
ORIGINAL ARTICLE

Eliciting gaps in requirements change

Published online: 18 June 2003
� Springer-Verlag London Limited 2003

Abstract We consider requirements change due to sys-
tem evolution which results from contextual forces such
as the decision to standardise practices across subsidi-
aries of a company. Our experience with the financial
branch of the French Renault group is that eliciting
change requirements poses its own specific problems. We
propose to model change as a set of gaps between the
requirements specification of the current and the future
system. Our approach is to define a generic typology of
gaps to facilitate a precise definition of change require-
ments. It adopts a goal oriented requirements specifi-
cation and shows how to customise the generic gap
typology to this specific requirements representation
formalism. The paper presents the approach to elicit
gaps and illustrates it with the Renault case study.

Keywords System evolution Æ System change Æ Change
gap Æ Change primitive Æ Gap meta-model

1 Introduction

System evolution is a fact of industrial life. In order to
survive in a more and more competitive environment,
organisations undergo frequent changes that imply
changes of their software-based systems. As a conse-
quence of the fast speed of organisational change, sys-
tem evolution costs are far higher than initial
development costs. Lientz and Swanson [1] and Nosek
and Palvia [2] show for example that more than 50% of
total life cycle cost is incurred after initial development
has been done. Handling system evolution has therefore
been an important issue, sufficiently recognised world-
wide to be the subject of the series of IPSE international
workshops [3]. Whereas a large number of approaches

deal with the evolution of the software model and its
impact on running instances, we are concentrating in
this paper on the system requirements level. The former
focus on the identification of primitive modifications,
evolution patterns and change propagation for different
types of software models such as (a) database schemas
[4, 5, 6], (b) workflow models [7, 8, 9] and (c) software
process models [10, 11, 12]. Instead, in the latter, fol-
lowing Lehman’s view that ’software evolution is driven
by the need to maintain user satisfaction’ [13], we con-
centrate on requirements change.

Our position is that a prerequisite to performing
software change is to understand the way organisational
changes impact system requirements. Just as for systems
developed from scratch where requirements elicitation
provides a basis for subsequent software design and
implementation, changes in design and implementation
are rooted in changed requirements. Eliciting these
change requirements is the concern of this paper.

Requirements engineering is intrinsically concerned
with change to such an extent that it has been defined in
[14] as the process of establishing the vision for change
in the organisational context. The focus has been natu-
rally placed on modelling the vision and the constraints
imposed by the context, on what Jackson calls the
optative properties [15]. In his survey of researches
conducted in the field of requirements engineering,
Lamsweerde [16] demonstrates the key role played by
goals to concretise the vision [14] and to refine high-level
strategic vision into low-level system constraints [17].
Despite our conformity with the goal-oriented view of
requirements modelling, our concern is on change
requirements for a specific type of evolution that we refer
to as system adaptation.

The nature of change requirements varies with the
nature of system evolution. There are many kinds of
system evolution and we focus on those that are caused
by changes in the organisational context in which a leg-
acy software system is now to operate. We will refer to
this type of system evolution as system adaptation. Our
experience with European companies shows that such

Requirements Eng (2004) 9: 1–15
DOI 10.1007/s00766-003-0168-y

Colette Rolland Æ Camille Salinesi Æ Anne Etien

C. Rolland (&) Æ C. Salinesi Æ A. Etien
CRI, Université Paris 1, Sorbonne,
90 rue de Tolbiac, 75013 Paris, France
E-mail: rolland@univ-paris1.fr



changes of organisational context are currently frequent.
They typically occur when mergers/take-overs, globali-
sation, standardisation of practices across branches of a
company etc. occur. Several legacy software systems are
already running when such events take place. In such a
context, it is out of the question to develop a new system
from scratch but it is possible to integrate these legacy
systems or to select one of these for adaptation and
uniform deployment across the organisation.

Typically, system adaptation is bounded by the fol-
lowing constraints:

– No large-scale deviations in the selected software
system.

– Compliance with some of the functionality not found
in the selected system but provided by others.

– Provision of functionality for handling new business
opportunities that are now recognised to be impor-
tant.

From the foregoing it seems to us that the adaptation
process should have two characteristics:

1. It has to be put into the larger context of organisa-
tional change and, therefore, must concentrate first
on the requirements for system change. Thereafter,
traceability links can be used to propagate the change
requirements into actual software changes.

2. It should be driven by gaps which identify what has to
be changed/adapted to the new situation. In this
change context, it is not so much the representation
of the future situation that is important (as it is fixed
to a large extent) as the difference from the current
situation. If gaps remain implicit, it is difficult to
identify what has to be changed. Explicit gap repre-
sentation seems to us, therefore, crucial to expressing
change requirements.

We adopt the change-handling view in which change
creates a movement from an existing situation captured
in the As-Is model to a new one captured in the To-Be
model [18]. According to Jackson [15], the As-Is models
describe indicative properties whereas the To-Be models
describe optative properties. In the approach presented
in this paper the As-Is and To-Be models are require-
ments models expressed asmaps (Fig. 1). Amap [19, 20] is
a goal-oriented requirements representation formalism
that allows the representation of a set of requirements as
a non-deterministic ordering of intentions and of strate-
gies to achieve them. By avoiding unnecessary details,
maps help in focusing attention on what is to be achieved
(the intentions) and the ways required to achieve them
(the strategies). The As-Is map abstracts from the tech-
nical details of the implemented system to focus on the
business goals and associated strategies to attain them
that are supported by the system. The To-Be map ex-
presses the intentions and their associated strategies that
the organisation wants to achieve in the future.

The approach departs from Jarke’s view by modelling
the changes to be made as a collection of gaps between

the As-Is and the To-Be maps. A gap expresses a dif-
ference between the initial situation, the As-Is map and
the future situation, the To-Be map. Intuitively gaps
might be related to operators that cause transformations
of the As-Is map into the To-Be map. This is the view
developed in this paper. Map gaps express the require-
ments for change implied by the organisational business
expectations and the needs for the future. An expression
of gaps constitutes the requirements specification for
change, the change requirements.

In the adaptation process it is essential to describe the
gaps precisely since they are the basis of the actual
change of the software system. As suggested in Fig. 1,
map gaps might be propagated into schema gaps
describing the modifications in system functionality im-
plied by the change requirements. The actual adaptation
of the system is based on the schema gaps whereas map
gaps provide the business rationale for these schema
gaps. However, in this paper, our interest is with the
requirements level only.

In the proposed approach to elicit change require-
ments, gaps are precisely defined by associating each gap
to a predefined type of change. The paper proposes a
generic gap typology and its customisation to expressing
gaps between maps. The map gap typology is a set of
operators associated to the map representation system.

The approach for software system adaptation pre-
sented in this paper was developed to handle the stan-
dardisation of practices in the Financial branch, DIAC,
of the Renault motor company. The current software
system, besides providing other financial services, deals
with granting credit to Renault customers. A number of
such systems are running in DIAC subsidiaries located
in different countries, and it was required to standardise
these across Europe. The Spanish software system was
selected for adaptation and deployment in France,
Spain, Portugal and Germany.

The adapted software system, called FUSE, must
comply with the functionalities available in the French
software system and meet all the financial regulations in
the different countries. There are new business needs as
well as (a) diversification of the sales channels to include,
for example, sales by the internet in addition to regular
vendors, (b) inclusion of additional financial services, for

Fig. 1 The gap-driven approach

2



example, offering personal loans in addition to car loans,
and (c) planning for the same software system to be used
across Europe.

