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Embedded Control Systems: example

The Automated Transfer Vehicle, designed by EADS Astrium
Space Transportation for ESA, for resupplying the
International Space Station.
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The Flight Application Software

Propulsion (PDE)

Power System (PWS)

Solar Panels Positioning (SGS)

Star Tracker (Str)

GPS

Telecommunication (TM/TC)

Gyroscopes (Gyro)

Flight control system of the ATV.
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Embedded Control Systems: definition

control system

physical environment

outputsinputs

Control loop(s): Acquire inputs - Compute - Produce Outputs
⇒ repeat indefinitely;

Role: control a device in its physical environment.
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Important characteristics

Highly regular: no dynamic process creation, bounded loops,
. . .

Hard real-time constraints: periods, deadlines;

Multi-rate: different pieces of equipment = different control rates;

Operations of different rates communicate;

Mission critical systems.

5 / 50
A Synchronous Language for Critical Embedded Systems with Multiple Real-Time Constraints



Introduction The Language Compilation Conclusion

Objective

Define a language and the associated compiler for Embedded
Control Systems:

To specify the functional architecture;

To specify the temporal architecture;

Critical systems⇒ requires deterministic, predictable
programs.
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Main characteristics of the language

Architecture Design Language (ADL), integration language;

Synchronous semantics, thus formal;

High-level real-time primitives: periods, deadlines;

Rate transition operators;

Compiled into a set of concurrent real-time tasks⇒ efficient
preemptive scheduling;

Generates multi-threaded C code that preserves the
semantics of the original program;

Executes on a standard real-time platform.
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Fundamental basis: the synchronous model

Behaviour described as a succession of highly regular reactions
called instants;

Expressions and variables represent infinite sequences of
values, called flows;

Synchronous hypothesis: computations performed during an
instant complete before the beginning of the next instant;

If this condition is fulfilled, the programmer can simply ignore
the duration of an instant;

⇒ behaviour described on a logical time scale;

Clocks (Boolean conditions) enable the definition of several
logical time scales.

Benveniste, A. and Berry, G. (2001).
The synchronous approach to reactive and real-time systems.
In Readings in hardware/software co-design. Kluwer Academic Publishers.

10 / 50
A Synchronous Language for Critical Embedded Systems with Multiple Real-Time Constraints



Introduction The Language Compilation Conclusion

Simple LUSTRE/SCADE program

Example

node everyN ( n : i n t ) returns ( reached : bool )
var count : i n t ;
l e t

count=0 fby ( count +1 ) ;
reached =( count mod n =0) ;

t e l

Behaviour:
i 3 3 3 3 3 . . .
count=0 fby (count+1) 0 1 2 3 4 . . .
count mod n 0 1 2 0 1 . . .
reached true false false true false . . .

Halbwachs, N., Caspi, P., Raymond, P., and Pilaud, D. (1991).
The synchronous data-flow programming language LUSTRE.
Proc. IEEE, 79(9).
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Multi-rate in LUSTRE/SCADE

Example

period = 10ms

F
period = 30ms

S8ms >

Program (base period=10ms)

node m u l t i r a t e ( i : i n t ) returns ( o : i n t )
var v f : i n t ; c lock3 : bool ; vs : i n t when c lock3 ;
l e t

( o , v f )=F( i , current (0 fby vs ) ) ;
c lock3=everyN ( 3 ) ;
vs=S( v f when c lock3 ) ;

t e l
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Multi-rate in LUSTRE/SCADE

Behaviour:
vf vf0 vf1 vf2 vf3 vf4 vf5 vf6 . . .
vf when clock3 vf0 vf3 vf6 . . .
vs vs0 vs1 vs2 . . .
0 fby vs 0 vs0 vs1 . . .
current (0 fby vs) 0 0 0 vs0 vs0 vs0 vs1 . . .

