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Système pipeline

 Superposition dans le temps 
 Augmentation des performances 
 Parallélisme temporel
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Décomposition

 Division d'une tâche en sous tâches
 1 unité logique / sous tâche
 Les sorties d'une unité sont 

connectées aux entrées de la suivante
 Les données entrent par le premier 

étage et sortent par le dernier.
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Principe du pipeline
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Définitions

 Latence du pipeline : temps (en cycles ) entre 
deux instructions consécutives

 Débit du pipeline : Nombre d'instructions 
exécutées par cycle, on appelle aussi le degré 
d'un processeur superscalaire

 Conflit sur ressource : Deux ou plus 
instructions demandent l'utilisation de la 
même unité au même instant
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Transfert des données 
pipeline
Modèle Asynchrone:

 Mécanisme de "handshacking" entre chaque 
couple d'unités

Etage i Etage i + 1
DATA

Ready

ACK
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Modèle Synchrone

 Horloge contrôle le transfert des données 
entre 2 unités 

 Pipe d'instructions
 Pipe arithmétique

Etage

i

DATA
Etage

i+1

DATA
Etage

i+2

DATA
Etage

i+3

Horloge
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Construction

 Utilisation de latch

 Sans latch (CRAY)
 On parle de Maximum Rate pipe-line

Horloge

Latch
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Speed-up

 Sur un pipe n-étages, il faut:  
 n cycles pour obtenir le 1er résultat 
 pour s-1 résultats, il faut ensuite s-1 cycles. 
 Soit n+s-1 cycles pour s résultats

(sur un processeur scalaire, il faut ns cycles)

 Le Speed-up est égal à
S = Tscal /Tpipe = ns

n+s-1
 S  n   quand     s +
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Pipeline d'instructions:

 Fetch / Execute  2 unités séparées 

 On réalise les deux phases en même temps 
sur des instructions différentes.

 Il suffit de connaître la prochaine instruction: 
instruction prefetch

Phase de 
Chargement

Phase d' 
exécution
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Pipeline 2 étages

Fetch

Execute

Fetch

Execute

Temps d’exécution constant

Temps d’exécution variable
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Augmentation du 
parallélisme

 L'instruction prefetch permet au plus 
de doubler la vitesse du processeur.
 Exécution souvent plus long que le 

chargement.
 La recherche de parallélisme 

nécessite un découpage plus fin
 Souvent en 4 ou 5 étapes successives
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5 étages

 Fetch/ Decode/ Fetch OP/ Execute/ Store  

1 IF ID FO EX SO
2 IF ID FO EX SO
3 IF ID FO EX SO
4 IF ID FO EX SO
5 IF ID FO EX SO

5 actions
en parallèle
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Exemple le MIPS

Fetch/ Decode/ Execute/ Memory/ Register  

1 IF ID EX MEM REG
2 IF ID EX MEM REG
3 IF ID EX MEM REG
4 IF ID EX MEM REG
5 IF ID EX MEM REG

5 actions
en parallèle

ID : Decode + fetch operands
Mem : write back cache + mem
Reg : store ALU into register
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Exemple le MIPS

Fetch/ Decode/ Execute/ Memory/ Register  

1 IF ID EX MEM REG
2 IF ID EX MEM REG
3 IF ID EX MEM REG
4 IF ID EX MEM REG
5 IF ID EX MEM REG

5 actions
en parallèle

ID : Decode + fetch operands
Mem : write back cache + mem
Reg : store ALU into register
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Le pipe-line du 80486

 Fetch: Instructions depuis le cache ou la mémoire vers 
2 buffers de prefetch. Chaque buffer contient en 
moyenne 5 instructions. Remplissage dès que possible 
des buffers.

 Decode stage 1: Décode le code opération et les 
modes d’adressage

 Decode stage 2: Génère les signaux pour l’ALU. 
Réalise les adressages plus complexes

 Execute: Opérations ALU, Accès cache, registres

 Write Back: Maj des flags, écriture des résultats sur le 
cache et le buffer de l’interface du Bus
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Efficacité

 Soit ti le temps de traversée de l'étage 
i.

 Le temps d'exécution d'une instruction 
est: tinst = ti

 Le délai entre 2 instructions 
successives est tD = Maxi ti  
tD est appelé cycle du pipeline
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Rupture de pipeline

 Instructions de branchement 
 Data dépendance
 Défauts de cache
 Conflits hardware (mémoire)
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Instructions de Branchement

 Lors de l'exécution d'un JUMP
 La prochaine instruction est la 

suivante 
 OK

 Ce n'est pas la suivante 
 Vidage du pipe-line
 Remplissage du pipe avec les 

bonnes instructions
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Réduction de la vitesse

 10 à 20% des instructions sont des 
JUMP  
 réduction de la vitesse globale
 Boucle TantQue, Exit

x
x

x
x

x

Abandon

EX
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Réduction des ruptures 

 4 techniques pour réduire les ruptures 
de pipeline
 Buffer d'instructions
 Loop buffer
 Table de branchement
 Branchement retardé
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Buffer d'instructions

