12/10/2012

W Principe du pipeline

Unitl Unit2 Unit3 Unit4 Unit5 Unit6

_— m— e— mm— omm— m—)

1 2 3 4 5]
Jean-luc.dekeyser@lifl.fr Unit Te |Tg [Tg |Tg |Tg
Version 2013 Ti TE Ti Ti TE TE
i FONCTIONNEMENT PIPELINE i Ty |Ti |13 T3 |75 [T |T]
pe e e e e e B A
e e e e e e
Tl T2 T3 T4 TS TG T7 TS TQ TlO
temps s
H' Systeme pipeline I péfinitions

= Superposition dans le temps
= Augmentation des performances
= Parallélisme temporel

= Latence du pipeline : temps (en cycles) entre
deux instructions consécutives

= Débit du pipeline : Nombre d'instructions
exécutées par cycle, on appelle aussi le degré
d'un processeur superscalaire

= Conflit sur ressource : Deux ou plus
instructions demandent l'utilisation de la
méme unité au méme instant

Décomposition

= Division d'une tache en sous taches

= 1 unité logique / sous tache

= Lessorties d'une unité sont
connectées aux entrées de la suivante

» Les données entrent par le premier
étage et sortent par le dernier.

jTransfert des données
pipeline
Modele Asynchrone:

= Mécanisme de "handshacking" entre chaque
couple d'unités

——"
DATA
—

Ready

ACK

i Etage i Etage i +1

12/10/2012

Modele Synchrone

= Horloge contrble le transfert des données
entre 2 unités

= Pipe d'instructions
= Pipe arithmétique

Pipeline d"instructions:

= Fetch/Execute 2 unités séparées

@hase de —— Phased
|7 hargement executio

DATA DATA DATA = On réalise les deux phases en méme temps
Etage Etage Etage Etage sur des instructions différentes.
! e 2 3 = |l suffit de connaitre la prochaine instruction:
r r r r instruction prefetch
Horloge 10
|J Construction |J Pipeline 2 étages
= Utilisation de latch /L“K
Execute
— — — — m— — — —
Retch
1 1 1 T T Temps d’exécution constant
Horloge i
= Sans latch (CRAY) secute |
= On parle de Maximum Rate pipe-line tch |

Temps d’exécution variable

Speed-up

= Sur un pipe n-étages, il faut:
= ncycles pour obtenir le ler résultat
= pours-1résultats, il faut ensuite s-1 cycles.
= Soit n+s-1 cycles pour s résultats
(sur un processeur scalaire, il faut ns cycles)
= Le Speed-up est égal a
S =Tsca [Tpipe = NS
nFs-r—
* S—>n quand S—+w

Augmentation du
parallélisme

= L'instruction prefetch permet au plus
de doubler la vitesse du processeur.

= Exécution souvent plus long que le
chargement.

» Larecherche de parallélisme
nécessite un découpage plus fin

= Souvent en 4 ou 5 étapes successives

12/10/2012

5 étages
= Fetch/ Decode/ Fetch OP/ Execute/ Store

1IF ID FO EX

2 IF ID FO SO

3 IF ID EX SO

4 IF FO EX SO

5 ID FO EX SO

5 actions
en paralléle

Le pipe-line du 80486

o

Fetch: Instructions depuis le cache ou la mémoire vers
2 buffers de prefetch. Chaque buffer contient en
moyenne 5 instructions. Remplissage dés que possible
des buffers.

Decode stage 1: Décode le code opération et les
modes d'adressage

Decode stage 2: Génére les signaux pour 'ALU.
Réalise les adressages plus complexes

Execute: Opérations ALU, Accés cache, registres

Write Back: Maj des flags, écriture des résultats surle
cache et le buffer de I'interface du Bus

o

o

o

o

Exemple le MIPS

Fetch/ Decode/ Execute/ Memory/ Register

1IF ID EX MEM

2 IF ID EX REG

3 IF ID MEM REG

4 IF EX MEM REG

5 ID EX MEM REG

ID : Decode + fetch operands
Mem : write back cache + mem
Reg : store ALU into register

5 actions
en paralléle

Efficacité

= Soit tj le temps de traversée de I'étage
i.

= Le temps d'exécution d'une instruction
estt Gt =26

= Le délai entre 2 instructions
successives est = Max;t
1o est appelé cycle du pipeline

Exemple le MIPS

Fetch/ Decode/ Execute/ Memory/ Register

1IF ID EX MEM

2 IF ID EX REG

3 IF ID MEM REG

4 IF EX MEM REG

5 ID EX MEM REG

ID : Decode + fetch operands
Mem : write back cache + mem
Reg : store ALU into register

5 actions
en paralléle

Rupture de pipeline

= Instructions de branchement
» Data dépendance
» Défauts de cache
= Conflits hardware (mémoire)