In the next section we present the generic gap typol-
ogy. In Sect. 3 we provide an overview of the map for-
malism to represent system requirements and present the
customisation of the gap typology for maps, i.e., the map
gap typology. Section 4 outlines the process of eliciting
gaps. Section 5 illustrates this gap elicitation process
with examples extracted from the DIAC project.

2 The gap typology

Our proposal is to model the change movement from
the current situation to the future situation as gaps
between the As-Is map and the To-Be map. Intuitively a
gap expresses a difference between the As-Is map and
the To-Be map such as the deletion or addition of an
As-Is element in the To-Be map. Gaps are related to
operators which transform elements of maps. In order to
facilitate the elicitation of gaps in the adaptation pro-
cess, we defined a typology of map gaps, i.e., a set of
predefined gap types related to operators acting on
maps. For instance, as ’intention’ is a type of element
of a map, ’remove intention’ is part of the map gap
typology.

A basic question is which requirements the set of
operators should fulfil. This question has been addressed
in object-oriented schema evolution by Banerjee [6], who
introduces two important properties: completeness and
correctness. A set of operators is considered to be
complete if it subsumes every possible schema evolution;
it is correct if the execution of any operator does not
result in an incorrect schema. In [6] the correctness of the
schema is defined by a set of schema invariants which
are conditions over the schema. These properties seem to
have been accepted as a standard (e.g., Casati [7] and
Kradolfer [21]) and we adopt them for the map gap
typology.

The set of gap types is complete in the sense that it
subsumes every possible type of map change. Thus, ev-
ery actual gap between two maps is expressed as an in-
stance of a gap type. The map gap typology ensures the
correctness property: map invariants are maintained by
the execution of any operator of the map gap typology.

2.1 Towards a generic gap typology

Obviously a relevant map gap typology could have been
defined in an ad hoc sort of manner. However, besides
the fact that this might be error prone, the resulting
typology would be dependent on the specific require-
ments specification formalism used in this paper, i.e. the
map formalism. To overcome these difficulties, we
search for a generic gap typology, i.e. a typology that is
independent of the formalism used to express the As-Is
and the To-Be models. The map gap typology will, then,

be an instance of the generic gap typology. Other gap
typologies such as an object-oriented gap typology or a
goal gap typology could be easily generated as well.

There are some advantages of proceeding in this way:

1. The generic typology serves as a guide to define the
specific typology: the latter is just an instance of the
former.

2. The completeness of the specific typology is sub-
sumed by the completeness of the gap typology.

3. Specific typologies are consistent with each other as
they are generated from the same mould: this is
important when several typologies are used in the
same method.

The generic gap typology will take the form of a set of
operators applicable to generic elements that compose
any model. To achieve this, it is necessary to abstract
from the specificity of a given model such as the map
model to generalise model elements and their relation-
ships. Meta-modelling is known as a means to do so.
Thus, in order to build the generic gap typology, we first
develop a meta-model, i.e. a model of models.

2.2 A meta-model for defining the generic gap typology

A number of attempts have been made to make explicit
the elements that compose any model, i.e. to define
meta-models [22, 23, 24, 25, 26]. There are different
meta-models depending on the meta-modelling purpose.
For example, IRDS [22] is a standard to facilitate the
evolution of model representation in CASE tools,
Prakash [26] aims at a formal definition of a method and
Marttiin [23] searches for a generic repository structure
of meta-Case environments. The meta-model we devel-
oped is targeted to the identification of key significant
transformations that can occur in a model.

This meta-model is drawn in Fig. 2 using UML
notations. This figure shows that any model is made of
Elements, every element having a Name, and is charac-
terised by a set of Property. In the E/R model, for
example, Entity type, Attribute and Relationship type as
well as the Is-A relationship are elements. Domain is a
property of Attribute.

In the meta-model there are two orthogonal classifi-
cations of Elements. The first classification makes the
distinction between Simple and Compound Elements.
Compound elements are decomposable into fine-grained
ones that can be simple or compound elements whereas
Simple Elements are not decomposable into other
Elements. The second classification is a partition of
elements into Link and NotLink. An element of the type
Link is a connector between two elements, one being the
Source and the other the Target. Elements, which are
not links, are referred to as NotLink. In the E/R model
an Entity type is a compound element made of Attributes
which are simple elements. An Is-A relationship of the E/
R model is a Link: it connects a source Entity type to a
target Entity type. Vice versa, an Entity type is NotLink.

3



Figure 2 shows that an element is-a another element,
i.e. might inherit from another element Finally, any
model is a compound element which can be reduced to
the root element.

2.3 The generic gap typology

The generic gap typology is composed of a set of oper-
ators applicable to Element. Each operator identifies a
type of change that can be performed on an As-Is model.
The operator identifies the difference between the As-Is
model and the To-Be model. For example, as Rename is
an operator (see Table 1), Rename Element will be a
change that characterises the transformation of an As-Is
element in the To-Be model.

The generic gap typology identifies three major types
of change: naming changes, element changes and struc-
tural changes.

– Naming changes are defined with theRename operator.
They only affect the way organisations want to refer to
an element. Naming is dealing with hyponyms,
synonyms and the like.

– Element changes affect elements and are circumscribed
to the elements themselves: adding an attribute to an
entity type is an example of such localised change.
Table 1 proposes four operators to specify element
changes, namely Modify, Give, Withdraw and Retype.

– Structural changes are the most important as they
correspond to a modification of the set of elements
which composes the model. There are nine operators
to specify structural changes in Table 1: ChangeOri-
gin, AddComponent, MoveComponent, RemoveCom-
ponent, Replace, Split, Merge, Add and Remove. For
example, adding or removing Relationship types and
Entity types in an As-Is E/R schema to form the
To-Be schema is a structural change.

Table 1 sums up the generic gap typology composed
of 14 operators that we identified on Element.
In conformance with [6] we believe that the proposed
collection of change operators is complete, since:

– Any model can be generated from the root element by
a finite sequence of Add, AddComponent and Give
operations.

– Any existing model can be reduced to the root ele-
ment by a finite sequence of Remove, RemoveCom-
ponent and Withdraw operations.

3 The map gap typology

The map gap typology is an instance of the generic gap
typology. As the generic one, the map gap typology is
based on a set of operators adapted to the specific ele-
ments that compose a map. In order to define the map
gap typology, we proceed in two steps to:

1. Instantiate the meta-model for identifying the specific
map elements and their properties.

2. Customise the generic operators for each specific
element of the map.

3.1 Map as an instance of the meta-model

Figure 3 shows the instantiation of the meta-model for
maps. Figure 3 shows the key concepts of a map and
their type as meta-model elements. These are as fol-
lows:

Fig. 2 The meta-model for gap typology definition

Table 1 Meta-model elements
and related operators Object Operator Description

Element Rename Change the name of the element in the To-Be model
Add, Remove Add/Remove an element of the As-Is in the To-Be model
Merge Two separate As-Is elements become one in the To-Be model
Split One As-Is element decomposes into two To-Be elements
Replace An As-Is element is replaced by a different To-Be one

Link ChangeOrigin The source or target of the link is changed
Compound AddComponentt A component is added in the To-Be element

RemoveComponent An As-Is component is removed in the To-Be element
MoveComponent A component is repositioned in the structure of the To-Be element

Property Give Add a property to the To-Be element
Withdraw Remove an As-Is property in the To-Be element
Modify Change the property of the To-Be element
Retype The As-Is and To-Be elements have different types

4



– A Map is a compound element composed of Sec-
tions, each section being an aggregation of two
types of Intentions, the Source Intention and the
Target Intention together with a Strategy. There-
fore, there are three key elements in a map: Inten-
tion, Strategy and Section, which we describe in
turn.

