
Combining Independent Model Transformations

Anne Etien, Alexis Muller, Thomas Legrand, Xavier Blanc
INRIA Lille-Nord Europe, LIFL CNRS UMR 8022

Université Lille 1
France

firstname.lastname@inria.fr

ABSTRACT
Model transformation is one of the key principles of Model
Driven Engineering. Many approaches have been proposed
to design and realize them. However, for all the approaches,
model transformations are considered as single entities that
can only be chained if their input and output metamodels
are compatible. This approach has the major drawback to
focus on the satisfaction of the compliance property when
building a transformation chain.

In this paper we propose a mechanism for combining inde-
pendent model transformations which jointly work towards
a common objective but do not initially handle compati-
ble metamodels. Our proposal is independent of any model
transformation approach. It has been validated using Gas-
pard, an environment dedicated to code generation for em-
bedded systems.

1. INTRODUCTION
Since Model Driven Engineering (MDE) advocates to sup-

port the well known principle of separation of concerns

through the extensive use of models in all the steps of the
software development cycle [1, 2], model transformations
are the key technology to achieve the integration of con-

cerns [3, 4, 5].
Classically, a model transformation is an operation that

has a model as input to either modify it or output a new
one. The structure of the new model is directly related to
the structure of the input. Even if there are different styles
to design and perform model transformations [6], all the ap-
proaches proposed in the literature such as [7, 8, 9, 10] con-
sider that model transformations are independent entities.
Therefore, the technics to reuse existing model transforma-
tions are restricted to their improvement (by adding new
transformation rules or by modifying ones for instance).

The main flaw of those approaches comes from the need
to combine a set of existing independent model transforma-
tions. In this paper, ”independent transformations” stands
for transformations using different metamodels but aiming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’10 March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

at the same objective: generate some code, build a tar-
get model. . . For example, the MDA approach, based on a
three-level separation of concerns (CIM, PIM, PSM) [1], im-
poses to combine independent transformations for an auto-
matic code generation from requirement models (e.g CIM to
PIM, PIM to PSM and PSM to Code). An example related
to the system co-design also illustrates that need: existing
model transformations jointly work to build a single output
model [11].

The common way for combining independent transforma-
tions is to chain them. A coarse-grain model transformation
chaining the inputs and the outputs of the existing fine-grain
model transformation is hence created. But the designer
must face the following problem: make the input and output
metamodels of the fine-grain model transformations com-
patible. Indeed, two transformations can only be chained if
the output metamodel of the first one is included into the
input metamodel of the second one. This compliance issue
forces to design tailored fine-grain model transformations for
a dedicated chain. As a consequence, the fine-grain model
transformations are highly coupled to a particular chain and
are not reusable.

In this paper, we present a convenient approach to de-
sign highly flexible chains from existing independent model
transformations. We propose to artificially change the in-
put and output types of fine-grain model transformations.
The goal is to overcome the type compliance issue and ease
the integration of the transformations into several chains.
This paper is organized as follows: Section 2 presents ex-
isting works related to model transformation chaining and
composition. Section 3 describes how we make up a coarse
grain model transformation from localized and smaller ones.
Section 4 validates our approach within the Gaspard en-
vironment [11]. Finally, section 5 draws a conclusion and
introduces future works.

2. RELATED WORK SECTION
In [12], Vanhoof and al. have clearly shown the too sim-

plistic characteristic of the recommended ”PIM to PSM”
MDA’s model transformation vision. They highlight the
need to chain transformations and explain: a transforma-
tion chain specifies how a number of transformations work
together, each elaborating on the source model to come to
a target model. Then, they propose a process for building
transformation chains but do not face the point raised in
this paper: to combine transformations working towards a
single output whereas their input and output metamodels
are not obviously compliant.

In [13], Oldevik provides a framework to make existing
transformations more generic and then reusable by com-
position. His framework considers the transformations as
functions to compose if their domains are compliant. Our
approach has the same target but does not impose the com-
pliance between the input and output metamodels.

