
1

A Meta-modelling Approach to Express Change
Requirements

Anne Etien, Colette Rolland, Camille Salinesi

CRI - Université Paris 1 - Sorbonne
90, rue de Tolbiac, 75013 Paris - France

{aetien, rolland, camille}@univ-paris1.fr

Abstract. Organisations have to evolve frequently in order to remain
competitive and to take into account changes in their environment. We develop
a co-evolution approach to jointly make evolve the information system and the
business processes. This approach relies on an explicit specification of change
requirements defined with operators expressing gaps between the As-Is and the
To-Be situations. However, such gaps based approach can also be used in an
other evolution context, when a database or a workflow model evolves. Thus,
instead of specifying new operators associated to the Map meta-model used in
this co-evolution approach, we propose to define a generic typology of gaps to
facilitate a precise definition of change requirements under the form of gaps.
The paper presents the approach to generate a gap typology and illustrates it
with the Map meta-model.

1 Introduction

Changes often affect an organization in its whole from business processes to
information system. If they want to remain competitive, organisations have to react
quickly to changes of their clients’ needs or organization goals.

We propose the Alignment and Co-Evolution Method (ACEM) to help in jointly
evolving the business processes and the system. In that method, the change movement
is modelled from the current situation to the future situation as gaps between the As-Is
model and the To-Be model. Intuitively a gap expresses a difference between these
two models such as the deletion or addition of an As-Is element in the To-Be model.
Gaps are related to operators, which transform elements of model.

We believe that an ad-hoc development of a gap typology for each project is error
prone because: (i) it relies on the knowledge and know-how of some persons; (ii) it is
not systematic and (iii) it can be influenced by the context of the project.

We thus could define a typology associated to the Map meta-model used in
ACEM. However, such a typology would have been dependent of the used formalism.

Furthermore, developing a specific typology for each meta-model (e.g. XML DTD
[1], DB meta-model [2], process meta-model [14], workflow meta-model [4]…),
leads to a situation where the typologies depend on different specific meta-models
and are difficult to compare [5].

2

In order to solve these issues, we propose to introduce a generic typology relative
to a generic meta-model. This provides independence towards the project and the
meta-model. The generic meta-model can be instantiated by each used meta-model.
The generic typology associated to the generic meta-model is adapted to correspond
to each specific meta-model. Such an approach allows to systematically identify the
semantic and structural aspects that compose the specific meta-model and can be
affected by a gap.

In the next section we provide an overview of the approach. In section 3, we
present the generic meta-model and the generic gap typology. Section 4 outlines the
process to generate a specific gap typology and illustrates it with the Map meta-model
used in ACEM. Conclusions are drawn in section 5.

2 Overview of the approach

The approach, we propose to express change requirements, relies on a three levels
structure: the model level, the meta-model level and the generic meta-model level, as
shown in Fig. 1.

At the model level, are defined the models before and after evolution. At this level
are also defined the change requirements (represented in the figure by the Greek letter
Δ) under the form of gaps. In so far as in the ACEM As-Is model and To-Be model
are defined with the Map meta-model, we make the hypothesis that the two models
As-Is and To-Be are described in the same language. We are thus not interested in
evolutions where As-Is and To-Be models are instances of two different meta-models
as in [16] or [3].

The meta-model level contains the specifications of a specific meta-model and the
associated gap typology. The specific meta-model specifies the type of elements used
in the As-Is and To-Be models. From the same way, the specific gap typology
specifies the type of gap operators defined at the model level. The gaps identified
between the As-Is and the To-Be models are instances of the specific gap typology.

The generic meta-model level proposes a generic gap typology and a generic meta-
model from which are respectively defined the specific typology and the specific
meta-model. The generic meta-model identifies the generic concepts necessary to the
definition of generic operators gathered in the generic gap typology. The generic
meta-model allows to make explicit the elements and the structures of the specific
meta-models.