– An Intention is a goal that can be achieved by the
performance of an activity (automated/semi-auto-
mated or manual). For example, Make Loan Demand
is an intention to formulate a request for loan. Simi-
larly, Make Loan Decision is another intention. We
postulate that each map has two special intentions,
Start and Stop, to begin and end the map respectively.
We use a linguistic approach to provide a template to
formulate an intention [27]. An intention is expressed
as a clause with a main verb and several parameters,
where each parameter plays a different role with re-
spect to the verb. A detailed description of the inten-
tion structure can be found in [28].

An example of an intention is the following:

CollectverbðrequestsÞtargetðfrom customersÞsource
ðfor subcontractor vendorsÞbeneficiary

In Fig. 3, the Verb, Target and Parameters are shown
as three properties of the Intention element. It is also
shown that Intention is a simple element as it cannot be
decomposed into other elements. Besides an Intention is
a NotLink type of Element.

– A Strategy is an approach, a manner to achieve an
intention. In our example, let it be required that de-
mands can be made on the Internet. This is a way of
achieving our Make Loan Demand intention: ’by In-
ternet’ is a strategy. In Fig. 3 a Strategy is shown as a
Simple element of the type Link. As a link, a strategy
has a source which is the Source Intention and a target
which is the Target Intention.

– A Section is an aggregation of the Source Intention,
the Target Intention, and a Strategy. A section ex-
presses the strategy using which, starting from a
source intention, the target intention can be achieved.
For example, the aggregation of the source intention
Start, the target intention Make Loan Demand and
the by Internet strategy defines a section <Start,

Make Loan Demand, by Internet>. Here, the by In-
ternet strategy characterises the flow from the source
intention Start to the target intention Make Loan
Demand and the way the target can be achieved.

– A Section can be seen as a transition from an initial
state attained by the achievement of the source
intention to a final state resulting from the achieve-
ment of the target intention through the execution of
the business rule associated to the section strategy.
These aspects are captured by the three properties
attached to the Section element in Fig. 3: the pre-
condition (characterising the initial state), the post-
condition (reflecting the final state) and the business
rule. For instance, the pre-condition of the section
<Start, Make Loan Demand, by Internet> is that the
site for e-loaning is operational; the post-condition is
that the demand has been registered as the result of
following the electronic procedure for expressing a
loan demand.

By definition, sections are connected one another.
This occurs:

– When an intention can be achieved only if another
one has been achieved. This establishes a prece-
dence/succedence relationship between sections that
is called a path. In a path the target intention of the
preceding section is the source intention of the
succeeding section. In our loan example, in addition
to the intention to Make Loan Demand by Internet
let there be another intention to Make Loan Deci-
sion by Risk Analysis strategy. Evidently, this
intention can be fulfilled after a demand for loan is
made … Thus, there is a path relationship between
the section <Make Loan Demand, Make Loan De-
cision, Risk Analysis strategy> and the section
<Start, Make Loan Demand, by Internet >: Make
Loan Demand is the target of one section and the
source of the other.

– When a given intention can be performed using dif-
ferent strategies. This is represented in the map by
several sections between a pair of intentions. Such a
map topology is called amulti-thread. For example, let
it be required that decisions can be made manually or
automatically. Thus we have two ways to Make Loan
Decision, Make Loan Decision by Risk Analysis and
Make Loan Decision Manually, both of which (by an
extension of the discussion above) have the same

Fig. 3 Instantiating the meta-
model for maps

5



source intention, Make Loan Demand and the same
target intention Make Loan Decision. Then the two
sections <Make Loan Demand, Make Loan Decision,
By Risk Analysis> and <Make Loan Demand, Make
Loan Decision, Manually> are in a thread relation-
ship with one another because they represent two
different ways of achieving Make Loan Decision from
Make Loan Demand.

In general, a map from its Start to its Stop intentions
is a multi-path and may contain multi-threads.

We represent each map as a directed graph from Start
to Stop. In this graph, intentions are represented as
nodes and strategies as edges between these. The graph
is directed because the strategy shows the flow from the
source to the target intention. As an example consider
the map shown in Fig. 4 which contains six sections
MS0 to MS5.

MS1 and MS2 constitute a multi-thread. There are
multi-paths from Start to Stop: MS0, MS4, MS3, MS1,
MS5 is one example; MS0, MS4, MS2, MS5 is another
one.

Finally, let us mention that it is possible to refine a
section of a map at level i into an entire map at a lower
level i+1 to view an intention together with its strategy
as a complex graph of intentions and their associated
strategies. Refinement as defined here is an abstraction
mechanism by which a complex assembly of sections at
level i+1 is viewed as a unique section at level i. Since
refinement results in a map, it produces multi-path/
multi-thread structures at level i+1. Refinement makes
it possible to progressively move from the highest busi-
ness requirements into finer ones that can be opera-
tionalised in software functionality. We will see in Sect. 4
how the refinement mechanism helps in considering gaps
at different levels of detail.

3.2 Map invariants

In order to ensure the correctness property of the map
gap typology, we need to define what a correct map is.
This is achieved by adding to the structural definition
of a map presented in the above section a set of
properties called invariants. The invariants must hold
in any quiescent state of a map, that is, before and
after any execution of a change operator to the As-Is
map resulting in a new state of the To-Be map. The
invariants guide the definition of the semantics of ev-
ery meaningful map change, by ensuring that the
change operator does not leave the To-Be map in an
incorrect state, that is, a state which violates any
invariant. We have been able to identify the three
following invariants of a map:

– I1. Any map has one and only one intention which
is the target of no strategy; that is, the Start inten-
tion.

– I2. Any map has one and only one intention which is
the source of no strategy; that is, the Stop intention.

– I3. Any intention in a map must be quasi-live. An
intention is said quasi-live if it can be achieved at least
once, i.e. if there exists a path from Start to this
intention. In Fig. 4, intention Ij is quasi-live because it
exists at least one path from Start (for instance MS0,
MS4, MS1) to achieve it.

I1, I2 and I3 have several corollaries:

– C1. Maps are connected graphs; there is no isolated
intention or strategy.

– C2. Any intention in a map is the source of a strategy
except the Stop intention.

– C3. Any intention in a map is the target of a strategy
except the Start intention.

– C4. There is always a path from Start to Stop.
– C5. Any section belongs to a path between Start and

Stop.

3.3 Map gap typology

Having determined the elements that compose a map,
their types and properties, we can now identify the
map change types, i.e. the map gap types. They cor-
respond to the instantiation of the set of the 14 generic
operators (Table 1) for the specific map elements.
Table 2 sums up the 25 types of map gaps applicable
to maps.

Table 2 comprises 11 lines corresponding to 11 of the
14 generic types of gaps identified in Table 1. The three
missing operators, namely AddComponent, Remove-
Component and MoveComponent, have not been intro-
duced as it does not make sense to apply them to the
Section element. Indeed the structure of a section is
immutable and is composed of a source intention, a
target intention and a strategy. As a map comprises
three elements: Intention, Strategy and Section, Table 2
is organised in three columns. Each generic operator is
potentially applicable to each of the three elements. For
example, Add, which is a generic operator, is applicable
to Intention, Strategy and Section. This identifies three
map gap types, namely AddIntention, AddStrategy and
AddSection.