In [14], Olsen and al. define a reusable transformation
[as] a transformation that can be used in several contexts to
produce a required asset. They also clearly identify transfor-
mation chaining as one of the techniques allowing the reuse
of transformations. Nevertheless, they emit two restrictions:
first, existing transformations should be as small as possi-
ble and second, their input and output metamodels have to
be compliant. We agree that small transformations are more
reusable than bigger ones. Thanks to our approach, the type
compliance constraint can be overcome.

In [15], Sànchez and Garcia argue that model transforma-
tion facilities are currently too focused on rules and patterns
and should be tackled at a coarser-grained level. To make
model transformation reusable as a whole, authors propose
the factorization and composition techniques. The factor-
ization technique aims at extracting a common part of two
existing transformations in order to define a new transfor-
mation. The composition composes two transformations to
create a new one. Obviously, those techniques have the same
drawback. They require a connection between the input and
the output metamodels of the transformations (their inter-
sections must not be empty). Our approach would overcome
this drawback because it virtually increases the input and
the output metamodels of existing transformations. Our
work allows the factorization and the composition to be-
come more generic.

3. FORMALIZATION OF INDEPENDENT
TRANSFORMATION COMBINING

Our investigations tend to make up a complex model trans-
formation from smaller transformations jointly working in
order to build a single output model. These transforma-
tions involve different parts of the same input metamodel;
their application field is localized. To build the complex
model transformation, the localized transformations have to
be chained despite the input and output metamodels in-
compatibility (i.e. the output metamodel of a first one is
not included in the input metamodel of a second one). In
the rest of this paper, independent transformations hold two
properties:

1. they jointly work to build a single output model

2. their input and output metamodels are not compatible

The first property provides an obvious reason to chain
them. The second property specifies that the transforma-
tions to chain are structurally independent.

We propose the Extend operator. This operator modifies
model transformations by extending their input and out-
put metamodels to make them compatible. Two transfor-
mations that were independent can henceforth be chained.
The Extend operator preserves the behavior of the initial
transformation and uses the identity to handle the elements

not involved in the initial transformation. In this section, we
present the foundations of our approach. The subsection 3.1
briefly recalls the well-known model, metamodel and trans-
formation definitions our approach is based on. The sub-
section 3.2 then presents the Extend operator and explains
how it can be used to chain two existing model transforma-
tions. Finally, the subsection 3.3 outlines the properties of
the chain that can be inferred.

3.1 Definitions
As our purpose is not to propose yet another definition

of well-known MDE concepts, we adopt the metamodel,
model and conformance definitions established by Alanen
et al. [16]. A metamodel is a set of classes and a set of prop-
erties owned by the classes. A model is a set of elements and
a set of slots. Each element is typed as a class in a meta-
model. Each slot is owned by an element and corresponds
to a property in a metamodel.

From these definitions, the union, the intersection and the
difference are defined on both metamodels and models re-
spectively as the union, the intersection or the difference of
each set defining the metamodels or the models. Besides,
the difference operator does not produce dangling links. For
example, if a class does not belong to the difference of two
metamodels, there can not be a property referencing it.

We also adopt the traditional definition of unidirectional
binary model transformation: a transformation has one in-
put metamodel and one output metamodel. A transforma-
tion is a function consuming a model instance of its input
metamodel and producing a model instance of its output
metamodel.

3.2 Extend Operator Semantics
For a given transformation t from a metamodel X to a

metamodel Y , our objective is to define an extended trans-
formation T . Its input metamodel would be an extended
metamodel encompassing X. But it preserves as much as
possible the behavior of the transformation t. This implies
that:

1. the behavior of both transformations (t and T), on an
element typed by a class of the metamodel X, must be
the same.

2. an element typed by a class not belonging to the meta-
model X must be unchanged.