Program (base period=10ms)

node m u l t i r a t e ( i : i n t ) returns ( o : i n t )
var v f : i n t ; c lock3 : bool ; vs : i n t when c lock3 ;
l e t

( o , v f )=F( i , current (0 fby vs ) ) ;
c lock3=everyN ( 3 ) ;
vs=S( v f when c lock3 ) ;

t e l
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Limitations: comparing different rates

Program (base rate=10ms)

node m u l t i r a t e ( i : i n t ) returns ( o : i n t )
var v f : i n t ; c lock3 : bool ; vs : i n t when c lock3 ;
l e t

( o , v f )=F( i , current (0 fby vs ) ) ;
c lock3=everyN ( 3 ) ;
vs=S( v f when c lock3 ) ;

t e l

For the programmer: not immediate to see that
vf when clock3 is 3 times slower than vf;

For the compiler: clocks = Boolean expressions⇒ it cannot
analyze clocks to see that ”a clock is 3 times slower than the
other”.
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Limitations: rate transitions

How to program transitions between flows of different rates ?

Example

node t r a n s i t i o n ( i : i n t ) returns ( o : i n t )
var clock3 , c lock6 : bool ; i3 , i 6 : i n t ;
l e t

c lock3=everyN ( 3 ) ; i 3 = i when c lock3 ;
c lock6=everyN ( 6 ) ; i 6 = i when c lock6 ;
v3= i 3 +( current ( i 6 ) when c lock3 ) ;
o=current ( i 3 ) ;

t e l

NB: operands of the arithmetic/logic operations must have the
same clock.
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Extension: Multi-Rate Synchronous

time

F F F F F F

S S

Scale 2: fast instants (10ms)

Scale 1: slow instants (30ms)

Requirements:

Define several logical time scales;

Compare different logical time scales;

Transition from one scale to another.

⇒ Introduce the real-time scale, as a reference between
different logical time scales.
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A specific class of real-time clocks: Strictly
Periodic Clocks

We need to clearly separate two complementary notions:

The real-time rate of a flow⇒ strictly periodic clocks;
The activation condition of a flow on a given rate⇒ Boolean
clocks.

Strictly periodic clocks can statically be compared and tested
for equivalence;

Specific transformations are introduced to define rate transition
operators.

Strictly periodic clocks:

⇒ Enable efficient real-time scheduling;

⇒ Complement and do not replace Boolean clocks.
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A specific class of real-time clocks (2)

Strictly periodic clocks can be considered as a sub-class of
Boolean clocks;

However, this restriction enables to compile real-time aspects
more efficiently.

Alras, M., Caspi, P., Girault, A., and Raymond, P. (2009).
Model-based design of embedded control systems by means of a synchronous intermediate model.
In International Conference on Embedded Software and Systems (ICESS’09), Hangzhou, China.

Cohen, A., Duranton, M., Eisenbeis, C., Pagetti, C., Plateau, F., and
Pouzet, M. (2006).
N-Synchronous Kahn Networks: a relaxed model of synchrony for real-time systems.
In ACM International Conference on Principles of Programming Languages (POPL’06), Charleston,
USA.

Smarandache, I. and Le Guernic, P. (1997).
A canonical form for affine relations in signal.
Technical Report RR-3097, INRIA.
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Strictly Periodic Clocks: definitions

Each value of a flow is tagged by a date: x = (vi , ti)i∈N;

The sequence of tags is the clock of the flow;

Value vi must be produced during time interval [ti , ti+1[;

A clock ck = (ti)i∈N is strictly periodic if and only if the interval
between two successive tags is constant:

∃n ∈ N+∗, ∀i ∈ N, ti+1 − ti = n

π(ck) = n is the period of h. ϕ(ck) = t0 is the phase of h.

Eg: (120,1/2) is the strictly periodic clock of period 120 and
phase 60.
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Periodic Clock Transformations
Different logical time scales (strictly periodic clocks) can be
compared thanks to their real-time characteristics.
⇒ Rate transformations:

Division : π(α/.k) = k ∗ π(α), ϕ(α/.k) = ϕ(α) (k ∈ N+∗)

Multiplication : π(α ∗. k) = π(α)/k , ϕ(α ∗. k) = ϕ(α) (k ∈ N+∗)

Phase offset : π(α→. q) = π(α), ϕ(α→. q) = ϕ(α) + q ∗ π(α)
(q ∈ Q)

α

α ∗. 2
α/.2

α→.
1
2
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Operations

Multi-rate system

period = 10ms

F
period = 30ms

S8ms >
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Operations: Imported nodes

The operations of the system are declared as imported nodes;

Imported nodes are implemented by external functions (for
instance in C, or LUSTRE);

The programmer declares the worst case execution time (wcet)
of the node.