Fig. 4 The map as a graph

6



A more precise definition of each of the 32 operators
shown in Table 2 is provided in the Appendix. The def-
inition of each of the operators is composed of a signa-
ture and a predicate. The signature identifies the type of
the elements involved in the As-Is map (before the
operator is executed), and in the To-Be map (after the
execution of the operator). The predicate is a first-order
logic formula specifying the conditions that must be
fulfilled in the To-Be map. The predicate ensures the
correctness property of the map gap typology: it guar-
antees that the operator leaves the To-Be map in a cor-
rect state, i.e. a state which preserves the map invariants.
For example, the AddIntention is defined as follows:

Signature AddIntention : Intention2

! Strategy2; Intention

Predicate AddIntentionðI1; I2Þ
¼ St1:has� for� sourceðI1Þ^

St1:has� for� targetðIÞ^
St2:has� for� sourceðIÞ^

St2:has� for� targetðI2ÞjðSt1; St2Þ
2 Strategy; I 2 Intention

The addition of the new intention I in the To-Be map
ensures that there exists at least one section (<I1,I,St1
>) in which I is the target intention and one section
(<I, I2, St2 >) in which I is the source intention.
Therefore, the predicate preserves the invariants I2 & I3.

4 The gap elicitation process

The gap elicitation process draws from the top-down
requirements elicitation process in which high-level,
strategic goals are reduced to low-level, operationalisable
goals. Similarly the gap elicitation process starts with the
elicitation of gaps between the top-level As-Is and To-Be

maps. The refinement mechanism of map sections into
maps (Sect. 2) is used as a means to study gaps at different
levels of detail. The refinement of sections of the To-Be
map allows us to reduce single gaps expressed between
top-level maps into a set of gaps between the refined As-Is
and To-Be sections. The process continues until refined
maps contain operationalisable intentions and strategies.
These map gaps can then be expressed as schema gaps
(see Fig. 1). It is therefore through the refinement process
that the gap granularity issue is handled.

More precisely, the process for eliciting gaps is an
iterative one as follows:

– Repeat until all maps have been considered.
1. Construct the As-Is map.
2. Construct the To-Be map & Identify gaps between

maps.
3. Deliberate &Commit.

The three steps are carried out in a participative
manner. This allows the consideration of different
viewpoints [29, 30] with the aim of reconciling them co-
operatively, in the construction of the As-Is and To-Be
maps as well as in the elicitation of gaps. Additionally, in
step 3, the decision to refine elicited gaps in an iteration
is also made co-operatively. As before, the refinements
committed to in this step emerge as a consensus from
among the different viewpoints.

Each iteration is related to one single To-Be map and
includes three key activities to:

1. Construct the As-Is map if it does not exists yet.
2. Construct the To-Be by difference with the As-Is

map, taking into account the target selected system
and the organisation requirements for change. The
To-Be map and the Gaps are modelled concurrently
and then, documented.

3. Deliberate on each section of the To-Be map to decide
if further refinement is required to identify more de-
tailed gaps or not. Every section marked as �to-be-
refined’ will serve as starting point for a new iteration

Table 2 Map gap types

Operator Intention Strategy Section

Rename RenameIntention RenameStrategy RenameSection
Add AddIntention AddStrategy AddSection
Remove RemoveIntention RemoveStrategy RemoveSection
Merge MergeIntention MergeStrategy MergeSection
Split SplitIntention SplitStrategy SplitSection
Replace ReplaceIntention N/A (not applicable). N/A.
Change Origin N/A. ChangeSourceIntention, N/A.

ChangeTargetIntention
Retype RetypeIntention RetypeStrategy N/A.
Give GiveListofParameters N/A GivePre/

PostCondition,
GiveBusinessRule

Withdraw WithdrawListofParameters N/A. WithdrawPre/
PostCondition,
WithdrawBusinessRule

Modify Modify (Verb, Target, List of Parameters) N/A. ModifyPre/PostCondition,
ModifyBusinessRule

7



of the elicitation process. Every section that does not
require refinement gets the �green’ status.

The suggested process is clearly
top-down and participative:

– The top-down nature coupled with the refinement
mechanism permits the handling of the subdivision of
a single gap into other gaps.

– The participative nature facilitates a discussion of gap
elicitation and decision-making on gap refinement.

5 Illustrating the process with the DIAC case study

This section illustrates the process for eliciting gaps by
reporting activities run with the DIAC company. To set
the case study into context, the top-level map describing
DIAC’s main requirements to be supported by the fu-
ture software system is first described. One of the sec-
tions of the map is then refined to illustrate the three
activities of one iteration of the process.

5.1 DIAC top-level map

The overall objective of the Renault-DIAC company is
to sell financing products associated to vehicles manu-
factured by the Renault group. These products are
credits taking the form of loans for purchasing vehicles
(with or without purchase option), and leases. DIAC’s
business processes are traditionally centred on sales and
post-sales administration of contracts made with cus-
tomers. Sales processes involve building catalogues of
products and making contracts with customers. The
post-sales processes include treasury and information
flow management.

The requirements for the future software support of
DIAC’s business processes are identified in the Finance
the purchase and lease of Renault Vehicles To-Be map
shown in Fig. 4. Three intentions are emphasised to
define the future situation: Offer a product, Gain a cus-
tomer, and Manage the customer relationship.

To Gain a customer is done By prescription of the
products offered by the company, By prospecting new
customers, and By securing the customer loyalty. This
strategy is particularly important as it supports the
company’s essential requirement to keep customers as
long as there is no need to Stop financing them by
exclusion.

Manage the customer relationship is initiated By de-
mand of transfer of the contracts signed with the pre-sales
department to the post-sales administration. In DIAC’s
vision of the future way to hold the business, ‘customer
relationship’ means having business dealings with, and
for customers. The intention name was thus introduced
to emphasise a determining gap with the contract-wise
management of customers currently achieved in Spain.

Managing the relationship with customers should be
done By debts recovery according to the contracts
repayment schedules, and by managing multiple flows of
customer-related information. This is shown in the map
by the strategies: By processing modification requests, By
processing information and complaints requests, and By
handling legal obligations of communication. The latter
strategy is imposed by the European and national laws on
information privacy.Managing the customer relationship
By capitalisation of treasury is an absolute requirement to
ensure forthcoming financing. The strategy By handling
accidents is important as well, as for some productsDIAC
may propose to pay in the place of customers who have
suffered damages that stop them reimbursing their debts.

Let us assume that at the end of the iteration related
to the To-Be map shown in Fig. 5, the section <Offer a
product, Gain the customer, By prescription> was left
with a ’to-be-refined’ status and let us illustrate the three
activities occurring in one single iteration by reporting
respectively: (1) the refinement of the section C3 by the
construction of the As-Is map Gain the customer by
prescription, (2) the identification of gaps between the
current and future situations by the construction of a
To-Be map, and (3) commenting on the decisions made
about how to proceed with the gaps identified.

5.2 Constructing the As-Is map to gain the customer
by prescription

The construction of an As-Is map is not as straightfor-
ward as we would like it to be. We developed different
strategies supported by guidelines to help in the con-
struction of a map and improve its quality. As an
illustration of this methodological aspect we present in
Figs 6 and 7 respectively the initial map for Gain the
customer by prescription and that resulting from the
application of quality guidelines. The strategy used in
DIAC was a participative strategy: domain experts were
providing the domain knowledge that we were modelling
in maps.