An instinctive approach would be to extend the input
metamodel X and the output metamodel Y with the same
ordinary metamodel A. X ∪A and Y ∪A would thus be re-
spectively the input and output metamodel of the extended
transformation. However, we argue that Y ∪ A can not be
the output metamodel of the extended transformation. If
X is partially included in A (X ∩ A 6= ∅), some concepts
are inevitably common to X and A. The elements typed
by those concepts are transformed into elements typed by
concepts of the metamodel Y according to the first hypoth-
esis. Therefore, those concepts from A do not belong to the
output metamodel of the extended transformation.

We propose the following definition for the Extend opera-
tor:

Definition 1 Let t be a transformation from the metamodel
X to the metamodel Y (t : X → Y) and A an ordinary
metamodel.
ExtendA(t) is a transformation T from the X ∪ A meta-

model to the metamodel B (T : X ∪ A → B), written such
as:

• B = Y ∪ (A \X)

• T (m) = t(m) if m is a model instance of the metamodel
X

• T (m) = m if m is a model instance of the metamodel
A \X

• T (m) = T (n)∪ (m \n) with n the part of the m model
typed by X

According to the difference operator of the models, T (n)∪
(m\n) can not produce dangling links in the resulting model.

3.3 Chain Properties
Considering the metamodels X, Y, Z, W and the two

transformations t1 : X → Y and t2 : Z → W that can-
not be chained (i.e. Y is not included into Z, neither W
into X). Let’s suppose that we plan to combine them to
achieve a common objective. t1 and t2 are viewed as two
transformations involving two different parts of the same
metamodel having a non-empty intersection. They jointly
build a common output model. The transformation T re-
sulting from the combination aims to be applied on a model
instance of a metamodel encompassing X (or Z).

Ideally, we would also expect the behavior of T , on a model
only instance of X (respectively Z), to be strictly the same
as the behavior of t1 (respectively t2).

In order to be composed, t1 and t2 have to be extended
with the Extend operator. According to the way the op-
erator is applied on these transformations and taking into
account the relationships between X, Y , Z and W , four
cases may occur:

1. t1 and t2 can only be combined in one order (t1,t2 for
example).

2. t1 and t2 can be combined in both orders but the re-
sulting models won’t be the same.

3. t1 and t2 can be combined in both orders and the re-
sulting models will be the same.

4. t1 and t2 can not be combined at all.

In the next section, we expose properties relative to each
case.

The first property specifies the requirement for two trans-
formations to be combined by imposing the order. Intu-
itively, two transformations can be combined if the concepts
used by the second transformation are not consumed by the
first one. It can be formulated as follows:

Property 1 t1 can be chained with t2 if and only if: Z ∩
(X \ Y) = ∅

In that case, T1 = ExtendA(t1) and T2 = ExtendB(t2). A
is the input metamodel of T1 and B (computed as specified
in Definition 1) is the output one.

If T1 can not produce the elements needed/required by t2,
T2 always corresponds to the identity transformation. This
is formally expressed by:

Property 2 Let’s suppose that t1 can be chained with t2. If
Z ∩B = ∅ then T2 is the identity transformation.

The order of t1 and t2 can be inverted if both t1 can be
combined with t2 and vice-versa. The Property 3 is built
by applying twice the Property 1, once in each order. The
output metamodels of each resulting transformation are the
same. But such an affirmation can not be ensured for the
models.

Property 3 If (X ∩ Z) \ (Y ∩W) = ∅ then ∃T1, T2, T
′
1, T

′
2

as

T1 : A ∪X → B
T2 : B ∪ Z → C
T ′
2 : A ∪ Z → B′

T ′
1 : B′ ∪X → C

with T1 = ExtendA(t1), T2 = ExtendB(t2),
T ′
1 = ExtendB′(t1), T ′

2 = ExtendA(t2)

If the input metamodels of two transformations have no
common elements and if the concepts required by one trans-
formation are not produced by the other, they can be com-
bined and the resulting model does not depend on their
execution order. We aware that this property is relatively
restrictive. It could be refined by distinguishing the read
concepts from those that are either created or modified.

