
12/10/2012

1

FONCTIONNEMENT PIPELINE

Jean-luc.dekeyser@lifl.fr
Version 2013

2

Système pipeline

 Superposition dans le temps
 Augmentation des performances
 Parallélisme temporel

3

Décomposition

 Division d'une tâche en sous tâches
 1 unité logique / sous tâche
 Les sorties d'une unité sont

connectées aux entrées de la suivante
 Les données entrent par le premier

étage et sortent par le dernier.

4

Principe du pipeline
Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6

T T
T

T
T

T
T

T
T

T
T

T T T T
T T T

T T
T

T
T
T
T
T
T

T
T
T
T
T
T

T
T
T
T
T
T

T
T
T
T
T
T

1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4

5 5 5 5 5 5

6 6 6 6 6

6

5

4

3

2

1

5

4

3

2

1

4

3

2

1

2

21

1

1

3

6

5

4

3

2

6

5

4

3

6

5

4

6

5

8

7

10

98

7

98

7

7

temps

Unit

5

Définitions

 Latence du pipeline : temps (en cycles) entre
deux instructions consécutives

 Débit du pipeline : Nombre d'instructions
exécutées par cycle, on appelle aussi le degré
d'un processeur superscalaire

 Conflit sur ressource : Deux ou plus
instructions demandent l'utilisation de la
même unité au même instant

6

Transfert des données
pipeline
Modèle Asynchrone:

 Mécanisme de "handshacking" entre chaque
couple d'unités

Etage i Etage i + 1
DATA

Ready

ACK

12/10/2012

2

7

Modèle Synchrone

 Horloge contrôle le transfert des données
entre 2 unités

 Pipe d'instructions
 Pipe arithmétique

Etage

i

DATA
Etage

i+1

DATA
Etage

i+2

DATA
Etage

i+3

Horloge

8

Construction

 Utilisation de latch

 Sans latch (CRAY)
 On parle de Maximum Rate pipe-line

Horloge

Latch

9

Speed-up

 Sur un pipe n-étages, il faut:
 n cycles pour obtenir le 1er résultat
 pour s-1 résultats, il faut ensuite s-1 cycles.
 Soit n+s-1 cycles pour s résultats

(sur un processeur scalaire, il faut ns cycles)

 Le Speed-up est égal à
S = Tscal /Tpipe = ns

n+s-1
 S  n quand s +

10

Pipeline d'instructions:

 Fetch / Execute 2 unités séparées

 On réalise les deux phases en même temps
sur des instructions différentes.

 Il suffit de connaître la prochaine instruction:
instruction prefetch

Phase de
Chargement

Phase d'
exécution

11

Pipeline 2 étages

Fetch

Execute

Fetch

Execute

Temps d’exécution constant

Temps d’exécution variable

12

Augmentation du
parallélisme

 L'instruction prefetch permet au plus
de doubler la vitesse du processeur.
 Exécution souvent plus long que le

chargement.
 La recherche de parallélisme

nécessite un découpage plus fin
 Souvent en 4 ou 5 étapes successives

12/10/2012

3

13

5 étages

 Fetch/ Decode/ Fetch OP/ Execute/ Store

1 IF ID FO EX SO
2 IF ID FO EX SO
3 IF ID FO EX SO
4 IF ID FO EX SO
5 IF ID FO EX SO

5 actions
en parallèle

14

Exemple le MIPS

Fetch/ Decode/ Execute/ Memory/ Register

1 IF ID EX MEM REG
2 IF ID EX MEM REG
3 IF ID EX MEM REG
4 IF ID EX MEM REG
5 IF ID EX MEM REG

5 actions
en parallèle

ID : Decode + fetch operands
Mem : write back cache + mem
Reg : store ALU into register

15

Exemple le MIPS

Fetch/ Decode/ Execute/ Memory/ Register

1 IF ID EX MEM REG
2 IF ID EX MEM REG
3 IF ID EX MEM REG
4 IF ID EX MEM REG
5 IF ID EX MEM REG

5 actions
en parallèle

ID : Decode + fetch operands
Mem : write back cache + mem
Reg : store ALU into register

16

Le pipe-line du 80486

 Fetch: Instructions depuis le cache ou la mémoire vers
2 buffers de prefetch. Chaque buffer contient en
moyenne 5 instructions. Remplissage dès que possible
des buffers.

 Decode stage 1: Décode le code opération et les
modes d’adressage

 Decode stage 2: Génère les signaux pour l’ALU.
Réalise les adressages plus complexes

 Execute: Opérations ALU, Accès cache, registres

 Write Back: Maj des flags, écriture des résultats sur le
cache et le buffer de l’interface du Bus

17

Efficacité

 Soit ti le temps de traversée de l'étage
i.