3

Fig. 1. Overview of the approach

For example, if the Entity-Relationship meta-model is used to represent the
database, then the gaps are expressed at the model level between two Entity-
Relationship models. The gaps between the As-Is and the To-Be models expressed
what changes or should be adapted between the two situations. They instantiate the
operators of the specific typology. They can express that the Reservation Entity type
should be split into two Entities type Reservation and Demand and that the
‘correspond’ Relationship type (whose source is Reservation and target is Demand)
should be added.

3 The generic typology

The generic gap typology takes the form of a set of operators applicable to generic
elements that compose any model.

3.1 A meta-model for defining the generic gap typology

A number of attempts have been made to make explicit the elements that compose
any model, i.e. to define meta-models [8], [10], [11]. There are different meta-models
depending on the meta-modelling purpose. For example IRDS [8] is a standard to
facilitate the evolution of model representation in CASE tools, Prakash [11] aims at a
formal definition of a method and Marttiin [10] searches for a generic repository
structure of meta-Case environments. The generic meta-model, that we propose, aims
to identify the key elements and the structure of any meta-model having a graphic
representation in order to define the elementary transformations that can occur on the
elements of a meta-model.

This meta-model is drawn in Fig. 2 using UML notations. It shows that any model
is made of Elements, every element having a Name and is characterised by a set of
Property. In the E/R model for example, Entity type, Attribute and Relationship type
as well as the Is-A relationship are elements. Domain is a property of Attribute.

4

Fig. 2. The meta-model for gap typology definition

According to the generic meta-model, any meta-model is composed of a collection
of elements that have properties. As shown in Fig. 2, Elements are classified into two
clusters. First, a distinction between Simple and Compound Elements is made.
Second, elements can be classified into Link and NotLink.

Compound elements are composed into elements that can be simple or at their turn
compound. In particular, any model is a compound element.

Link Elements are connectors between pairs of elements. Links can be oriented;
therefore one of the linked elements plays the role of Source and the other of Target.
In the E/R model an Entity type is a compound element made of Attributes, which are
simple elements. An Is-A relationship of the E/R model is a Link: it connects a source
Entity type to a target Entity type. Vice versa, an Entity type is NotLink.

Fig. 2 shows that an element is-a another element, i.e. might inherit from another
element Finally, any model is a compound element which can be reduced to the root
element (such as the Object class in a class diagram).

3.2 The generic gap typology

The generic gap typology is composed of a set of operators applicable to Element.
Each operator identifies a type of change that can be performed on an As-Is model.
The operator identifies the difference between the As-Is model and the To-Be model.

Three types of change. The generic gap typology identifies three major types of
change: naming changes, element changes and structural changes.

Naming changes are defined with the Rename operator. It only affects the way
organisations want to refer to an element.

Element changes affect elements and are circumscribed to the elements
themselves: adding an attribute to an entity type is an example of such localised
change. Table 1 proposes four operators to specify element changes, namely Modify,
Give, Withdraw and Retype.

Structural changes correspond to a modification of the set of elements which
composes the model. There are nine operators to specify structural changes in Table
1: ChangeOrigin, AddComponent, MoveComponent, RemoveComponent, Replace,
Split, Merge, Add and Remove. For example adding or removing Relationship types
and Entity types in an As-Is E/R schema to form the To-Be schema is a structural
change.

5

Table 1 sums up the generic gap typology composed of 14 operators classified
according to the type of Element they are applied on.

Table 1. Meta-model elements and related operators

Object Operator Description
Element Rename

Add
Remove
Merge
Split
Replace

Change the name of the element in the To-Be model
Add an element in the To-Be model
Remove an element of the As-Is in the To-Be model
Two separate As-Is elements become one in the To-Be model
One As-Is element decomposes into two To-Be elements
An As-Is element is replaced by a different To-Be one

Link ChangeOrigin The source or target of the link is changed
Compound AddComponent

RemoveComponent
MoveComponent

A component is added in the To-Be element
An As-Is component is removed in the To-Be element
A component is repositioned in the structure of the To-Be element

Property Give
Withdraw
Modify
Retype

Add a property to the To-Be element
Remove an As-Is property in the To-Be element
Change the property of the To-Be element
The As-Is and To-Be elements have different types

Structure of a generic operator. The definition of the operators relies on two
concepts: a signature and a predicate as shown in Fig. 3.

