
only the original text 𝑇.

2

Non-terminal symbols

Non-terminal symbols

Grammar Compression

Production
rules

Start symbol5

33 4 43

2 0 2 0 1 2 2 0 1 2 0 1 2 0

3 → 2 0
4 → 1 2 0
5 → 3 3 1 2 3 4 4

𝑇 =

• Given input text 𝑇, Grammar Compression is
a context-free grammar that produces
only the original text 𝑇.

2

Setting
• Grammar-index

uWe use grammar compression GCIS [Nunes et al. 18], which is
based on the suffix sorting algorithm SAIS.

uWe propose a new compressed index called GCIS-index and
show how to locate all pattern occurrences in 𝑇.

Text T Grammar-index

Pattern 𝑃 Output occurrences
of 𝑃 in 𝑇

preprocess

query

3

GCIS [Nunes et al. 18] (1/3)

𝑇 = 𝑇! =

𝑇" =

𝑇" =

𝑇# =

GCIS is built by recursively factorizing the text and
substituting factors with non-terminals.

LMS positions
(Left-Most S)

LS LS SL

L S

Suffix Type

SL

4

Suffix Type

• For every text position 𝑖 with 1 ≤ 𝑖 ≤ 𝑇# :
1. Type in 𝑇 𝑇# is S.
2. Type in 𝑇[𝑖] is S if 𝑇 𝑖 < 𝑇 𝑖 + 1 .
3. Type in 𝑇[𝑖] is L if 𝑇 𝑖 > 𝑇 𝑖 + 1 .
4. Type in 𝑇[𝑖] is the type in 𝑇[𝑖 + 1] if 𝑇 𝑖 = 𝑇 𝑖 + 1 .

Lexicographic order is : # < 1 < 2 < ⋯
(# does not appear in T)

5

L S L SS L S SL SS L
𝑇# = 3 1 1 3 2 3 1 1 3 2 3 #

𝑇# = 3 1 1 3 2 3 1 1 3 2 3 #

Suffix Type

• For every text position 𝑖 with 1 ≤ 𝑖 ≤ 𝑇# :
1. Type in 𝑇 𝑇# is S.
2. Type in 𝑇[𝑖] is S if 𝑇 𝑖 < 𝑇 𝑖 + 1 .
3. Type in 𝑇[𝑖] is L if 𝑇 𝑖 > 𝑇 𝑖 + 1 .
4. Type in 𝑇[𝑖] is the type in 𝑇[𝑖 + 1] if 𝑇 𝑖 = 𝑇 𝑖 + 1 .

Lexicographic order is : # < 1 < 2 < ⋯
(# does not appear in T)

5

L S L SS L S SL SS L

𝑇# = 3 1 1 3 2 3 1 1 3 2 3 #

Suffix Type

• For every text position 𝑖 with 1 ≤ 𝑖 ≤ 𝑇# :
1. Type in 𝑇 𝑇# is S.
2. Type in 𝑇[𝑖] is S if 𝑇 𝑖 < 𝑇 𝑖 + 1 .
3. Type in 𝑇[𝑖] is L if 𝑇 𝑖 > 𝑇 𝑖 + 1 .
4. Type in 𝑇[𝑖] is the type in 𝑇[𝑖 + 1] if 𝑇 𝑖 = 𝑇 𝑖 + 1 .

Lexicographic order is : # < 1 < 2 < ⋯
(# does not appear in T)

5

L S L SS L S SL SS L

Suffix Type

• For every text position 𝑖 with 1 ≤ 𝑖 ≤ 𝑇# :
1. Type in 𝑇 𝑇# is S.
2. Type in 𝑇[𝑖] is S if 𝑇 𝑖 < 𝑇 𝑖 + 1 .
3. Type in 𝑇[𝑖] is L if 𝑇 𝑖 > 𝑇 𝑖 + 1 .
4. Type in 𝑇[𝑖] is the type in 𝑇[𝑖 + 1] if 𝑇 𝑖 = 𝑇 𝑖 + 1 .

Lexicographic order is : # < 1 < 2 < ⋯
(# does not appear in T)

5

𝑇# = 3 1 1 3 2 3 1 1 3 2 3 #
L S L SS L S SL SS L

LMS position

• We call position 𝑖 LMS position if:
1. 𝑇 𝑖 is S but 𝑇 𝑖 − 1 is not S, or
2. 𝑖 = 1.