 Le temps d'exécution d'une instruction
est: tinst = ti

 Le délai entre 2 instructions
successives est tD = Maxi ti
tD est appelé cycle du pipeline

18

Rupture de pipeline

 Instructions de branchement
 Data dépendance
 Défauts de cache
 Conflits hardware (mémoire)

12/10/2012

4

19

Instructions de Branchement

 Lors de l'exécution d'un JUMP
 La prochaine instruction est la

suivante
 OK

 Ce n'est pas la suivante
 Vidage du pipe-line
 Remplissage du pipe avec les

bonnes instructions

20

Réduction de la vitesse

 10 à 20% des instructions sont des
JUMP
 réduction de la vitesse globale
 Boucle TantQue, Exit

x
x

x
x

x

Abandon

EX

21

Réduction des ruptures

 4 techniques pour réduire les ruptures
de pipeline
 Buffer d'instructions
 Loop buffer
 Table de branchement
 Branchement retardé

22

Buffer d'instructions

 FIFO d'instructions : assure un flux
constant
 On utilise 2 FIFOs
 Une pour les instructions suivant le

JUMP
 Une pour les instructions à l'adresse

du JUMP

23

Multiple pre-fetch

 On charge les 2 FIFOs après un JUMP
 Après le JUMP, on choisit l'instruction

dans l'une des 2 FIFOs
 Si plusieurs JUMP pris en compte, il

faut plusieurs FIFO (2n = n JUMP)
 Augmente les conflits d’accès

mémoire

24

Double FIFO

M
ém

oi
re

Fetch FIFO . . .

Séquentiel

Non séquentiel

12/10/2012

5

25

Loop Buffer

 Petite mémoire rapide contrôlée par l’unité
de chargement des instructions

 Contient les N instructions les plus
récemment chargées.

 Fonctionnement comme un cache
d’instructions mais en séquence

 A chaque fetch on recherche d’abord
l’instruction dans le loop buffer

26

Fonctionnement

 Avec le prefetch, quelques instructions
suivantes sont présentes.

 Si le JUMP saute quelques instructions en
avant, on peut la trouver dans le buffer ex: if
then else

 Si le JUMP saute vers le début d’une boucle,
la boucle complète peut se trouver dans le
buffer

 Cray 1, motorola 68010

27

Table de Branchement
 Prédire dynamiquement l'adresse

suivante : utilisation répétée de la
même adresse
 La 1ère exécution range l'adresse de

branchement
 Lorsque la même instruction JUMP

est exécutée (Fetch), on utilise
l'adresse mémorisée dans une table
(mémoire rapide)

28

Decode history table

Fetch Decode Execute

Adresse

de branchement

Adresse
branchement

Adresse
Instruction

Adresse
trouvée

Recherche
dans table

Adresse

Instruction

CO

29

Branchement retardé

 Les instructions de JUMP sont placées
dans le code avant qu'elles ne
prennent effet
 Pour un pipeline à 2 étages , le JUMP

prend effet après la prochaine
instruction
 n étages : le JUMP prend effet après

les n-1 suivantes

30

Pour un 2 étages

Fetch

Execute

Jump NEXT

Jump

Adresse
Saut

NEXT

12/10/2012

6

31

Efficacité

 Pas de vidage de pipe
 Optimisation du compilateur
 70% des JUMP peuvent être suivis

d'une instruction RISC

32

Data dépendances

 Exemple:
C = 2 * (A + [@100])

ADD AX, [100]% A+100%
SAL AX, 1 % * 2 %
MOV CX, AX % C %

33

Sur 5 étages

ADD SALFetch

AX
[100]

ADD

AX

Mov

AX

Shift

AX

CXAX

Decode

Fetch
Op

Exec

Store

Dépendances
de données

Conflit mémoire : entre fetch et accès [100]

34

Fonctionnement

 Détection de la dépendance et
blocage de pipeline jusqu'à résolution.
 Autoriser le chargement des

instructions qui sont indépendantes
(pas de data dépendance)
 On ne retarde que les instructions

dépendantes.

35

SUPERSCALAIRE /
SUPERPIPELINE

36

Superscalaire (1987)

 CISC et RISC produisent une
instruction par cycle.
 Sur un superscalaire on produit

plusieurs instructions par cycle.
 On utilise plusieurs pipelines

d'instructions.

12/10/2012

7

37

Taux de parallélisme

 Les superscalaires permettent
d'extraire encore plus de parallélisme.
 Toutes les instructions indépendantes

peuvent être exécutées en même
temps (limité par le nombre de
pipeline)

38

Fonctionnement

1 IF ID FO EX SO
2 IF ID FO EX SO
1 IF ID FO EX SO
2 IF ID FO EX SO
1 IF ID FO EX SO
2 IF ID FO EX SO
1 IF ID FO EX SO
2 IF ID FO EX SO
1 IF ID FO EX SO
2 IF ID FO EX SO

10 actions
en parallèle

39

Efficacité

 Par observation, en moyenne on peut
obtenir deux instructions à exécuter
en parallèle.
 On limite le degré du processeur à 3

ou 5. (projet de degré à 16 sur Alpha -
utilisation multi-user)

40

Superpipeline (1988)