The signature identifies the type of the elements involved in the As-Is model
(before the operator is executed), and in the To-Be model (after the execution of the
operator). The predicate is composed of two elements: a first order logic formula and
eventually some parameters. The formula does not indicate how to modify the As-Is
model but specifies the conditions that must be fulfilled in the To-Be model. It relies
on the concepts of the specific meta-model (a concept being an Element or a
Property). A parameter refers to a concept.

Fig. 3. Model of operator

In order to take into account the concepts of the generic meta-model and the links that
exist between them, we introduce some functions that are used in the formula such as
has-for-source() that is applied on a Link and that takes in parameter an Element. This
function allows to specify the Element that is the source of the Link element. We can
thus write L.has-for-source(E) where L is a Link and E is an Element.

From this structure, this function and four other ones, the fourteen operators of the
generic typology can be formally defined.

6

The operator Add is differently defined depending on whether the element to add is
a Link element of a Not Link element:

(signature) AddLink: NotLink² → Link, NotLink²
(predicate) AddLink (NL1, NL2) = L ∈ M ∧ L. has-for-source(NL1) ∧ L. has-

for-target (NL2) | L ∈ Lien, NL1, NL2 ∈ NotLink, M ∈ Model
(signature) AddNotLink: Model → NotLink
(predicate) AddNotLink (M) = NL ∈ M | NL ∈ NotLink, M ∈ Model

The operator AddLink allows to add a Link L between two NotLink elements NL1

and NL2. After application of the operator, in the To-Be model, L is an element of the
model M. L has for source NL1 and for target NL2.

The operator AddNotLink allows to add the NotLink element NL in the model M.
After application of the operator, NL belongs to the model M.

The model is always present before and after the application of the operator. It
appears as element in the signature, only when it is the only element specifying the
As-Is or the To-Be situation, as in the definition of the AddNotLink operator.

All the other operators are described from the same way (more details can be found
in [6]).

Properties of the generic typology. From the literature, we identify properties that a
gap typology should fulfil: a typology is considered as (i) complete if any model can
be derived from any other model [9]; (ii) correct if each operator is correct i.e. it does
not leave the model in an incorrect state [2], (iii) consistent if the definition of its
operators do not conflict each other [15], (iv) semantically rich if any type of change
can be expressed using only one operator and (v) minimal if any operator can be
considered as the composition of others [4]. These two last properties are
contradictory and can not be fulfil at the same time.

The generic typology verifies each of these properties. Based on [2], we
demonstrate in [12] and [6] that the generic typology is complete. The verification of
the consistency and correctness relies on the formal definition of the operators.
Finally, it is clear that the typology is semantically rich what allows to better answer
to the customer requirements expressing, e.g. merger or replacement of elements.

4 Generation of a specific gap typology

We propose a process to generate a typology associated to a given specific meta-
model from the generic typology. We then illustrate it by specifying a typology
associated to the Map meta-model.

4.1 Description of the generation process

The process that allows to generate a gap typology associated to a specific meta-
model, is composed of six steps:

7

1. To choose the properties to reach, particularly the minimality or the semantic
wealth of the specific typology. Indeed, the set of operators to instantiate are not
the same. To reach the minimality, only the generic operators Give, Withdraw,
Add, Remove, AddComponent and RemoveComponent are instantiated. To satisfy
the semantic wealth property all the operators of the generic typology are
instantiated in the third steps.

2. To instantiate the generic meta-model. This step aims to build the specific meta-
model by instantiation of the generic meta-model.

3. To instantiate the generic typology. This step uses the generic typology to generate,
by instantiation a specific typology. According the choice made in the first step, all
operators or only those forming the minimal set are instantiated for each concept
according to its generic type Link, NotLink, Composed, Simple or Property.

4. To remove the non-sense operators. This step allows to prune the operators that
would not have sense or would not be used in the context of the specific meta-
model.