Example

imported node F( i , j : i n t ) returns ( o , p : i n t ) wcet 2;
imported node S( i : i n t ) returns ( o : i n t ) wcet 10;

22 / 50
A Synchronous Language for Critical Embedded Systems with Multiple Real-Time Constraints



Introduction The Language Compilation Conclusion

Real-time constraints

Multi-rate system

period = 10ms

F
period = 30ms

S8ms >

Bertin, V., Closse, E., Poize, M., Pulou, J., Sifakis, J., Venier, P., Weil,
D., and Yovine, S. (2001).
TAXYS=Esterel+Kronos. A tool for verifying real-time properties of embedded systems.
In 40th IEEE Conference on Decision and Control, volume 3.

Curic, A. (2005).
Implementing Lustre programs on distributed platforms with real-time constraints.
PhD thesis, Université Joseph Fourier, Grenoble.
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Real-time constraints: clocks and deadlines

Real-time constraints are specified in the signature of a node;

Periodicity constraints on inputs/outputs;

Deadline constraints on inputs/outputs.

Example

node sampling ( i : r a te ( 1 0 ,0 ) ) returns ( o : ra te (10 ,0 ) due 8)
l e t

. . .
t e l

The rate of an input/output can be left unspecified, it will be
inferred by the compiler.
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Multi-rate communications

Multi-rate system

period = 10ms

F
period = 30ms

S8ms >

Simulink: User’s Guide.
The Mathworks.

Faucou, S., Déplanche, A.-M., and Trinquet, Y. (2004).
An ADL centric approach for the formal design of real-time systems.
In Architecture Description Language Workshop at IFIP World Computer Congress (WADL’04).
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Multi-rate communications: rate transition
operators

Example

node sampling ( i : r a te (10 , 0 ) ) returns ( o )
var vf , vs ;

l e t
( o , v f )=F( i , (0 fby vs ) ∗ ˆ 3 ) ;
vs=S( v f / ˆ 3 ) ;

t e l

Rate transition operators based on periodic clock transforma-
tions:

Sub-sampling: x/ˆ3 (has clock(x)/.3);

Over-sampling: x ∗ˆ3 (has clock(x) ∗. 3);
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Multi-rate communications: rate transition
operators

Example

node sampling ( i : r a te (10 , 0 ) ) returns ( o )
var vf , vs ;

l e t
( o , v f )=F( i , (0 fby vs ) ∗ ˆ 3 ) ;
vs=S( v f / ˆ 3 ) ;

t e l

date 0 10 20 30 40 50 60 70 80 ...
vf vf0 vf1 vf2 vf3 vf4 vf5 vf6 vf7 vf8 ...
vf/ˆ3 vf0 vf3 vf6 ...
vs vs0 vs1 vs2 ...
0 fby vs 0 vs0 vs1 ...
(0 fby vs)*ˆ3 0 0 0 vs0 vs0 vs0 vs1 vs1 vs1 ...
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Compilation overview

program

static analysesstop

task extraction

tasks + dependencies

encode precedences communication protocol

independent tasks

feasibility analysis stop

code generation

multi-threaded C code

succeed

fail

succeed

fail

semantics
preserved
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Ensure program correctness

Analyses:

Typing: program only combines flows of the same type⇒ no
run-time type error;

Causality analysis: no cyclic data-dependencies⇒ an
execution order satisfying all data-dependencies exists;

Clock calculus: program only combines flows of the same clock
⇒ no access to ill-defined values (values are only accessed
when they should be).

Generate code only if static analyses succeed, ie the semantics
of the program is well-defined.
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Clock calculus

Clock calculus = type system;

A clock = a type;
Flows can be combined only if they have the same ”clock type”;

Clocks can be polymorphic (quantified types);

Computes the clock of every flow (variable, expression) of the
program.