 FIFO d'instructions : assure un flux 
constant
 On utilise 2 FIFOs
 Une pour les  instructions suivant le 

JUMP
 Une pour les  instructions à l'adresse 

du JUMP
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Multiple pre-fetch

 On charge les 2 FIFOs après un JUMP
 Après le JUMP, on choisit l'instruction 

dans l'une des 2 FIFOs
 Si plusieurs JUMP pris en compte, il 

faut plusieurs FIFO (2n = n JUMP)
 Augmente les conflits d’accès 

mémoire

24

Double FIFO

M
ém

oi
re

Fetch FIFO . . .

Séquentiel

Non séquentiel
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Loop Buffer

 Petite mémoire rapide contrôlée par l’unité 
de chargement des instructions

 Contient les N instructions les plus 
récemment chargées.

 Fonctionnement comme un cache 
d’instructions mais en séquence

 A chaque fetch on recherche d’abord 
l’instruction dans le loop buffer
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Fonctionnement

 Avec le prefetch, quelques instructions 
suivantes sont présentes.

 Si le JUMP saute quelques instructions en 
avant, on peut la trouver dans le buffer ex: if 
then else

 Si le JUMP saute vers le début d’une boucle, 
la boucle complète peut se trouver dans le 
buffer

 Cray 1, motorola 68010
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Table de Branchement
 Prédire dynamiquement l'adresse 

suivante : utilisation répétée de la 
même adresse
 La 1ère exécution range l'adresse de 

branchement
 Lorsque la même instruction JUMP 

est exécutée (Fetch), on utilise 
l'adresse mémorisée dans une table 
(mémoire rapide)
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Decode history table

Fetch Decode Execute

Adresse

de branchement

Adresse
branchement

Adresse
Instruction

Adresse
trouvée

Recherche
dans table

Adresse

Instruction

CO
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Branchement retardé

 Les instructions de JUMP sont placées 
dans le code avant qu'elles ne 
prennent effet
 Pour un pipeline à 2 étages , le JUMP 

prend effet après la prochaine 
instruction
 n étages : le  JUMP prend effet après 

les n-1 suivantes
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Pour un 2 étages

Fetch

Execute

Jump NEXT

Jump

Adresse
Saut

NEXT
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Efficacité

 Pas de vidage de pipe
 Optimisation du compilateur
 70% des JUMP peuvent être suivis 

d'une instruction  RISC
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Data dépendances

 Exemple: 
C = 2 * (A + [@100])

ADD AX, [100]% A+100%
SAL AX, 1 % * 2 %
MOV CX, AX % C %
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Sur 5 étages

ADD SALFetch

AX
[100]

ADD

AX

Mov

AX

Shift

AX

CXAX

Decode

Fetch
Op

Exec

Store

Dépendances 
de données

Conflit mémoire : entre fetch et accès [100]
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Fonctionnement

 Détection de la dépendance et 
blocage de pipeline jusqu'à résolution.
 Autoriser le chargement des 

instructions qui sont indépendantes 
(pas de data dépendance)
 On ne retarde que les instructions 

dépendantes.
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SUPERSCALAIRE / 
SUPERPIPELINE

36

Superscalaire (1987)

 CISC et RISC produisent une 
instruction par cycle. 
 Sur un superscalaire on produit 

plusieurs instructions par cycle. 
 On utilise plusieurs pipelines 

d'instructions.
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Taux de parallélisme

 Les superscalaires permettent 
d'extraire encore plus de parallélisme. 
 Toutes les instructions indépendantes 

peuvent être exécutées en même 
temps (limité par le nombre de 
pipeline)

38

Fonctionnement

1 IF ID FO EX SO
2 IF ID FO EX SO
1 IF ID FO EX SO
2 IF ID FO EX SO
1 IF ID FO EX SO
2 IF ID FO EX SO
1 IF ID FO EX SO
2 IF ID FO EX SO
1 IF ID FO EX SO 
2 IF ID FO EX SO

10 actions
en parallèle
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Efficacité

 Par observation, en moyenne on peut 
obtenir deux instructions à exécuter 
en parallèle. 
 On limite le degré du processeur à 3 

ou 5. (projet de degré à 16 sur Alpha -
utilisation multi-user)
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Superpipeline (1988)

 Utilisation d’une horloge multiphase
 Redécomposition pipeline de chaque 

étage du pipeline d’instruction
 Demande une fréquence d’horloge 

élevée
 Exemple R4000
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Fonctionnement