Property 4 If (X∩Z) = ∅ and (Y ∩Z) = ∅ and (W∩X) =
∅ then ∀ model m, T1(T2(m)) = T2(T1(m))

The following property specifies a sufficient condition en-
suring that the combination of two transformations is im-
possible. Intuitively, it occurs when each transformation
consumes the concepts useful for the execution of the other.

Property 5 Let t1 and t2 be two transformations. ∀ meta-
model A, @T1, T2 as T1 = ExtendA(t1), T2 = ExtendB(t2) or
T2 = ExtendA(t2), T1 = ExtendB(t1)

if and only if:

{
Z ∩ (X \ Y) 6= ∅ and
X ∩ (Z \W) 6= ∅

If the extension operator can be applied on almost all the
transformations, it reaches a high usefulness when they are
very localized, i.e. restricted to the set of involved elements.
Each transformation may be dedicated to a single purpose
and deals with a part of an initial encompassing metamodel.
Thus, the extension operator consists in handling this en-
compassing metamodel. The transformations defined on the
small parts are combined and chained to jointly reach the
target model. Their reuse is eased.

In the next section, we describe an example of such trans-
formations through Gaspard, an MDE-based framework ded-
icated to the co-design of embedded systems.

4. CASE STUDY
This section targets the validation of our approach with

a real case study. For this purpose, we demonstrate that
several chains can be specified from three fine grain trans-
formations (i.e. whose input and output metamodels only

contain concepts implied in the transformation). The Ex-

tend operator is applied with different metamodels while
the execution of the chains leads to a single final objective.
These three transformations all exist withing the Gaspard
environment. They aim to smoothly replace the MARTE
concepts [17] by others closer to SystemC.

Subsection 4.1 presents the context by briefly introduc-
ing Gaspard and its business concepts. The subsection 4.2
specifies many transformations leading to the SystemC code
generation. They are practically combined to make a chain
in accordance with the properties defined in subsection 3.
Finally, subsection 4.3 details the concrete implementation
within the Eclipse framework.

4.1 Context: Gaspard a Co-Design Environ-
ment

Gaspard is a co-design environment dedicated to high per-
formance embedded systems based on massively regular par-
allelism. In this environment, the user separately designs
the hardware architecture and the application at a high
abstraction level. To do so, she uses UML enriched with
the MARTE standard profile for modeling and analysing
real time embedded systems. From these high level speci-
fications, code for high performance computing, hardware-
software co-simulation, functional verification or hardware
synthesis is automatically produced by model transforma-
tions. Gaspard respectively enables the generation of OpenMP
C, SystemC, Lustre and VHDL programs.

The generation of such code from UML is complex and
requires intermediary steps. Some transformation chains
shared characteristics such as the explicit mapping of ap-
plication tasks onto processing units, the mapping of the
data onto memories. . . The successive transformations are
specified by focusing on the involved concepts. They are ex-
tended using the Extend operator in order to be applied on
a model instance of an intermediary metamodel.

The input of each chain is a UML model, defined by
the end-user and compliant with the MARTE profile. This
model is transformed to a MARTE model: the transfor-
mation from the profiled UML metamodel to the MARTE
metamodel is a classical transformation involving all the con-
cepts. It has been specified in QVTO and is out of the scope
of this paper. It corresponds to a bridge between the specifi-
cations given by the user and the transformation developed
by the designer. In the rest of the section, we consider the
MARTE metamodel to be the input of the chains.

In the specifications of any application, a component cor-
responds to a task whereas in the architecture part, it refers
to a hardware resource, e.g. a processor or a memory. Hun-
dred tasks relating to exactly the same action realized with
different data are designed by a unique task. It owns a rep-
etition property equals to 100. The way the data are con-
sumed by each task is specified by the LinkTopology concept
(Tiler or Reshape). Similarly, 64 identical processing units
are represented by only one with a repetition-value set to
64.