Today, when a Spanish customer goes to a DIAC
concessionaire to be prescribed a financing product, he/
she deals with salesmen whose first concern is to gather
data for the offer they will use to Make a contract with
the customer. To Gather the offer data, Spanish salesmen
get assistance from the software system to (a) select a
product from DIAC’s catalogue, (b) formulate an offer
based on this product, and (c) complete the offer with
customer personal information and other data (the
repayment schedule details, the price and nature of the
financed vehicle).

Before the contract is made, pre-sales administrators
must intervene in the process to Evaluate the risk rep-
resented by each offer. This helps ensure that a maxi-
mum number of credits will be correctly paid back.
Then, they Decide on the offer. This results in the vali-
dation of the offer, in its rejection, or in a counter-offer
aimed at maximising the number of customers with
which salesmen can make a contract.

8



These intentions are supported in the current situation
by several features of the Spanish software system. These
are shown in Fig. 6 through different strategies. For
example, an expert system generating evaluations of the
customers’ reliability helps the pre-sales administrators to
Evaluate the risk Automatically. The heuristic rules
implemented in this software component use a national
banking proscription list and, in particular, scoring
functions based on the offer data. The source of the cor-
responding strategy is thus the intentionGather offer data.

Spanish salesmen and pre-sales administrators are not
the only users to be involved in the process. Independent
agents selling second-hand vehicles and Spanish employ-

ees of DIAC may also gather offer data. However, the
software proposes them reduced features (e.g. agents can
only offer second-hand vehicle loan products) through
specific media (e.g. VT100 terminals and Intranet); hence
the two additional strategies to gather offer data.

European legislation imposes that offers are not re-
jected in a fully automated way. Deciding on the offer
By manual risk evaluation as well as Automatically is
necessary both to complete the evaluation performed by
the expert system and to revise offers based on modified
data. Once the decision is made, the customer can reject
the offer. Besides, the company can at any time decide to
definitively end the process if it appears that the cus-
tomer is a crook.

To make a contract with the customer, a vendor (i.e.
salesman or an agent) Directly prints the contract and
records its signature in the software. The process stops By
transition to administration of the contract. This can occur
several times if the contract is made again By revision of
minor data such as the vehicle registration number.

The initial map shown in Fig. 6 was improved by
applying quality rules which are associated to the map
formalism [19]. The resulting map in Fig. 7 shows a
number of adaptations that followed from the application
of these rules. For example, rule R4 (sections representing
mutually exclusive ways to produce the same result shall
be bundled) was applied and resulted in the bundling of
the sections<Start, Gather the offer data, By an agent>,

Fig. 5 Top level To-Be map of
DIAC

Fig. 6 Initial As-Is map to Gain the customer by prescription

Fig. 7 Improved As-Is map to
Gain the customer by
prescription (left), refined by the
map Define an offer by assisted
risk evaluation (right)

9



and <Start, Gather the offer data, By a salesman> into
<Start, Gather the offer data, By a vendor>.

Based on the business fact that the intentions Gather
the offer data and Decide on the offer complement each
other, the two intentions were aggregated as rule R6
suggests (intentions that mutually complement each
another shall be aggregated in one intention which ab-
stracts them). This resulted in the intention Define an
offer which better abstracts the actual purpose of the
company’s vendors.

Besides, the experts proposed to consider the inten-
tions Evaluate the risk and Decide on the offer as a subset
of Define an offer. Rule R1 (no intention in a map shall
be the subset of another one) was thus applied, which
made the former intentions disappear from the map.

However, in order to differentiate the vendor’s par-
ticipation in defining an offer from the pre-sales admin-
istrator’s part, the resulting map was adapted by adding
the strategy By assisted risk evaluation. As Fig. 7 shows,
the resulting section was refined by a map containing the
subset intentions and strategies of the section<Define an
Offer, Define an Offer, By assisted risk evaluation>.

Once the As-Is map constructed, the next activity is
aimed to construct the To-Be map and to identify gaps.

5.3 Constructing the To-Be map through
gap identification

The To-Be map presented in Fig. 8 describes the
requirements for the software system supporting the
goal to Gain the customer by prescription in the future
situation. Although it contains similarities with the As-Is
map, this map is different from the map of Fig. 7. The
gaps between the As-Is map and the To-Be map are
identified in Table 3. For each intention, strategy and
section involved in a gap, the operator used to define the
To-Be map is quoted in a separate line.

Table 3 shows, for example, that the intentionDefine an
offer was replaced by Prepare a contract. Indeed, in the
current situation, vendors Define an offer based on a cat-
alogue of products describing services, pricing rules and
the terms to use in contracts. To this product-oriented

view vendors opposed a customer-oriented view in which
the software would offer them the ability to Collect a re-
quest from a customer rather than to Define an offer. By
adding this intention, vendors expressed their requirement
of a system support to discuss requests with customers,
envisage different products according to the customers’
needs (new products such as reserve of money but also
other services such as vehicle maintenance, petrol cards,
insurance, etc.) and propose complementary products in
packages.

The company’s Web site already offers a simulation
feature based on the up-to-date catalogue of offers.
However, its success suggests more advanced features to
be provided. The future system component to Collect a
request is intended to be used By a vendor, but can also
bring competitive advantage to the company if directly
used By customers via Internet. The vendors asked to
offer direct access to customers. The features offered to
customers should, however, be designed so that they
keep contacting vendors. The origin of the former
strategy was thus changed and the latter strategy added.

The systemfeature supporting theCollect a requestBya
customer via Internet isduplicatedwith the Intranet facility
provided to the Spanish employees. In order to avoid the
maintenance costs of the Intranet facility, the corre-
sponding strategy By an employee was removed from the
map. In the future situation, employees will use the same
facility as any other customer (still with special price grids
though).

Whereas in the Spanish branch of DIAC the business
and current software differentiate offers and contracts,
French vendors consider that offers are already contracts
that are not yet signed. The experts agreed that this ter-
minology difference would have an important impact at
theoperational level because theobjects andbusiness rules
involved would be very different. In order to homogenise
the business terminology across the countries in which the
DIAC company is settled, it was decided to replace the
intention Define an offer by Prepare a contract. The fol-
lowing shows that this gap had a multiple impact on the
other parts of the To-Be map under construction.

Contracts must still be initially prepared based on a
risk evaluation. It was thus necessary to add the section

Fig. 8 To-Be map describing the
requirements for the future
software system support to Gain
the customer by prescription

10



<Collect a request, Prepare a contract, By assisted risk
evaluation>.

There was a strong requirement to support customer
requests for contract modification in the future. Con-
tracts should be recorded in the software system with a
‘recorded’ or ’scored’ state and with a recommendation
such as ‘to accept’, ‘to accept with conditions’, ‘to re-
ject’, or ‘to study’. The state might be revised each time a
modification is requested. The strategy By modification
request was thus added with the consequence of keeping
the loop section <Prepare a contract, Prepare a con-
tract, By assisted risk evaluation>.

The opportunity to prepare predefined contracts based
on profiling facilities in order to attract customers was
then identified. This opportunity was seized by making
the decision to add the strategy By pull in the To-Be map.