Colaço, J.-L. and Pouzet, M. (2003).
Clocks as first class abstract types.
In Third International Conference on Embedded Software (EMSOFT’03), Philadelphia, USA.
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Clock calculus: example

Example

node under sample ( i ) returns ( o )
l e t o= i / ˆ 2 ; t e l

node poly ( i : i n t r a te (10 , 0 ) ; j : i n t r a te (5 , 0 ) )
returns ( o , p : i n t )
l e t

o=under sample ( i ) ;
p=under sample ( j ) ;

t e l

Result inferred by the clock calculus

under sample : ’ a−>’a / . 2
po ly : ( ( 1 0 , 0 ) ∗ (5 ,0))−> ( (20 ,0) ∗ ( 1 0 ,0 ) )
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Task-based vs single-loop compilation

Program

imported node F( i : i n t ) returns ( o : i n t ) wcet 1;
imported node S( i : i n t ) returns ( o : i n t ) wcet 6;
node m u l t i ( i : r a te (3 , 0 ) ) returns ( o )
var v ;
l e t v=F( i ) ; o=S( v / ˆ 3 ) ; t e l

Single-loop compilation

0 3 6 9

F F F

0 9

S

deadline missed
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Task-based vs single-loop compilation

Program

imported node F( i : i n t ) returns ( o : i n t ) wcet 1;
imported node S( i : i n t ) returns ( o : i n t ) wcet 6;
node m u l t i ( i : r a te (3 , 0 ) ) returns ( o )
var v ;
l e t v=F( i ) ; o=S( v / ˆ 3 ) ; t e l

Task-based compilation

0 3 6 9

F F F

0 9

S S
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Task graph extraction

Imported node⇒ task;

Main input⇒ sensor (task);

Main output⇒ actuator (task);

Data dependency⇒ precedence constraint between tasks;

Predefined operator (rate transition, etc)⇒ precedence
annotation, ie extended precedences.

Aubry, P., Le Guernic, P., and Machard, S. (1996).
Synchronous distribution of Signal programs.
In 29th Hawaii International Conference on System Sciences (HICSS’96) Volume 1: Software
Technology and Architecture.

Girault, A., Nicollin, X., and Pouzet, M. (2006).
Automatic rate desynchronization of embedded reactive programs.
ACM Trans. Embedd. Comput. Syst., 5(3).
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Task graph extraction: example

Program

node sampling ( i : r a te (10 , 0 ) ) returns ( o )
var vf , vs ;

l e t
( o , v f )=F( i , (0 fby vs ) ∗ ˆ 3 ) ;
vs=S( v f / ˆ 3 ) ;

t e l

Task graph

F
/ˆ3

fby. ∗ˆ3
S

i
o
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Real-time characteristics

For each task τi of clock cki :

Period: Ti = π(cki);

Execution time: Ci as defined for the corresponding imported
node.

Initial release date: ri = ϕ(cki).

Relative deadline: di = Ti by default, otherwise explicit deadline
constraint (eg o: due 8).
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Scheduling and executing dependent tasks

Two solutions:
1 Rely on synchronization mechanisms:

Dependence⇒ semaphore;
Several problems:

priority inversion: solvable with priority affectation protocols;
scheduling anomalies (system becomes unschedulable due to
tasks completing faster than their wcet);
Requires to certify semaphores implementation.

2 Translate dependent tasks into independent tasks.

⇒ Better-suited for critical systems.
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From dependent to independent tasks

Conditions to respect the synchronous semantics:
1 Data can only be consumed after being produced

(precedence)⇒ precedence encoding, by adjusting real-time
attributes;

2 Data must not be overwritten before being consumed⇒
communication protocol to keep data available until the deadline
of the consumer.