Commonly with the component-based approach, a compo-
nent may be complex and composed of several other ones.
A hierarchy is also often proposed. In MARTE, the com-
posed component is a StructuredComponent and the con-
tained ones are instance of an other component externally
defined. The AssemblyPart concept is related to the in-
stances. As a consequence, the hierarchy is defined two lev-

Application

ArchitectureProcessingUnit Memory

AssemblyPart

StructuredComponent

Port

TaskAllocation
DataAllocation

AssemblyConnector

AssemblyPart

Figure 1: Sketch of a MARTE model

els by two levels.
Task can be mapped onto processing units through the

TaskAllocation link. Data are analogically mapped onto
memories with the DataAllocation linking the port to the
memories.

Figure 1 sketches very roughly the concepts of MARTE
used in Gaspard. It simply aims to present the concepts use-
ful to understand the case study. Further details on Gaspard
can be found in [11].

4.2 SystemC Code Generation
This section is not addressed to a SystemC specialist. It

shortly describes the transformations necessary to generate
SystemC code from a MARTE model assuming the paral-
lelism is compactly expressed. These transformations have
been defined targeting their combination and their applica-
tion field is restricted. Input and output metamodels contain
few concepts: only the ones involved in the transformation.
Three of the ten transformations are exposed to illustrate
our approach.

4.2.1 Description of the transformations

Port Instance Introduction (t1).
Similarly to UML, the MARTE metamodel does not con-

tain the port instance concept. A port instance corresponds
to the port of a component instance. Since it is really easier
to manipulate the port instance than the couple (port, com-
ponent instance), t1 consists of introducing the port instance
concept (i.e. PortPart) in the MARTE metamodel.

The connectors (i.e. AssemblyConnector) contained in a
structured component are replaced by PortConnector. The
new extremities are the same than those of the Assembly-
Connector except that the couples (FlowPort, Assembly-
Part) are replaced by the corresponding PortPart.

In other words, a PortConnectorEnd is either a PartCon-
nectorEnd referring to a PortPart or a DelegationConnec-
torEnd referring to a port of a StructuredComponent called
Flowport. At the end, the topology associated to the Assem-
blyConnector henceforth refers to the PortConnector. Fig-
ure 2 and Figure 3 respectively correspond to the input and
output metamodel of t1.

Figure 2: Input metamodel of t1 (extract from the
MARTE metamodel)

Figure 3: Output metamodel of t1

Explicit Mapping (t2).
In order to ease the design, the mapping specification of

each application component is not compulsory. An applica-
tion component which is not explicitly mapped through an
Allocation link onto a processing unit is implicitly mapped
onto the same processing unit than the StructuredCompo-
nent which contains it. However, the SystemC code gen-
eration for a component requires the mapping information
to be explicit. t2 aims to explicitly provide a mapping for
each application component. It is a refactoring, the input
and output metamodels are the same. Figure 4 shows the
concepts involved in the explicit mapping.

Link Topology Management (t3).
As briefly explained before, the LinkTopologies are asso-

ciated to connectors and express the way the data are con-
sumed or produced by repeated tasks. These connectors are
complex. They hide some tasks that must be mapped onto
processing units, as any other task. t3 aims to replace the
connectors associated to the LinkTopologies (Tiler and Re-
shape) by tasks called LinkTopologyTask. It also preserves
the connections between the various existing tasks. Figure 5
presents the output metamodel of t3.

Other transformations exist and are based on the same
approach: restrict the input metamodels to the set of con-
cepts involved in the transformation. These transformations

Figure 4: Input and output metamodel of t2 (extract
from the MARTE metamodel)

Figure 5: Output metamodel of t3

are intended for being applied on model instances of a larger
metamodel. For this objective, the Extend operator allows
us to focus on the purpose of the transformation without
defining the parts corresponding to the identity.