1 IF1  IF2  ID1  ID2  FO1  FO2  E X1  EX2  SO1  SO2
2 IF1 IF2 ID1 ID2 FO1 FO2 EX1 EX2 SO1 SO2
1 IF1 IF2 ID1 ID2 FO1 FO2 EX1 EX2 SO1 SO2 
2 IF1 IF2 ID1 ID2 FO1 FO2 EX1 EX2 SO1 SO2
1 IF1 IF2 ID1 ID2 FO1 FO2 EX1 EX2 SO1 SO2
2 IF1 IF2 ID1 ID2 FO1 FO2 EX1 EX2 SO1 SO2
1 IF1 IF2 ID1 ID2 FO1 FO2 EX1 EX2 SO1 SO2
2 IF1 IF2 ID1 ID2 FO1 FO2 EX1 EX2 SO1 SO2
1 IF1 IF2 ID1 ID2 FO1 FO2 EX1 EX2 SO1 SO2
2 IF1 IF2 ID1 ID2 FO1 FO2 EX1 EX2 SO1 SO2

10 actions
en parallèle
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Limitations

 Augmenter le parallélisme au niveau de 
l’instruction
 Compilateur ou Hardware

 5 limitations
 Dépendance de flot
 Dépendance procédurale
 Conflits sur ressources
 Dépendance de sortie
 Antidépendance
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Dépendance de flot

 Exemple:
 add R1, R2

move R3, R1
 La deuxième instruction ne peut être exécutée 

tant que la première n’est pas exécutée

Pipe1
Pipe2

IF D X W
X WIF D
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Dépendance procédurale

 Présence de Branch impose le vidage de tous 
les pipes

inst1
branch
inst2
inst3

IF D X W
X WIF D

IF D X W
X WIF D

IF D X W
X WIF D
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Conflit sur ressource

 Utilisation de la même unité fonctionnelle, 
mémoire, cache, bus...

 On peut supprimer ce conflit en dupliquant 
les ressources ou en pipelinant les unités 
fonctionnelles

Add
Add

IF D X W
X WIF D
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Instruction-issue

 Ordre dans lequel le processeur exécute les 
différentes étapes des instructions
 Ordre de fetch
 Ordre d’exécution
 Ordre de modification des registres ou mémoires

 Modifier l’ordre en assurant une exécution 
correcte
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Les stratégies

 Accès et exécution ordonnés
 Accès ordonné et exécution désordonnée
 Accès et exécution désordonnés

48

Accès et exécution ordonnés

 Même ordre que sur une machine 
séquentielle.

 Exemple:
 superscalaire avec Fetch et Decode deux 

instructions en parallèle
 3 unités fonctionnelles
 2  unités d’écriture des résultats 



12/10/2012

9

49

Exemple

 I1 demande 2 cycles pour exécution
 I3 et I4 sont en conflit sur une unité 

fonctionnelle
 I5 dépend du résultat produit par I4
 I5 et I6 sont en conflit sur une unité 

fonctionnelle
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Accès et exécution ordonnés

Decode Execute WriteBack
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Exécution désordonnée

 Utile pour les instructions demandant 
plusieurs cycles
 Exemple: floating point sur Motorola 88000

 Autant d’instructions en exécution qu’il y a 
d’unités

 Respect des dépendances de flot et 
procédurale

 Dépendance de sortie
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Dépendance de sortie

 Exemple:
 R3 = R3 + R5

R4 = R3 + 1

R3 = R5 +1

R7 = R3 + R4

Dépendance de flot

Dépendance de sortie
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Exécution désordonnée

Decode Execute WriteBack
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Accès et exécution 
désordonnés

 Découplage des étages decode et execute
 Un buffer d’instructions: Instruction Window
 Decode place les instructions dans la fenêtre
 Quand une UF devient libre elle obtient une 

instruction exécutable dans la fenêtre: 
ressource et dépendance 
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Fonctionnement

 Le choix parmi les instructions à exécuter est 
plus large

 Respect des dépendances
 Respect de l’antidépendance
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Antidépendance
Exemple:

– R3 = R3 + R5

R4 = R3 + 1

R3 = R5 +1

R7 = R3 + R4

Dépendance de flot

Dépendance de sortie

Antidépendance
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Accès et exécution 
désordonnés

Decode Execute WriteBackWindow
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Renommage des registres

 Eliminer les dépendances de sorties et 
antidépendances

 Plusieurs instructions utilisent le même 
registre

 Allocation dynamique des registres par le 
processeur ( ce n’est plus le compilateur)

 Un même registre du code peut référencer 
plusieurs registres lors de l’exécution
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Pour notre exemple

 Exemple:
 R3b = R3a + R5a

R4b = R3b + 1

R3c = R5a +1

R7b = R3c + R4b
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Compilation

 Lorsque l'on ne peut exécuter autant 
d'instructions que le degré du processeur, 
certains pipelines restent en attente.

 Le nombre d'instructions en cours 
d'exécution dépend des dépendances de 
données entre les instructions, et des conflits 
d’accès aux  ressources 

 Le travail du compilateur devient capital: 
réorganisation du code...