Example

A
/ˆ2→ B:

A A

B B

(1): B[0] after A[0] (2) keep A[0] available
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Precedence encoding, simple precedences
Simple precedences (precedences between tasks of the same
period):

1 Use the earliest-deadline-first policy;
2 Adjust Di and Ri for all precedence τi → τj :

D∗i = min(Di , minτj∈succs(τi )(D
∗
j − Cj))

R∗j = max(Rj , maxτi∈preds(τj )(R
∗
i ))

3 Resulting problem⇔ Original problem;
4 Optimal policy (finds a solution if there exists one).

Chetto, H., Silly, M., and Bouchentouf, T. (1990).
Dynamic scheduling of real-time tasks under precedence constraints.
Real-Time Systems, 2.

Liu, C. L. and Layland, J. W. (1973).
Scheduling algorithms for multiprogramming in a hard-real-time environment.
Journal of the ACM, 20(1).
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Adaptation: encoding extended precedences
Extended precedences = repetitive patterns of simple
precedences⇒ encode only one pattern.

1 Release dates: synchronous context⇒ encoding respected by
default;

2 6= relative deadlines for 6= instances of the same task⇒
deadline words: (3.5)ω = the sequence of task instance
deadlines 3.5.3.5.3.5. . . .

Example

A
/ˆ2→ B

TA = 5, TB = 10, CB = 7,
CA = 1

dA = (3.5)ω

A A A A

B B

prec. pattern prec. pattern

dA[0] dA[1] dA[2] dA[3]
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Communication protocol

Ex: B(A(x)*ˆ3/ˆ2), ie A
∗̂ 3./ˆ2→ B:

Semantics
date 0 10 20 30 40 50 60 70 80 ...
A(x) a0 a1 a2 ...
A(x)*ˆ3 a0 a0 a0 a1 a1 a1 a2 a2 a3 ...
A(x)*ˆ3/ˆ2 a0 a0 a1 a2 a3 ...

Lifespans

A

B
spA,B(0) spA,B(2)

spA,B(1) spA,B(3)
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Communication protocol (2)

Lifespans

A

B
spA,B(0) spA,B(2)

spA,B(1) spA,B(3)

Buffer of size 2;

Write in the buffer cyclicaly;

Read from the buffer cyclicaly;

Do not advance at the same pace for reading and writing.

Sofronis, C., Tripakis, S., and Caspi, P. (2006).
A memory-optimal buffering protocol for preservation of synchronous semantics under preemptive
scheduling.
In Sixth International Conference on Embedded Software (EMSOFT’06), Seoul, South Korea.
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Prototype

Task set translated into a C file, using POSIX.13 extensions for
real-time ;

A task⇒ a thread;

Threads scheduled concurrently using the EDF policy,
extended to handle deadline words;

Scheduler prototyped in MARTE OS ;

Prototype of the compiler developed in OCAML, about 3000
lines of code.

POSIX.13 (1998).
IEEE Std. 1003.13-1998. POSIX Realtime Application Support (AEP).
The Institute of Electrical and Electronics Engineers.

Rivas, M. A. and Harbour, M. G. (2002).
POSIX-Compatible Application-Defined Scheduling in MaRTE OS.
In 14th Euromicro Conference on Real-Time Systems (ECRTS’02), Washington, USA.
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Case study

Experiment:

Prototype used to program the real-time architecture of the ”real”
ATV Flight Application Software (2/3 of the periodic services
programmed);

180 imported nodes, 70 inputs, 9 outputs.

Results:

Language seems expressive enough;

Compilation time on a very modest machine is less than 1s,
most of it spent to write the output C file.
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Summary (language)

Real-time architecture description language;

Synchronous, formal semantics;

Small set of new primitives;

Static analyses ensure that the semantics of a program is
well-defined.
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Summary (compilation)

Compilation into a set of real-time tasks;

Tasks of different rates can communicate;

Precedence encoding allows to schedule tasks as if they were
independent;

Communication protocol preserves the semantics of the
program;

No synchronization mechanisms⇒ no risk of deadlock or
priority inversion;

Complete compilation scheme proved correct formally.
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Perspectives

Use a static priority scheduling policy (and reuse the rest):
currently under review;

Clustering nodes in the same task to reduce the number of
tasks;

Supporting mode automata: makes the clock calculus more
complex;

Ongoing PhD. thesis (M. Cordovilla): compilation for multi-core
architectures (starting from the task graph).
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