4.2.2 Construction of a Transformation Chain
The SystemC code generation from the MARTE meta-

model consists in the combination of the previously defined
transformations. Practically, the extended transformations
have to be computed.

The input metamodels of t1 and t2 are both sub-parts of
the MARTE metamodel, that is the entry point of the build-
ing chain. t2 adds some information in the models but still
refers to the same metamodel. It does not involve meta-
model concepts introduced (e.g. PortPart or PortConnec-
tor) or consumed (AssemblyConnector) by t1. Therefore, t1
and t2 verify Property 3: the order they are chained doesn’t
matter. t2 can either be performed on a model conform to
the MARTE metamodel or a model conform to the output
metamodel of ExtendMARTE(t1). Property 4 is not satisfied
by the metamodels of t1 and t2 as some concepts exists in
several metamodels. However, these concepts are only read
by the transformations; they provide the information useful
to the modification or the creation of other ones. They are
themselves neither consumed nor modified and the models
resulting from the application of t1 then t2 or t2 then t1 are
exactly the same.

On another hand, an order must be chosen. We suggest
to remain as long as possible in the MARTE metamodel and
consequently to begin the chain with T2 = ExtendMARTE(t2)
and to continue with T1 = ExtendMARTE(t1). The output
metamodel is constructed according to T1 definition.

Besides, according to Property 1, t1 and t3 can only be
chained in this order. t3 consumes concepts (e.g. LinkTopol-
ogy) that are required by t1 whereas the contrary does not
raise this issue. We extend the t3 transformation with a
metamodel in such a way that the input of T3 is the output
of T1. T3 is introduced in the chain after T1.

It can be noticed that relatively to property 3, the order
of t2 and t3 can be interchanged. Indeed, the mapping of
the tasks created by t3 on the processing units is not per-
formed by t2. It requires another specific transformation
(not explained in this paper). Other chains could have been
defined, for instance t1, t3 and then t2.

From a business point of view, the implicit mappings are
deduced from those specified by the end-user to map each
application component onto one or more processing unit.
Each port of the part is transformed into a port instance. Fi-

nally, the LinkTopologies associated to connectors, express-
ing how data are consumed by the various tasks, are them-
selves considered as tasks. Once mapped, the transforma-
tions corresponding to the compilation (strictly speaking)
can be introduced in the chain.

The three transformations described above jointly work to
achieve the same target. They cannot a priori be chained.
We have shown that the Extend operator helps to overcome
this issue. Several chains based on these transformations
have been built. Some transformations can even be inter-
changed without any incidence on the models they are ap-
plied on. Furthermore, the Extend operator allows to break
the received idea considering a refactoring dependent on a
single metamodel. If the refactoring is very localized, i.e.
involves few concepts, it can be defined only with these con-
cepts. The Extend operator allows to specify this refactoring
on any metamodel including the involved concepts.

The next subsection outlines our implementation of this
approach.

4.3 Implementation within Eclipse

4.3.1 Extend Operator Implementation
Practically, applying the Extend operator consists in ex-

tending both the metamodels and the fine grain transforma-
tion.

The extended metamodels are built using the merge oper-
ator defined in the UML specification. The merge operator
has been implemented thanks to a QVT transformation un-
der the Eclipse/QVTO engine. The advantage is clear: the
metamodels involved in the fine grain transformation can be
easily extended with any metamodel.

The extended transformation is made of two parts: the
fine grain transformation and the identity. For the latter,
two alternatives are available: defining transformation rules
to copy each concept or shifting the metamodel. The first
alternative is a tedious work. The second one reduces the
identity operator to a simple metamodel shift but it implies
the introduction of an intermediary metamodel containing
all the concepts of the input and the output metamodels. It
targets the use of the identity transformation on the com-
plete model. We definitely choose the second option. The in-
termediary metamodel is built as the others using the merge
operator.