Lexicographic order is : # < 1 < 2 < ⋯
(# does not appear in T)

6

L S L SS L S SL SS L

LMS position

𝑇# = 3 1 1 3 2 3 1 1 3 2 3 #

6

GCIS [Nunes et al. 18] (2/3)
1. Partition 𝑇! at LMS positions into factors.
2. Sort all factors and replace them in the text with symbols

reflecting their lexicographic order.
3. These new symbols induce a new string 𝑇!"# we recurse on.

4 → 1 1 3
5 → 2 3
6 → 3

L S L SS L S SL SS L

7

𝑇# = 𝑇!# = 3 1 1 3 2 3 1 1 3 2 3 #

4 5 4 5𝑇"# = #

rules

GCIS [Nunes et al. 18] (2/3)

𝑇## =
Start Symbol

8 7 7

rules

4 → 1 1 3
5 → 2 3
6 → 3
7 → 4 5
8 → 6
9	→ 8	7	7	

7

• Example for recursion
• When all factors differ, terminate by setting the right-hand side

of the start symbol to the remaining string.

#

L S L SS L S SL SS L

𝑇# = 𝑇!# = 3 1 1 3 2 3 1 1 3 2 3 #

6 4 5 4 5𝑇"# = #

GCIS [Nunes et al. 18] (3/3)
• Example for recursion
• When all factors differ, terminate by setting the right-hand side

of the start symbol to the remaining string.

rules

4 → 1 1 3
5 → 2 3
6 → 3
7 → 4 5
8 → 6
9	→ 8	7	7	

8

𝑠!"#$: The number of non-terminals
in GCIS-grammar

𝑔!"#$: The total lengths of all right-hand sides
in GCIS-grammar

𝑇!# = 3 1 2 1 3 1 2 1 3 3 1 2 3 2 2 3 1

𝑇"# = 1 1 2 1 3 1 2 1 3 3 1 2 3 2 2 1 3

1 2 1 3 1 2 1 3 3 1 2 3 2 2

We showed the following:

last run
𝑃# =

S SL S L S LL S SL L L L

S SL S L S LL S SL L S S

S SL S L S LL S SL L

Any occurrence of pattern 𝑃 in 𝑇 is parsed in the same
way except for the first factor and the last two factors.

#

L L

S L

#

#
S

S

L

S

Local consistency in GCIS

same parsing (= core)

L SL

9

Pattern matching with GCIS-index 10

1. Construct core from 𝑃

2. Find all core occurrences in grammar

3. Find primary occurrence candidates

4. Verify primary occurrence candidates

5. Find secondary occurrences

Pattern matching with GCIS-index 10

1. Construct core from 𝑃

2. Find all core occurrences in grammar

3. Find primary occurrence candidates

4. Verify primary occurrence candidates

5. Find secondary occurrences

𝑂 𝑚 log 𝑠!"#$

𝑂 𝑚 log 𝑠!"#$

𝑜𝑐𝑐!"#$ ∗ 𝑂 log 𝑛 log 𝑠!"#$

𝑂 𝑚 + 𝑜𝑐𝑐!"#$ log𝑚

𝑂 𝑜𝑐𝑐

Total Time : 𝑂 𝑚 log 𝑠!"#$ + 𝑜𝑐𝑐!"#$ log 𝑛 log 𝑠!"#$ + 𝑜𝑐𝑐

with LCE

with GST

with GST

with GST

with Jump Pointer

Indexes with Local Consistency Grammars
[Pattern locating time]

GCIS-index
(This work) 𝑂 𝑚 log 𝑠!"#$ + 𝑜𝑐𝑐!"#$ log 𝑛 log 𝑠!"#$ + 𝑜𝑐𝑐

𝑂 𝑚 log𝑔%$& + 𝑜𝑐𝑐%$& log𝑚 log 𝑛 log∗ 𝑛

LMS based
self-index

(Díaz-Domínguez et al. 21)
𝑂 𝑚 log𝑚 + 𝑜𝑐𝑐 log 𝑔!"#$

Optimal dictionary-
compressed index

(Christiansen et al. 20)
𝑂 𝑚 + 𝑜𝑐𝑐

𝑜𝑐𝑐!"#$ ∶ # of occurrences of core in GCIS-index
𝑜𝑐𝑐%$& ∶ # of occurrences core in ESP-index
𝑜𝑐𝑐 ∶ # of occurrences of patterns

𝑚 : pattern length
𝑛 : uncompressed text length
𝑔%$& : grammar size (ESP-index)
𝑔!"#$: grammar size (GCIS)
𝑠!"#$: # of non-terminals (GCIS)

11

Indexes with Local Consistency Grammars
[Index size] (bits)