Vendors asked that the future software system auto-
matically puts unsigned contracts in a ‘without response’
state after deadlines defined in contracts, or at the end of
a product life cycle (e.g. for event-related products such
as Christmas packages). The issues raised by this specific
way to stop a contract had to be explored separately
from the By the company reject strategy which, in both
the current and future situation, corresponds to the
decision of excluding customers suspected to be crooks.
It was decided to split the strategy By company reject,
hence the By deadline expiration strategy in the To-Be
map. While it was agreed to reuse the former strategy,
the latter had to be detailed further.

In order to avoid confusion between the intention
Make a contract with the customer and the fact that in
the future situation contracts should actually be created
with the software while Prepar(ing) a contract, it was
decided to rename the former intention as Enter into a
contract with the customer. The experts agreed that this
should have no further impact.

The last gap identified in Table 3, namely adding the
By customer retraction strategy to stop the process,
implements the French legislation according to which
any customer should be able to cancel a contract for a
certain period following its signature. Then, if sub-con-

tractors and vendor commissions have already been
paid, a reimbursement should be asked for.

5.4 Deliberating and committing

Once the gaps have been identified and documented, the
sections of the To-Be maps were scrutinised to determine
if a further analysis of requirements and an in-depth
detection of gaps was necessary. The decision was finally
to perform the refinement of four sections, namely C3.2,
C3.3, C3.4 andC3.6. These sections weremarked with the
’to-be-refined’ status whereas all the others were marked
with the ’green’ status. The former will be subject to a
similar study to the one we reported on in the last three
sub-sections whereas the gaps, if any, in the latter will be
propagated at the software schema level (see Fig. 1).

6 Conclusion

Systemadaptation is doneunder intense timepressure: the
new systemmust be put in place yesterday! Therefore, it is
not possible to develop a To-Bemodel from scratch, given
the time and resources involved. A workable strategy
under these circumstances is to use and modify what is
available, and add the remaining. This is the thrust of the
gap drive proposed in this paper. In theDIACproject, our
’guesstimate’ is that we gained about 50% in time over the
traditional roach. The gap drive seems to be beneficial
both from the time and economics points of view.

When requirements change, then the stakeholders
need to negotiate these changes with each other. In
conformity with traditional wisdom, an explicit state-
ment of these facilitates negotiation. It clarifies what has
to change and why, and acts as an agreed contract on
the changes. It is also a specification of software changes
to be carried out. As shown in the DIAC example pre-
sented in the paper, map gaps provide stakeholders the
negotiation platform. Additionally, map gaps constitute
a specification of the software system changes: DIAC

Table 3 Gaps between the As-Is and To-Be maps to Gain the customer by prescription

Operator Intention Strategy Section

Rename Make a contract with
the customer as Enter into
a contract with the customer

Add Collect a request By a customer via Internet <Collect a request, Prepare a
contract, By assisted risk evaluation>By pull

By modification request
By customer retraction

Remove By an Employee
Split By company reject into

By company reject and
By deadline expiration

Change Origin By a vendor target intention
to Collect a request

Replace Define an offer by
Prepare a contract

11



change requirements were, in fact, used to control the
outsourcing of the software adaptation work.

Gap elicitation is an intellectually demanding pro-
cess. We believe that the choice of the map formalism
contributes rather significantly to managing this process.
Being essentially intentional or goal-oriented, the map
provides a high-level expression of gaps. This reduces
the plethora of changes to a manageable number and
reduces the complexity of the gap elicitation process.

We are conscious of the lack of consideration given to
the identification of conflict situations that could arise
during the gap elicitation process. This is one of the
further steps of our research agenda.

Acknowledgements Sincere thanks are due to the anonymous
reviewers who provided constructive criticism that has made
improvements possible.

7 Appendix: Defining map change operators
to specifying map gaps

7.1 Rename

7.1.1 RenameIntention

As any element [Fig. 2] an intention is associated to a
string that defines its name. This holds both before and
as result of applying the RenameIntention operator to a
given intention.

RenameIntention : Intention! String
RenameIntentionðIÞ ¼ I:nameðNÞjN 2 String

7.1.2 RenameStrategy

As any element, a strategy has a name which is a string.
Therefore, renaming a strategy is achieved by changing
the string value that defines its name.

RenameStrategy : Strategy! String
RenameStrategyðStÞ ¼ St:nameðNÞjN! String

7.1.3 RenameSection

Names are given to sections as a means to refer to them
more easily. Renaming a section is, therefore, not a very
significant gap defined as follows:

RenameSection: Section fi String
RenameSection(Se) = Se.name(N) | N 2 String

7.2 Add

7.2.1 AddIntention

As a result of map invariants (section 3), any map
intention is connected to other intentions through strat-
egies. Therefore, when an intention I is added, it must be
related by strategies to at least two other intentions of the

map (I1 & I2 in the predicate). In order to preserve C2, a
strategy St1 must have the added intention I as target
intention and an I1 intention as source intention. To
preserve C3, another strategy St2 must have the added
intention I as its source and I2 as its target. By default I1
and I2 might be Start and Stop, respectively.

AddIntention : Intention2 ! Strategy2; Intention

AddIntentionðI1; I2Þ ¼ St1:has� for� sourceðI1Þ^
St1:has� for� targetðIÞ^

St2:has� for� sourceðIÞ ^ St2:has� for� targetðI2Þj
� ðSt1; St2Þ 2 Strategy;

I 2 Intention

7.2.2 AddStrategy

According to the map meta-model, any strategy in a
map can only be defined between two intentions: its
source intention and its target intention respectively.
Therefore, when a strategy is added it must be linked to
two existing intentions, one being the source intention
and the other being its target intention.

AddStrategy : Intention2 ! Strategy; Section

AddStrategyðI1; I2Þ ¼ St:has� for� sourceðI1Þ^
St:has� for� targetðI2ÞjSt 2 Strategy

7.2.3 AddSection

In order to preserve the invariant I3 and to conform to
the corollary C5 the AddSection operator ensures that
the added section (Is, It, St) is connected to the rest of the
map. This is achieved by enforcing the existence of (a)
the strategy St1 having Is as its target and an intention I1
already existing as its source and (b) the strategy St2
having It as its source and an intention I2 already
existing as its target. By default, I1 and I2 may be the
Start and Stop intentions, respectively.

AddSection : Intention2 ! Section; Strategy3; Intention2

AddSectionðI1; I2Þ ¼ St1:has� for� sourceðI1Þ^
St1:has� for� targetðIsÞ^

St2:has� for� sourceðItÞ ^ St2:has� for� targetðI2Þj
� Se:composed ofðStÞ^

Se:composed ofðIsÞ ^ Se:composed ofðItÞ; ðSt; St1; St2Þ
2 Strategy;

ðIs; It; I1; I2Þ 2 Intention; Se 2 Section:

7.3 Remove

7.3.1 RemoveIntention

The execution of the RemoveIntention is concerned with
the corollaries of map invariants C1, C2 and C3. Pre-
serving them implies that any strategy Stsi (or) St

t
j having

12



the removed intention I as a source intention (or target
intention) must henceforth have another source inten-
tion By default the Start (or Stop) intentions are used.