12/10/2012

I' Instructions de Branchement I Buffer dinstructions
= Lors de I'execution d'un JUMP = FIFO d'instructions : assure un flux
= La prochaine instruction est la constant
suivante = On utilise 2 FIFOs
= OK o Une pour les instructions suivant le
: = Cen'estpaslasuivante ; JUMP
> Vidage du pipe-line = Une pour les instructions a I'adresse
» Remplissage du pipe avec les duJuMP
bonnes instructions Y Y

I Réduction de 1a vitesse I murei ple pre-fetch
» X F = Oncharge les 2 FIFOs aprés un JUMP
L = Apres le JUMP, on choisit I'instruction
L i dans I'une des 2 FIFOs
~ Abandon = Si plusieurs JUMP pris en compte, il
| = 10a20% des instructions sont des . faut plusieurs FIFO (2n = n JUMP)
JUMP = Augmente les conflits d’acces
o réduction de la vitesse globale mémoire
* Boucle TantQue, Exit
I Réduction des ruptures I pouble FIFo

= 4 techniques pour réduire les ruptures _
. . Séquentiel
de pipeline

s Buffer d'instructions

5 - Fetch FIFO \
s Loop buffer s < /!
i = Table de branchement i
, N & i
= Branchement retardé on séquentie

12/10/2012

Loop Buffer

= Petite mémoire rapide controlée par l'unité
de chargement des instructions

= Contient les N instructions les plus
récemment chargées.

= Fonctionnement comme un cache
d’instructions mais en séquence

= Achaque fetch on recherche d'abord
l'instruction dans le loop buffer

I pecode history table

Adresse Adresse

Instruction branchement
Recherche
dans table Adresse

de branchement

resse

i Adresse
Ci ‘_| J trouvée

Fetch — Decode ™ Execute

Ifstruction

Fonctionnement

= Avec le prefetch, quelques instructions
suivantes sont présentes.

= Sile JUMP saute quelques instructions en
avant, on peut la trouver dans le buffer ex: if
then else

= Sile JUMP saute vers le début d’une boucle,
la boucle compléte peut se trouver dans le
buffer

= Cray 1, motorola 68010

W Branchement retardé

» Lesinstructions de JUMP sont placées
dans le code avant qu'elles ne
prennent effet

= Pour un pipeline a 2 étages, le JUMP
prend effet aprés la prochaine
instruction

» nétages:le JUMP prend effet aprés
les n-1 suivantes

Table de Branchement
» Prédire dynamiquement l'adresse
suivante : utilisation répétée de la
méme adresse
= La 1¢re exécution range l'adresse de
branchement

= Lorsque la méme instruction JUMP
est exécutée (Fetch), on utilise
I'adresse mémorisée dans une table
(mémoire rapide)

I pour un 2 étages

Execute
Jump NEXT

Retch Adresse
Jump NEXT Saut

12/10/2012

Efficacité

» Pas de vidage de pipe
= Optimisation du compilateur

= 70% des JUMP peuvent étre suivis
d'une instruction RISC

Fonctionnement

= Détection de la dépendance et
blocage de pipeline jusqu'a résolution.

= Autoriser le chargement des
instructions qui sont indépendantes
(pas de data dépendance)

» On ne retarde que les instructions
dépendantes.

Data dépendances

» Exemple:
C=2*(A+[@100])

ADD AX, [100]% A+100%

SAL AX, 1 %*2 %
i MOV CX, AX % C % i SUPERSCALAIRE /
SUPERPIPELINE
|J Sur 5 étages H' Superscalaire (1987)
Dépendances

Dﬂcods
Féich

de donpée

Conflit mémoire : entre fetch et accés [100]

= CISC et RISC produisent une
instruction par cycle.

= Sur un superscalaire on produit
plusieurs instructions par cycle.

= On utilise plusieurs pipelines
d'instructions.

12/10/2012

Taux de parallélisme

= Les superscalaires permettent
d'extraire encore plus de parallélisme.

» Toutes les instructions indépendantes
peuvent étre exécutées en méme
temps (limité par le nombre de
pipeline)

W Superpipeline (1988)

= Utilisation d’'une horloge multiphase

= Redécomposition pipeline de chaque
étage du pipeline d’instruction

» Demande une fréquence d’horloge
élevée

= Exemple R4000

Fonctionnement Fonctionnement
1IF D FO EX 1IF1 IF2 ID1 ID2 FOL FO2 E X1 EX2 SO1
2F D FO EX 2 F1 IF2 ID1 ID2 FOL FO2 EX1 E s02
1 IF1 IF2 ID1 ID2 FOl FO2 E SO1 02
1 IF ID FO SO 2 IF1 IF2 IDI ID2 FOL FO EX2 SO1 SO2
2 IF ID FO SO 1 IF1L IF2 ID1 ID2 FO! EX1 EX2 SO1 SO2
1 IE D EX o) 2 IF1 IF2 ID1 ID2 FO2 EX1 EX2 SO1 SO2
2 IF D EX so 1 IF1 IF2 ID1 FO1 FO2 EX1 EX2 SO1 SO2
2 IF1 IF2 ID2 FO1 FO2 EX1 EX2 SO1 SO2
1 IF FO EX SO 1 IFL IDI ID2 FOI FO2 EXI EX2 SO1 SO2
2 IF FO EX SO 2 IF2 ID1 ID2 FOl FO2 EX1 EX2 SOl SO2
1 D FO EX SO
2 ID FO EX SO
10 actions 10 actions
en paralléle ® en paralléle @
Efficacité Limitations

= Par observation, en moyenne on peut
obtenir deux instructions a exécuter
en paralléle.