 Utilisation d’une horloge multiphase
 Redécomposition pipeline de chaque

étage du pipeline d’instruction
 Demande une fréquence d’horloge

élevée
 Exemple R4000

41

Fonctionnement

1 IF1 IF2 ID1 ID2 FO1 FO2 E X1 EX2 SO1 SO2
2 IF1 IF2 ID1 ID2 FO1 FO2 EX1 EX2 SO1 SO2
1 IF1 IF2 ID1 ID2 FO1 FO2 EX1 EX2 SO1 SO2
2 IF1 IF2 ID1 ID2 FO1 FO2 EX1 EX2 SO1 SO2
1 IF1 IF2 ID1 ID2 FO1 FO2 EX1 EX2 SO1 SO2
2 IF1 IF2 ID1 ID2 FO1 FO2 EX1 EX2 SO1 SO2
1 IF1 IF2 ID1 ID2 FO1 FO2 EX1 EX2 SO1 SO2
2 IF1 IF2 ID1 ID2 FO1 FO2 EX1 EX2 SO1 SO2
1 IF1 IF2 ID1 ID2 FO1 FO2 EX1 EX2 SO1 SO2
2 IF1 IF2 ID1 ID2 FO1 FO2 EX1 EX2 SO1 SO2

10 actions
en parallèle

42

Limitations

 Augmenter le parallélisme au niveau de
l’instruction
 Compilateur ou Hardware

 5 limitations
 Dépendance de flot
 Dépendance procédurale
 Conflits sur ressources
 Dépendance de sortie
 Antidépendance

12/10/2012

8

43

Dépendance de flot

 Exemple:
 add R1, R2

move R3, R1
 La deuxième instruction ne peut être exécutée

tant que la première n’est pas exécutée

Pipe1
Pipe2

IF D X W
X WIF D

44

Dépendance procédurale

 Présence de Branch impose le vidage de tous
les pipes

inst1
branch
inst2
inst3

IF D X W
X WIF D

IF D X W
X WIF D

IF D X W
X WIF D

45

Conflit sur ressource

 Utilisation de la même unité fonctionnelle,
mémoire, cache, bus...

 On peut supprimer ce conflit en dupliquant
les ressources ou en pipelinant les unités
fonctionnelles

Add
Add

IF D X W
X WIF D

46

Instruction-issue

 Ordre dans lequel le processeur exécute les
différentes étapes des instructions
 Ordre de fetch
 Ordre d’exécution
 Ordre de modification des registres ou mémoires

 Modifier l’ordre en assurant une exécution
correcte

47

Les stratégies

 Accès et exécution ordonnés
 Accès ordonné et exécution désordonnée
 Accès et exécution désordonnés

48

Accès et exécution ordonnés

 Même ordre que sur une machine
séquentielle.

 Exemple:
 superscalaire avec Fetch et Decode deux

instructions en parallèle
 3 unités fonctionnelles
 2 unités d’écriture des résultats

12/10/2012

9

49

Exemple

 I1 demande 2 cycles pour exécution
 I3 et I4 sont en conflit sur une unité

fonctionnelle
 I5 dépend du résultat produit par I4
 I5 et I6 sont en conflit sur une unité

fonctionnelle

50

Accès et exécution ordonnés

Decode Execute WriteBack

51

Exécution désordonnée

 Utile pour les instructions demandant
plusieurs cycles
 Exemple: floating point sur Motorola 88000

 Autant d’instructions en exécution qu’il y a
d’unités

 Respect des dépendances de flot et
procédurale

 Dépendance de sortie

52

Dépendance de sortie

 Exemple:
 R3 = R3 + R5

R4 = R3 + 1

R3 = R5 +1

R7 = R3 + R4

Dépendance de flot

Dépendance de sortie

53

Exécution désordonnée

Decode Execute WriteBack

54

Accès et exécution
désordonnés

 Découplage des étages decode et execute
 Un buffer d’instructions: Instruction Window
 Decode place les instructions dans la fenêtre
 Quand une UF devient libre elle obtient une

instruction exécutable dans la fenêtre:
ressource et dépendance

12/10/2012

10

55

Fonctionnement

 Le choix parmi les instructions à exécuter est
plus large

 Respect des dépendances
 Respect de l’antidépendance

56

Antidépendance
Exemple:

– R3 = R3 + R5

R4 = R3 + 1

R3 = R5 +1

R7 = R3 + R4

Dépendance de flot

Dépendance de sortie

Antidépendance

57

Accès et exécution
désordonnés

Decode Execute WriteBackWindow

58

Renommage des registres

 Eliminer les dépendances de sorties et
antidépendances

 Plusieurs instructions utilisent le même
registre

 Allocation dynamique des registres par le
processeur (ce n’est plus le compilateur)

 Un même registre du code peut référencer
plusieurs registres lors de l’exécution

59

Pour notre exemple

 Exemple:
 R3b = R3a + R5a

R4b = R3b + 1

R3c = R5a +1

R7b = R3c + R4b

60

Compilation

 Lorsque l'on ne peut exécuter autant
d'instructions que le degré du processeur,
certains pipelines restent en attente.

 Le nombre d'instructions en cours
d'exécution dépend des dépendances de
données entre les instructions, et des conflits
d’accès aux ressources

 Le travail du compilateur devient capital:
réorganisation du code...