RemoveIntention : Intention; fStrategyg; fStrategyg;
fIntentiong; fIntentiong ! [

RemoveIntentionðI; fStsig; fSttjg; fIskg; fItlgÞ
¼ ½8i; Stsi :has� for� sourceðIskÞjIsk 2 fIskg�^

½8j; Sttj :has� for� targetðItlÞjItl 2 fItlg�:

7.3.2 RemoveStrategy

Let assume that the section (Is, St, It) exists in the As-Is
map. In order to preserve C1, C2 or C3 the Remove
Strategy operator applied to the strategy St imposes the
existence of two sections (Is, St1, I1) and (I2,Stt, It). Is
and It remain therefore source intention (or target
intention) of sections in the map. By default I1 and I2
can be Start and Stop respectively.

RemoveStrategy : Strategy; Intention4 ! Strategy2

RemoveStrategyðSt; Is; It; I1; I2Þ ¼ St1:has� for

� sourceðIsÞ ^ St1:has� for� targetðI1Þ^
St2:has� for� sourceðI2Þ ^ St2:has� for� targetðItÞj
� ðSt1; St2Þ 2 Strategy

7.3.3 RemoveSection

When a section Se (<Is,It,St>) is removed, its three
components (the intentions Is & It and the strategy St)
are removed. In order to preserve the map invariants,
the Remove Section operation ensures that any strategy
Stsi having Is or It as source intention has in the To-Be
map another intention Isk (Start by default) as source.
The same holds for strategies Sttj having Is or It as target
intention. After the section removal, these strategies
must have another target intention Itl (Stop by default).

RemoveSection : Section; fStrategyg2; fIntentiong2! [

RemoveSectionðSe; fStsig; fSt
t
jgÞ

¼ ½8i; Stsi :has� for� sourceðIkkÞjIsk ^ fI
s
kg�^

½8j; Sttj :has� for� targetðItlÞjItl 2 fI
t
lg�:

7.4 Merge

7.4.1 MergeStrategy

A strategy St can be considered as the result of merging
two strategies St1 and St2 iff these have the same source
intention Is and the same target intention It. If this
condition is not met, then a different operator must be
involved in the gap elicitation. For instance, if three
different intentions are involved, the MergeSection
operator can be used to elicit the gap.

MergeStrategy : Strategy2; Intention2 ! Strategy

MergeStrategyðSt1; St2; Is; ItÞ ¼ St:has� for

�sourceðIsÞ ^ St:has� for� targetðItÞjSt 2 Strategy

7.4.2 MergeIntention

When two intentions I1 and I2 are merged, the intention
I replaces I1 and I2 in any section having initially I1 or I2
as source intention or target intention.

MergeIntention : Intention2; fStrategyg2 ! Intention

MergeIntentionðI1; I2; fSt
s
ig; fSt

t
jgÞ

¼ ½8i; Stsi :has� for� sourceðIrÞ�^
½8j; Sttj :has� for� targetðIrÞ�jIr 2 Intention:

7.4.3 MergeSection

The merging of two sections Se1 (<Is1, It1, St1>) and
Se2 (<Is2, It2, St2>) results in a section Ser (<Isr, Str,
Itr>). There are pre-conditions for applying this oper-
ator: Is1 must be different from Is2 or It1 must be dif-
ferent from It2. In the resulting situation, Is1 and Is2 are
replaced by Isr and It1 and It2 are replaced by Itr in any
section having initially Is1, Is2, It1 or It2 as source or
target intention.

MergeSection : Section2; fStrategyg2

! Section; Intention2; Strategy

MergeSectionðSe1; Se2; fSt
s
ig; fSt

t
jgÞ

¼ f8i; Stsi :has� for� sourceðIrÞg^

f8j; Sttj :has� for� targetðIrÞg ^ Ser:composed ofðIsrÞ^

Ser:composed ofðItrÞ ^ Ser:composed ofðStrÞj
� Str 2 Strategy;

ðIsr; ItrÞ 2 Intention; ðSerÞ 2 Section

7.5 Split

7.5.1 SplitStrategy

Splitting a strategy St of a section <Is, It, St>results in
two strategies St1 and St2. Defining the sections <Is, It,
St1>and <Is, It, St2>.

SplitStrategy : Strategy; Intention2 ! Strategy2

SplitStrategyðSt; Is; ItÞ ¼ St1:has� for� sourceðIsÞ^
St2:has� for� sourceðIsÞ^

St1:has� for� targetðItÞ ^ St2:has� for� targetðItÞj
� ðSt1; St2Þ 2 Strategy

13



7.5.2 SplitIntention

The SplitIntention operator permits the replacement of one
intention I by two intentions I1 and I2. In order to keep the
invariants satisfied, the operator ensures that any strategy
Sttj having the intention I for target in the As-Is map has
either I1or I2 as target in the To-Be map. The same holds
for strategies Stsi that initially had I as source intention.

SplitIntention : Intention; fStrategyg2 ! Intention2

SplitIntentionðI; fStsig; fSt
t
jgÞ

¼ ½8i; Stsi :has� for� sourceðI1Þ^
Stsi :has� for� sourceðI2Þ�^½8j; Sttj :has� for� targetðI1Þ_

Stj:has� for� targetðI2Þ�jðI1; I2Þ 2 Intention

7.5.3 SplitSection

A section Se (<Is, It, St>) can be split into two sections
Se1 (<Is1, It1, St1>) and Se2 (<Is2, It2, St2>). This
implies as shown by the predicate that

– any strategy Stsi having initially Is (or It) as source
must have Is1 or Is2 (or It1 or It2) as source in the final
situation. Similarly,

– any strategy Sttj having initially Is (or It) as target
must have Is1 or Is2 (or It1 or It2) as target in the final
situation.

SplitSection : Section; fStrategyg2

! Section2; Intention2; Strategy2

SplitIntentionðSe; fStsig; fSt
t
jgÞ

¼ ½8i; Stsi :has� for� sourceðIs1Þ_
Stsi :has� for� sourceðIs2Þ _ Stsi :has� for� sourceðIt1Þ
_ Stsi :has� for� sourceðIt2Þ�^

½8j; Sttj :has� for� targetðIs1Þ
_ Sttj :has� for� targetðIs2Þ
_ Sttj :has� for� targetðIt1Þ_

Sttj :has� for� targetðIt2Þ� ^ Se1:composed ofðIs1Þ
^ Se1:composed ofðIt1Þ^

Se1:composed ofðSt1Þ ^ Se2:composed ofðIs2Þ
^ Ser:composed ofðIt2Þ^

Se2:composed ofðSt2ÞjðIs1; Is2; It1; It2Þ
2 Intention; ðSt1; St2Þ 2 Strategy;

ðSe1; Se2Þ 2 Section

7.6 ChangeOrigin

The ChangeOrigin operator execution permits a source
intention (or a target intention) I of a strategy St to be
replaced by another intention In. When the origin of a
strategy is changed, the invariant I3 and the corollaries

C1, C2 and C3 may not hold in the To-Be map. This
issue is solved by ensuring that there exits in this map, a
strategy Stn having I as source (or target depending on
the initial link).