GCIS-index
(This work) 𝑂 𝑔!"#$ log 𝑛

1 + 𝜀 𝑔%$& log 𝑔%$& + 4𝑔%$& + 𝑜 𝑔%$&

LMS-based self-index
(Díaz-Domínguez et al. 21) 𝑔!"#$ log 𝑛 + 2 + 𝜀 𝑔!"#$ log 𝑔!"#$

Optimal dictionary-
compressed index

(Christiansen et al. 20)
𝑂 𝛾 log 𝑛/𝛾 log %&' 𝑛

𝜖 ∶ 0 < 𝜖 < 1
𝛾 : smallest string attractor size

𝑛 : uncompressed text length
𝑔%$& : grammar size (ESP-index)
𝑔!"#$: grammar size (GCIS)

12

Computing Pattern Core

𝑟 ← 1

Compute GCIS-parsing of 𝑃!

Create 𝑃456

Output 𝐵(= Core we use)

YesNo

𝑟 ← 𝑟 + 1

Divide 𝑃4 into 𝐴 𝐵 𝐶

𝑥 ≥ 3

𝑥 ← # of factors

Input 𝑃 = 𝑃%

13

Pattern Core (1/2)

nWhen we compute the core of pattern 𝑃,
we use the same non-terminals as in the GCIS for 𝑇.

7 75 5

2 1 3 3 1 2 1 3 3 1 2 1 3 3 …
last run

??
𝑃# =

𝑃#$" =
5 → 1 2
6 → 1 2 3 1
7 → 1 3 3
8 → 1 3 3 2 2 1

…
…

L S L S L S SL S LL L

Create 𝑃456
YesNo

Divide 𝑃4 into 𝐴 𝐵 𝐶

𝑥 ≥ 3

14

2 1 3 3 2 2

Pattern Core (2/2)

n When the number of factors is less than 3,
divide the string into 3 parts 𝐴 𝐵 𝐶.

??
𝑃# =

5 → 1 2
6 → 1 2 3 1
7 → 1 3 3
8 → 1 3 3 2 2 1

…
…

L S L L

𝐴 = left factor
(can be empty)

2 1 3 3 2 2 1 …
2 1 3 3 2 2 3 …

𝐶 = last run
(can be empty)

Create 𝑃456
YesNo

Divide 𝑃4 into 𝐴 𝐵 𝐶

𝑥 ≥ 3

15

33

Generalized Suffix Tree (GST)
• Suffix Tree of concatenation of the right sides of all

production rules.
• For a string 𝐵, GST can report all non-terminals

having 𝐵 on their right-hand sides in 𝑂 𝐵 log 𝑠!"#$ time.

《GCIS-grammar》

5 → 1 2
6 → 1 2 3 1
7 → 1 3 3
8 → 1 3 3 2 2 1

…
… …1 2 # 1 2 3 1 # 1 3 3 # 1 3 3 2 2 1 # …

1 2
3

2
1# 2 31#
… … … … …

16

Primary Occurrence Candidates
• The symbol whose right-hand side contains an occurrence of 𝐵

might be shorter than the pattern length.
→climb up the grammar tree to the lowest symbol whose

expansion is long enough to contain P

𝑃

𝐹′

3 1 2 1 3 1 3

5 6

Core
𝐹

17

…1 2 1 3 3 1 2 1 3 3 1 2

Verify Primary Occurrence Candidates

Core

1. Expand the left & right neighboring symbols of the candidate
2. Check whether they match the remaining part of 𝑃
3. Apply recursively

2 1 3 3 1 2 1 3 3 1 2 1 3 3 2 …
7 5

last run

7 5

…5 5 7 5 7 5 X 7 …

1 3 3 2 2 1…
Expansion of 𝑋

Remaining part of 𝑃

18

[Pattern]

[Grammar]

…

𝑂 𝑚 𝑜𝑐𝑐!"#$ time with simple approach

Longest Common Extension

• Longest Common Extension (LCE) query returns longest
common prefix of two suffixes.
• Answer in 𝑂(1) time by using GST

LCE 𝑋, 4 , 𝑌, 2 = 3
《GCIS-grammar》

…
…

𝑋 → 1 3 3 3 2 1
𝑌 → 1 3 2 1

𝑋 → 1 3 3 3 2 1
𝑌 → 1 3 2 1

19

𝑂 𝑚 𝑜𝑐𝑐!"#$ time 𝑂 𝑚 + 𝑜𝑐𝑐!"#$ log𝑚 time
using LCE

⇒ LCE speeds up verification of all primary occurrence candidates

Find Secondary Occurrences
Find secondary occurrences from each primary occurrence
→ We can find all occurrences of 𝑃 in 𝑂 𝑜𝑐𝑐 time by

application of technique of [Claude and Navarro 12].

