The project of the Émeraude team is to contribute to the efficient and easy usage of future generation processors for mobile and embedded applications with a focus on time in all the layers of computation (language, compiler, operating system, virtual machine). The core idea we will develop in our research is that by using timing information, the operating system or middleware will be empowered to make better decisions concerning the power consumption. For example, knowing a deadline and having an estimation of the needed processing power for a task could allow to reduce the operating frequency, and thus reduce energy consumption. Our research contributes to energy aware real-time scheduling on heterogeneous platforms, task and communication mapping on heterogeneous networks-on-chips, and runtime dynamic adaptation to the hardware variability. In addition to this core research direction, we study the possibility to radically change the way we compute by using neuro-inspired accelerators based on emerging memristive nanodevices. To this effect, we collaborate with two teams of the IEMN nanotechnology lab to build a simulator using the characteristics of the devices they design and to research proposals of architectures of hardware neural networks based on these devices.
Pierre Boulet
Sécurité et privacité des systèmes neuromorphiques
Intelligence artificielle apliquée à la détermination des radiolaires fossiles. Implications taxonomiques, biostratigraphiques et évolutives
Connexion efficace entre capteurs et processeurs neuromorphiques
Visualisation interactive de traces de simulation de réseaux de neurones matériels à impulsions 20/06/2022
Enabling Predictable Hardware Acceleration in Heterogeneous SoC-FPGA Computing Platforms 20/07/2020
Energy-Efficient scheduling of parallel real-time tasks on heterogeneous multicore systems 02/11/2016
Minimisation du nombre de tâches d'un système temps réel par regroupement 25/11/2015