» On limite le degré du processeur a 3
ou 5. (projet de degré a 16 sur Alpha -
utilisation multi-user)

= Augmenter le parallélisme au niveau de
l'instruction
= Compilateur ou Hardware
= 5limitations
= Dépendance de flot
= Dépendance procédurale
= Conflits sur ressources
= Dépendance de sortie
= Antidépendance

12/10/2012

Dépendance de flot

= Exemple:
s addR1,R2
move R3, R1
= Ladeuxiéme instruction ne peut étre exécutée
tant que la premiére n'est pas exécutée

Pipel [IF[D | X [W
Pipe2 | IF | D X

w |

a3

Instruction-issue

= Ordre dans lequel le processeur exécute les
différentes étapes des instructions
s Ordrede fetch
= Ordre d’exécution
= Ordre de modification des registres ou mémaoires
= Modifier l'ordre en assurant une exécution
correcte

Dépendance procédurale

= Présence de Branch impose le vidage de tous
les pipes

instl IF D X W
branch |_IF D X W
IF
IF

inst2 D X w

inst3 D X w
IF | D X A
IF | D X w

Les stratégies

= Acces et exécution ordonnés
= Accés ordonné et exécution désordonnée
= Accés et exécution désordonnés

Conflit sur ressource

= Utilisation de la méme unité fonctionnelle,
mémoire, cache, bus...
= On peut supprimer ce conflit en dupliquant

les ressources ou en pipelinant les unités
fonctionnelles

Add IF [D X A
Add IF [D X

w |

45

Acces et exécution ordonnés

= Méme ordre que sur une machine
séquentielle.
= Exemple:

= superscalaire avec Fetch et Decode deux
instructions en paralléle

= 3 unités fonctionnelles
= 2 unités d'écriture des résultats

12/10/2012

Exemple

= |1 demande 2 cycles pour exécution

= [3 et 14 sont en conflit sur une unité
fonctionnelle

= |5 dépend du résultat produit par 14
= |5 et 16 sont en conflit sur une unité

fonctionnelle

4

Dépendance de sortie

= Exemple:

Dépendance de flot
3zR3+R5 N

\ Dépendance de sortie

R4=R3+1
R3=R5%]

N

R7=R3+R4

Acces et exécution ordonnés
Decode Execute WriteBack
il 12
13 14 11 12
13 1
13 11 12
15 14
15 13 14
16
15 16

Exécution désordonnée

Decode Execute WriteBack

i 12

13 14 11 12

14 11 13

15

16

Exécution désordonnée

= Utile pour les instructions demandant
plusieurs cycles
= Exemple: floating point sur Motorola 88000

= Autant d’instructions en exécution qu'ily a
d’unités

= Respect des dépendances de flot et
procédurale

= Dépendance de sortie

Acces et exécution
désordonnés

= Découplage des étages decode et execute
= Un buffer d’instructions: Instruction Window
= Decode place les instructions dans la fenétre

= Quand une UF devient libre elle obtient une
instruction exécutable dans la fenétre:
ressource et dépendance

12/10/2012

Fonctionnement

= Le choix parmi les instructions a exécuter est
plus large

= Respect des dépendances
= Respect de I'antidépendance

Renommage des registres

= Eliminer les dépendances de sorties et
antidépendances

= Plusieurs instructions utilisent le méme
registre

= Allocation dynamique des registres par le
processeur (ce n'est plus le compilateur)

= Un méme registre du code peut référencer
plusieurs registres lors de I'exécution

Antidépendance
& Exemple: N
_R3=R3+R5 N\ Dependance de flot
R4=R3+1 \ Dépendance de sortie
R3 = +1

\ / Antidépendance

R7=R3+R4

J

Pour notre exemple

= Exemple:
s R3h=R3a+R5a

R4b=R3b+1

Rgckm\
\

R7b =R3C+R4b

Acces et exécution
désordonnés

Decode Window Execute WriteBack

|12

13 14 | 1 12

15 16 | " 13

15 16

Compilation

= Lorsque I'on ne peut exécuter autant
d'instructions que le degré du processeur,
certains pipelines restent en attente.

= Le nombre d'instructions en cours
d'exécution dépend des dépendances de
données entre les instructions, et des conflits
d’accés aux ressources

= Le travail du compilateur devient capital:
réorganisation du code...

10