The extended transformation is divided into four steps:

1. shift the metamodel. This step is preliminary. It takes
into account the real context where the extended trans-
formation is applied and shifts the metamodel to ap-
ply the transformation itself. It modifies the confor-
mance link between the input metamodel and the in-
put model. In practice, the input model is not initially
defined as an instance of the metamodel X ∪ A (the
input metamodel of the extended transformation) but
instance of A explaining why the Extend operator has
been applied with this metamodel. Indeed, if the ex-
tended transformation aims to be the first in the chain,
a model instance of A may exist and it might have
been designed by the user. If this transformation is
in the middle of a chain, the input model of the ex-
tended transformation is the result of the execution of
the previous one. Since the transformations are inde-

pendent, it is much more likely that the input model
is an instance of A and not of X ∪A.

2. shift the metamodel. As in the previous step, it changes
the conformance link between the input metamodel
and the input model. This model henceforth con-
forms the intermediary metamodel. Practically, this
step consists in updating the xml namespace from the
initial metamodel URI to the intermediary metamodel
URI. This stage can only occur if the output meta-
model of the coarse grain transformation includes its
input metamodel. For practical reasons, the steps 1
and 2 are performed together as a single metamodel
shift.

3. execute the fine grain transformation. The fine grain
transformation is realized on the model using an in-out
mode. It involves only the elements instance of the
concepts belonging to the metamodel X. The other
elements remain unchanged.

4. shift the metamodel. A new metamodel shift is manda-
tory to conform the model to the metamodel B. B is
included in the intermediary metamodel and not con-
versely. But the metamodel shift is possible, because,
by construction, the model does not contain any ele-
ment instance of a concept coming from X. The shift
is technologically performed as in the second step.

Figure 6 illustrates this process.

Figure 6: Extending a fine grain transformation

We have achieved these steps in the Eclipse/EMF world,
using Java/DOM technology for the first and the third steps
and QVTO for the second step.

4.3.2 The Implementation Chain Process
Figure 7 shows the valid chain built in the previous sub-

section from three fine grain transformations.
The Extend operator is applied to build the three trans-

formations and their associated metamodels from the fine

Marte
Metamodel

PortInstance
Metamodel

MartePortInstance
Metamodel

LinkTopology
Metamodel

MartePortInstance
LinkTopology
Metamodel

T

Marte model
MartePortInstance
model

MartePortInstance
LinkTopology
model

relies on

<<instance of>>

Marte model

2 T1 T3

transformation

Caption

Figure 7: An implementation chain

grain transformations. The implementation of the chain is
then classical. The extended Explicit mapping transforma-
tion (T2) is first applied on a MARTE model. This transfor-
mation is a refactoring. The resulting model is also an in-
stance of the MARTE metamodel. Then the extended Port
Instance Introduction transformation (T1) produces a model
instance of the MartePortInstance metamodel. This meta-
model relies on the PortInstance metamodel input of the fine
grain transformation t1. Finally, the extended Link Topol-
ogy Management transformation (T3) gets the MartePortIn-
stance model and produces a MartePortInstanceLinkTopol-
ogy model.

5. CONCLUSION
In this paper, we proposed a mechanism to reuse trans-

formations in chains. Our mechanism aims at chaining two
model transformations having incompatible input and out-
put metamodels and jointly working to build a single out-
put. This is important, since most of the industrial model
transformations are directly concerned.

We defined the Extend operator that virtually extends the
input and output metamodel of any existing transformation.
From the formal definition, we have expressed the conditions
to chain two model transformations. In particular, from two
ordinary transformations jointly working to achieve a com-
mon target, we have clearly explained when they can not
be chained and when they can be chained in both execu-
tion orders getting the same result. Some properties rely
on strong constraints expressed at the metamodel level. We
forese to relax them by differentiating the read and modified
concepts.