ChangeOrigin : Strategy; Intention2 ! Strategy

ChangeOriginðSt; I; InÞ ¼ ½St:has� for� sourceðInÞ
_ St:has� for� targetðInÞ�^

½Stn:has� for� sourceðIÞ _ Stn:has� for� targetðIÞj
� Stn 2 Strategy

7.7 Retype

7.7.1 RetypeStrategy

The gap between a As-Is map and a To-Be map may
correspond to the retyping of a As-Is strategy St into a
To-Be intention I. In order to satisfy the corollaries C2
and C3, the intention which was source (or target) of St
must remain the source intention (or target intention) of
at least one strategy in the To-Be map. Furthermore, to
preserve C1, the new intention I must not be isolated. A
strategy St3 having I as source and another strategy St4
having I as target must exist in the To-Be map

RetypeStrategy : Strategy; Intention6 ! Strategy4

RetypeStrategyðSt; Is; It; IÞ ¼ St1:has� for� sourceðIsÞ
^ St1:has� for� targetðI1Þ^

St2:has� for� targetðItÞ ^ St2:has� for� sourceðI2Þ
^ St3:has� for� sourceðIÞ^

St3:has� for� targetðI3Þ ^ St4:has� for� targetðIÞ^
St4:has� for� targetðI4ÞjðI1; I2; I3; I4Þ
2 IntentionðSt1; St2; St3; St4Þ 2 Strategy

7.7.2 RetypeIntention

Vice-versa, an As-Is intention I can be retyped into a
To-Be strategy St. The predicate of the RetypeIntention
operator ensures that any strategy Stsi having initially I
as source (or target) must have another source Isk (or
target Itl ) intention. The new strategy St must have a
source intention I1 and a target intention I2 as well in the
To-Be map.

RetypeIntention : Intention3; fStrategyg; fStrategyg;
fIntentiong;
fIntentiong ! Strategy

RetypeIntentionðI; I1; I2; fStsig; fSt
t
jg; fI

s
kg; fI

t
lgÞ ¼

½8Sti 2 fStsig; Sti:has� for� sourceðIkÞ ^ Ik 2 fIskg�^
½8Stj 2 fSttjg; Stj:has� for� targetðIlÞ ^ Il 2 fItlg�
^ St:has� for� sourceðI1Þ^

St:has� for� targetðI2ÞjSt 2 Strategy:

14



The Give, Withdraw and Modify operators apply on
properties of Intentions (Verb, Target, Parameters) and
properties of Sections (Business rules, Pre-condition,
Post-condition). Any change of properties maintains the
map invariants. Therefore, there is no need for a predi-
cative definition of these operators.

References

1. Lientz BP, Swanson, EB (1980) Software maintenance man-
agement, a study of computer application software in 487 data
processing organizations. Addison-Wesley, Reading, MA

2. Nosek JT, Palvia P (1990) Software maintenance management:
changes in the last decade. J Softw Maint 2(3), 157–174

3. IPSE International Workshop on the Principles of Software
Evolution

4. Breche P (1996) Advanced primitives for changing schemas of
object databases. In: Proceedings of the international confer-
ence CAiSE’96, Heraklion, Greece. Springer, Berlin Heidelberg
New York

5. Lauteman SE (1997) Schema versions in object-oriented data-
base systems. In: Proceedings of the fifth international confer-
ence on database systems for advanced applications,
Melbourne, Australia, 1–4 April 1997

6. Banerjee J, Kim W, Kim H-J, Korth HF (1987) Semantics and
implementation of schema evolution in object oriented data-
bases In: Proceedings of the ACM-SIGMOD annual confer-
ence, San Francisco, CA, May 1987, pp 311–322

7. Casati F, Ceri S, Pernici B, Pozzi G (1996) Workflow evolution.
In: Proceedings of 15th international conference on conceptual
modeling (ER’96), Cottbus, Germany, pp 438–455

8. Liu C, Orlowska M, Li H (1998) Automating handover in
dynamic workflow environments. In: 10th conference on ad-
vanced information systems engineering, Pisa, Italy

9. Sadiq S (2000) Handling dynamic schema change in process
models. In: Australian Database Conference, Canberra, Aus-
tralia

10. Bandinelli S, Fuggetta A, Ghezzi C (1993) Software process
model evolution in the SPADE environment. IEEE Trans
Softw Eng 19(12), 1128–1144

11. Heimann P, Joeris G, Krapp C, Westfechtel B (1996)
DYNAMITE: dynamic task nets for software process man-
agement. In: Proceedings of the 18th international conference
on software engineering (ICSE 18), Berlin, Germany, March
1996, pp 331–341

12. Si-Said S, Rolland C, Grosz G (1996) MENTOR: a computer
aided requirements engineering environment. In: Proceedings
of the international conference CAiSE’96. Heraklion, Greece.
Springer, Berlin Heidelberg, New York

13. Lehman MM, Ramil JF, Kahen G (2001) Thoughts on the role
of formalisms in studying software evolution. In: Mens T,
Wermelinger M (eds) International special session on formal
foundations of software evolution, Lisbon, Portugal, March

2001. Co-located with the European conference on software
maintenance and reengineering (CSMR 2001)

14. Jarke M, Pohl K (1993) Establishing visions in context: toward
a model of requirements processes. In: Proceedings of the 12th
international conference information systems, Orlando, FL

15. Jackson M (1995) Software requirements and specifications.
Addison-Wesley, Reading, MA

16. von Lansweerde A (2000) Requirements engineering in the year
2000: a research perspective. In: 22nd international conference
on software engineering

17. Dardenne A, von Lansweerde A, Fickas S (1993) Goal directed
requirements acquisition. Sci Comput Program 20, 3–50

18. Jarke M, Pohl K (1994) Requirements engineering in 2001:
managing a changing reality. IEEE Softw Eng J November,
257–266

19. Rolland C, Prakash N (2001) Matching ERP system func-
tionality to customer requirements. In: Proceedings of RE’01,
5th international symposium on requirements engineering,
Toronto, Canada, pp 66–75

20. Rolland C, Prakash N, Benjamen A (1999) A multi-model view
of process modelling. Requirements Eng 4: 169–187

21. Kradolfer M, Geppert A (1999) Dynamic workflow schema
evolution based on workflow type versioning and workflow
migration. In: Proceedings of the fourth IFCIS international
conference on cooperative information systems (CoopIS99).
Edinburgh, UK, 2–4 September 1999

22. Information technology–information resource dictionary system
(IRDS) (1990) Framework, ISO/IEC International Standard

23. Marttiin P (1994) Methodology engineering in CASE shells:
design issue and current practice. PhD thesis, Computer science
and information systems reports, Technical report TR-4

24. Grundy JC, Venacle JR (1992) Towards an integrated envi-
ronment for method engineering. In: Cotterman WW, Senn JA
(eds) Challenges and strategies for research in systems devel-
opment. Wiley, Chichester, pp 45–62

25. Plihon V, Rolland C (1997) Using a generic approach to sup-
port the construction of methods. In: Proceedings of the 8th
international conference on database and expert systems
applications (DEXA’97), Toulouse, France, 1–7 September
1997

26. Prakash N (1999) On method statics and dynamics. Inform
Syst 24(8), 613–637

27. Rolland C, Souveyet C., Salinesi C (1998) Guiding goal mod-
elling using scenarios. IEEE Trans Softw Eng (special issue on
scenario management) 24(12): 1055–1071

28. Prat N (1997) Goal formalisation and classification for
requirements engineering. In: Proceedings of the third inter-
national workshop on requirements engineering: foundations
of software quality REFSQ’97, Barcelona, pp 145–156

29. Easterbrook S. Resolving requirements conflicts with com-
puter-supported negotiation. In: Jirotka M, Goguen J (eds)
Requirement engineering: social and technical issues. Academic
Press, New York, pp 41–65

30. Nuseibeh B, Kramer J, Finkelstein A (1994) A framework for
expressing the relationships between multiple views in require-
ments specifications. IEEE Trans Softw Eng 20(10, 760–773

15