5. To formally define the operators. This step relies on the formal definition of the
generic operators and on the knowledge of the specific model in order to formally
define each specific operator.

6. To verify the different properties. This last step corresponds to the evaluation of the
properties previously identified. During this step, the specific typology can be
modified in order to satisfy the different properties.

4.2 Illustration of the generation process

The Map meta-model [13] used in ACEM provides an intentional representation of
the system and the business processes. A map is a labelled directed graph from Start
to Stop with intentions as nodes and strategies as edges. A map is composed of
several sections; one section being an aggregation of two intentions linked through a
strategy (cf. Fig. 4).

We chose to construct a semantically rich typology in order to better express the
change requirements. For sake of space, we do not detail each of the six steps; we
give the intermediary important results.

Instantiation of the generic meta-model. Fig. 4 shows the instantiation of the
generic meta-model for the Map meta-model.

8

Fig. 4. Instantiation of the generic meta-model for the Map meta-model

An intention is a NotLink element corresponding to a goal that can be achieved by
the performance of a process.

A strategy is a manner or a means to achieve an intention. In Fig. 4, a Strategy is
shown as a Link element. As a link, a strategy has a source which is the Source
Intention and a target which is the Target Intention.

A section is an aggregation of the source intention, the target intention, and a
strategy. A section is thus a composed element. Furthermore, a section can be seen as
the transition from an initial situation obtained by the realization of the source
intention towards a final situation resulting from the enactment of the target intention
by application to business rules linked to the section. These aspects are specified by
three Properties associated to the section element: the pre-condition (characterising
the initial state), the post-condition (reflecting the final state) and the business rule.

Sections are connected one another according to three different links: a path
(establishing a precedence/succedence relationship), a thread (specifying that sections
between a pair of intentions are alternative) or a bundle (when sections between a pair
of intentions are mutually exclusive). These three elements are of type Link.

Finally, let us mention that it is possible to refine a section of a map at level i into
an entire map at a lower level i+1 to view an intention together with its strategy as a
complex graph of intentions and their associated strategies. Refinement as defined
here is an abstraction mechanism by which a complex assembly of sections at level
i+1 is viewed as a unique section at level i. The refinement is a Link element.

Instantiation of the generic typology. The instantiation of the fourteen generic
operators (Table 1) for the specific elements of the Map meta-model allows to obtain
a table with eight columns corresponding to the number of elements in the Map meta-
model (intention, strategy, section, map, refinement, path, bundle and thread).

The nature of the elements (Link, NotLink, Simple, Composed) helps in reducing
the number of specific operators in the typology. For example, the operator
ChangeOrigin can only be instantiate for the elements strategy, refinement, path,
bundle, thread, relationship and alignment relationship that are Link elements.

9

Some operators have been removed from the typology insofar as they have no
sense (step 4), as for example AddComponentSection or RemoveComponentSection.
Indeed, the structure of a section is immutable: a source intention, a target intention
and a strategy.

Finally some operators are removed in order to satisfy the chosen properties (step
6). Thus, for example, a typology containing the operators AddSection and
AddSectionMap is not consistent since these operators have the same formal
definition.

Table 2 shows an extract of the obtained table at the end of the generation process.

Table 2. Extract of the typology associated to the Map meta-model

This approach has been used in different industrial projects as for example with
DIAC, the financial branch of the French constructor Renault. We developed a
typology for the Map meta-model. The evolution based on gap elicitation allows to
construct the To-Be model by focussing on change without defining again what
remain unchanged.

Conclusion

System adaptation is done under intense time pressure: the new system must be put
in place yesterday. Therefore, it is not possible to develop a To-Be model from
scratch, given the time and resources involved. A workable strategy under these
circumstances is to use and modify what is available, and add the remaining. This is
the thrust of the gap drive proposed in this paper.

In this paper, we have proposed an approach to identify operators expressing
change requirements. This approach relies on the existence of a generic meta-model
and a generic typology.