𝑃 𝑋 (primary occurrence)

𝑋

𝑇

… Compute starting position of
pattern occurrence

20

Pattern matching with GCIS-index :Recap 21

1. Construct core from 𝑃

2. Find all core occurrences in grammar

3. Find primary occurrence candidates

4. Verify primary occurrence candidates

5. Find secondary occurrences

𝑂 𝑚 log 𝑠!"#$

𝑂 𝑚 log 𝑠!"#$

𝑜𝑐𝑐!"#$ ∗ 𝑂 log 𝑛 log 𝑠!"#$

𝑂 𝑚 + 𝑜𝑐𝑐!"#$ log𝑚

𝑂 𝑜𝑐𝑐

with LCE

with GST

with GST

with GST

with Jump Pointer

Total Time : 𝑂 𝑚 log 𝑠!"#$ + 𝑜𝑐𝑐!"#$ log 𝑛 log 𝑠!"#$ + 𝑜𝑐𝑐

Represents each symbol in
32 bits, and each rule

with a 32-bit integer array

Implementation

• The size of GST is 𝑂 𝑔!"#$ log 𝑛 bits but 𝑂 ⋅ hides
big constant factor.

→We implement GCIS-nep / GCIS-uni ,which can do pattern
matching in GCIS-grammar without GST & LCE queries.
Programming Language : C++
Mac server 2010 with arch linux
Datasets : Pizza Chili and the tudocomp corpus

GCIS-nep
Encodes all rules by
Elias-gamma and

Elias-Fano encoding

GCIS-uni

22

Index size
Input size GCIS-nep GCIS-uni ESP-index FM-index r-index

einstein 92.76 1.13 0.42 0.69 40.29 1.14

worldleaders 46.97 5.41 2.57 3.61 21.09 5.62

english.001.2 104.86 14.78 7.48 10.46 46.98 14.38

dna 403.93 527.55 327.85 297.00 216.15 2123.81

kernel 257.96 21.29 10.46 12.54 125.08 28.94

influenza 154.81 23.37 13.87 15.72 53.06 28.77

commoncrawl 221.18 220.11 138.85 156.00 122.57 454.12

Input size GCIS-nep GCIS-uni ESP-index FM-index r-index

fib41 267914.29 1.37 0.78 1.74 71305.79 7.83

rs.13 216747.21 1.73 0.86 1.88 57653.91 9.09

tm29 268435.46 2.21 0.96 2.19 69347.42 9.17

Highly repetitive datasets

Index size (MB)

Index size (KB)

23

Real and repetitive datasets

0

100

200

300

400

500

600

700

800

ein
stein

w
orld

lead
ers

en
glish

.001.2

d
n
a

kern
el

in
fl
u
en
za

com
m
on

craw
l

fi
b
41

rs.13

tm
29

B
u
il
d
ti
m
e
[s
]

datasets

GCIS-nep
GCIS-uni
ESP-index
FM-index

r-index

Construction Time 24

Highly repetitive
datasets

Real and repetitive datasets

0.01

0.1

1

10

100

1000

10000

100000

10 100 1000 10000

T
im

e
[m

s]

Pattern length

GCIS-nep
GCIS-uni
ESP-index
FM-index

r-index

Locate Time (1/2)
Ti

m
e

[m
s]

Pattern length

25

In repetitive datasets [english.001.2]

1

10

100

1000

10000

100000

100 1000 10000

T
im

e
[m

s]

Pattern length

GCIS-nep
GCIS-uni
ESP-index

r-index

Locate Time (2/2)
In highly repetitive datasets [fib41]

Faster than
ESP-index

Pattern length

Ti
m

e
[m

s]

26

Summary
• We proposed GCIS-index based on GCIS and showed how to

answer locate queries efficiently:

Locate Query: 𝑂 𝑚 log 𝑠!"#$ + 𝑜𝑐𝑐!"#$ log 𝑛 log 𝑠!"#$ + 𝑜𝑐𝑐 time
Construction: 𝑂 𝑛 time

Space: 𝑂 𝑔!"#$ log 𝑛 bits
• Our implementations GCIS-nep and GCIS-uni are faster than

ESP-index when the number of pattern occurrences is large.
-> Download & try : https://github.com/TooruAkagi/GCIS_Index

Future Work : More experiments, also including
• LMS-based self-index of Díaz-Domínguez et al. (today, 12:30pm)
• the index of Deng et al. (WCTA, 11:30 am)

27