Our approach has been validated using the complex trans-
formation chains of the Gaspard framework. This validation
step has highlighted the efficiency of our Extend operator
when it relies on small and independent model transforma-
tions. This mechanism is currently the core of Gaspard. It
ensures a high flexibility for the application developments,
reduces the design costs and allows an optimized mainte-
nance.

As a conclusion, our investigations have been validated
using QVT but do not depend on any model transformation
technique. The model transformations are handled as func-
tions having one input and one output metamodel. This
approach facilitates the extension of any other mechanism
targeting the reuse of model transformations.

6. REFERENCES
[1] Miller, J., Mukerji, J.: Mda guide version 1.0.1.

Technical report, Object Management Group (OMG)
(2003)

[2] Selic, B.: The pragmatics of model-driven
development. IEEE Software 20(5) (2003) 19–25

[3] Ossher, H., Harrison, W., Tarr, P.: Software
engineering tools and environments: a roadmap. In:
ICSE ’00: Proceedings of the Conference on The
Future of Software Engineering, New York, NY, USA,
ACM (2000) 261–277

[4] Schmidt, D.C.: Guest editor’s introduction:
Model-driven engineering. IEEE Computer 39(2)
(2006) 25–31

[5] Bézivin, J., Gerbé, O.: Towards a precise definition of
the omg/mda framework. In: 16th IEEE International

Conference on Automated Software Engineering (ASE
2001), 26-29 November 2001, Coronado Island, San
Diego, CA, USA. (2001) 273–280

[6] Czarnecki, K., Helsen, S.: Classification of model
transformation approaches. Proceedings of the 2nd
OOPSLA Workshop on Generative Techniques in the
Context of the Model Driven Architecture (2003)

[7] Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.,
Valduriez, P.: Atl: a qvt-like transformation language.
In: Companion to the 21th Annual ACM SIGPLAN
Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA
2006, October 22-26, 2006, Portland, Oregon, USA.
(2006) 719–720

[8] OMG: Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification (2007)

[9] Cuadrado, J.S., Molina, J.G., Tortosa, M.M.: Rubytl:
A practical, extensible transformation language. In
Rensink, A., Warmer, J., eds.: ECMDA-FA. Volume
4066 of Lecture Notes in Computer Science., Springer
(2006) 158–172

[10] Akehurst, D.H., Bordbar, B., Evans, M.J., Howells,
W.G.J., McDonald-Maier, K.D.: Sitra: Simple
transformations in java. In Nierstrasz, O., Whittle, J.,
Harel, D., Reggio, G., eds.: MoDELS. Volume 4199 of
Lecture Notes in Computer Science., Springer (2006)
351–364

[11] Gamatié, A., Le Beux, S., Piel, É., Etien, A., Ben
Atitallah, R., Marquet, P., Dekeyser, J.: A model
driven design framework for high performance
embedded systems. Research Report RR-6614, INRIA
(2008)

[12] Vanhooff, B., Ayed, D., Berbers, Y.: A framework for
transformation chain development processes. In:
Proceedings of the ECMDA Composition of Model
Transformations Workshop. (2006) pp. 3–8

[13] Oldevik, J.: Transformation composition modelling
framework. Volume 3543 of Lecture Notes in
Computer Science., Springer (2005) 108–114

[14] Olsen, G., Aagedal, J., Oldevik, J.: Aspects of
reusable model transformations. In: Proceedings of
the ECMDA Composition of Model Transformations
Workshop. (2006) pp. 21–26

[15] Sanchez Cuadrado, J., Garcia Molina: Approaches for
model transformation reuse: Factorization and
composition. In: Proceedings of the International
Conference on Model Transformation. Volume 5063 of
LNCS., Springer-Verlag (2008) pp. 168–182

[16] Alanen, M., Porres, I.: A metamodeling language
supporting subset and union properties. Software and
System Modeling 7(1) (2008) 103–124

[17] ProMarte partners: UML Profile for MARTE, Beta 2
(June 2008)