The process that we have defined in this paper allows to systematically generate a
specific typology satisfying the properties of completeness, correctness, consistency
and semantic wealth. From this way: (1) any change can be expressed by the set of the
typology operators; (2) the application of each operator let the system in a coherent
state without introducing new errors; (3) the operators definitions are clear and non
ambiguous and (4) each type of change can be expressed by using only one operator.

Furthermore, there are some advantages of proceeding following the proposed
approach: (i) the generic typology serves as a guide to define the specific typology:

10

the latter is just an instance of the former and (ii) specific typologies are consistent
with each other as they are generated from the same mould: this is important when
several typologies are used in the same method.

The illustration of this process to define a specific typology associated to the Map
meta-model has shown its relative simplicity and its systematic aspect. We have use
this process in [12] to define a specific typology associated to the intentional Map
meta-model and in [7], we generated typologies respectively associated to WIDE [4]
and ORION [2].

References

[1] Al-Jadir L. (2003) “Once Upon a Time a DTD Evolved into Another DTD” Object Oriented
Information Systems, Lecture Notes in Computer Science, Vol.2817, pp.226-237, 2003.

[2] Banerjee, J., Kim, W., Kim, H.-J., Korth, H. F.: Semantics and Implementation of Schema
Evolution in Object Oriented Databases In Proc. of the ACM-SIGMOD Annual Conference,
pages 311--322, San Francisco, CA, May 1987.

[3] J. Bezivin From Object Composition to Model Transformation with the MDA, Proceedings
of TOOLS, USA, Santa Barbara, August 2001

[4] F. Casati, S. Ceri, B. Pernici, G. Pozzi Workflow Evolution. In Proc. of 15th Int. Conf. On
Conceptual Modeling (ER'96), Cottbus, Germany, pp. 438-455, 1996

[5] J. Estublier and M. Nacer Schema Evolution in Software Engineering Databases -- A new
Approach in Adele environment CAI Computer and Artificial Intelligence Journal. June
2000. Vol 19. pp. 183-203.

[6] Etien, A.: Ingénierie de l’alignement : Concepts, Modèles et Processus Thèse de Doctorat,
Université de Paris I, Mars (2006)

[7] Etien, A., Salinesi, C.: Towards a Systematic Definition of Requirements for Software
Evolution: A Case-study Driven Investigation. Proc of EMMSAD’03 Velden, Austria, 2003.

[8] Information Technology-Information Resource Dictionary System (IRDS) – Framework,
ISO/IEC International Standard, 1990.

[9] M. Kradolfer. A Workflow Metamodel Supporting Dynamic, Reuse-based Model
Evolution. PhD thesis, Department of Information Technology, University of Zurich,
Switzerland, mai 2000, chap. 4, pp. 59-73

[10] Marttiin, P., Methodology Engineering in CASE shells: Design Issue and Current Practice,
PhD thesis, Computer science and information systems reports, Technical report TR-4, 1994

[11] Prakash, N.: On Method Statics and Dynamics. Information Systems 24(8), pp. 613-637,
1999.

[12] C. Rolland, C. Salinesi, A. Etien, “Eliciting Gaps in Requirements Change”. Requirement
Engineering Journal Vol. 9, N°1, pp1-15, 2004

[13] Rolland, C., Prakash, N., Benjamen, A:.A Multi-Model View of process Modelling,
Requirements Engineering Journal, (1999) 4 : 169-187

[14] Soffer P, Wand Y (2004) Goal-Driven Analysis of Process Model Validity. Proceedings of
CAiSE’04, Riga, Latvia.

[15] Teeuw W. B., van den Berg H. (1997), On the Quality of Conceptual Models, Proceedings
of the 16th International Conference on Conceptual Modeling (ER'97), Los Angeles, CA,
November 1997

[16] M-N Terrasse, M. Savonnet, G. Becker, E. Leclercq, "UML-based Metamodeling for
Information System Engineering and Evolution", Proceedings of OOIS'03, LNCS 2817,
Springer Verlag, pp. 83-94, 2003

